

Where Science Becomes Hope

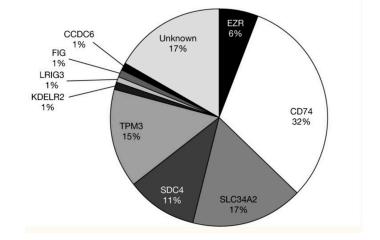
RET, ROS1, AND NTRK FUSIONS: OPTIMAL THERAPY AND EMERGING AGENTS

Conor Steuer, MD

Associate Professor

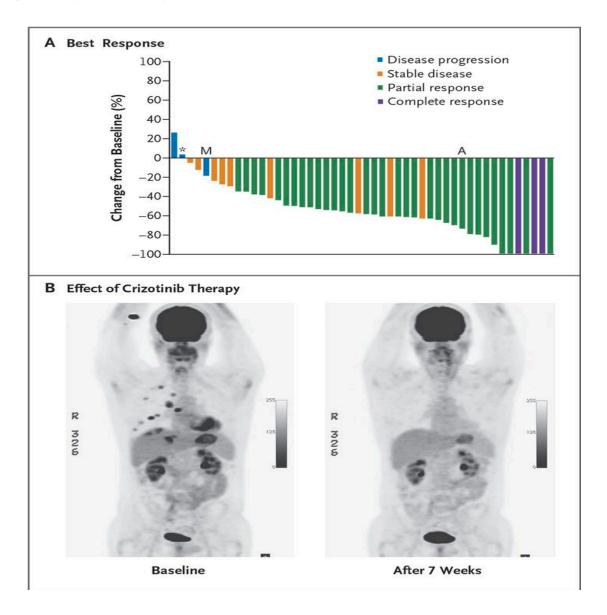
Interim

Atlanta Lung October 2025


DISCLOSURES

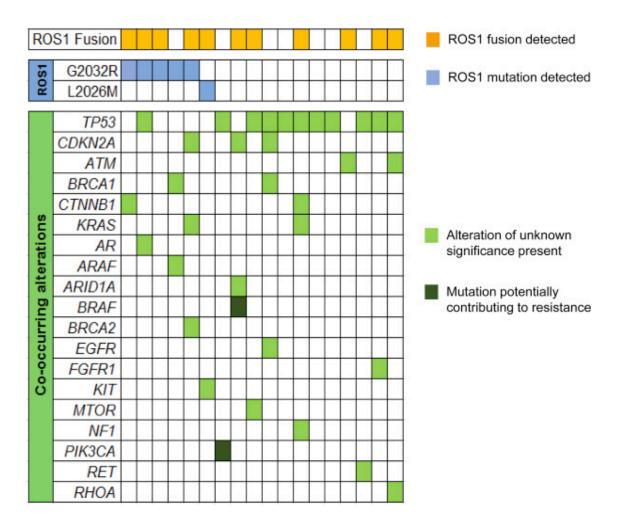
Received honoraria Merck, Sanofi/Regeron, Daiichi, Novocure, Boehringer Ingelheim, BMS, Fennec

ROS1


- Represent approximately 1% of NSCLC
- The kinase domains of ALK and ROS1 share 77% amino acid identity within the ATP-binding sites
- Detected by FISH, RT-PCR and NGS (pretty much all NGS at this point

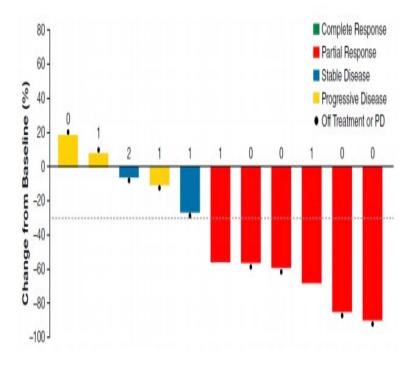
- Multiple fusion partners
- FDA approved: Crizotinib, Lorlatinib (not actually approved), Entrectinib, Repotrectinib, Taletrectinib, soon Zidesamtinib likely.

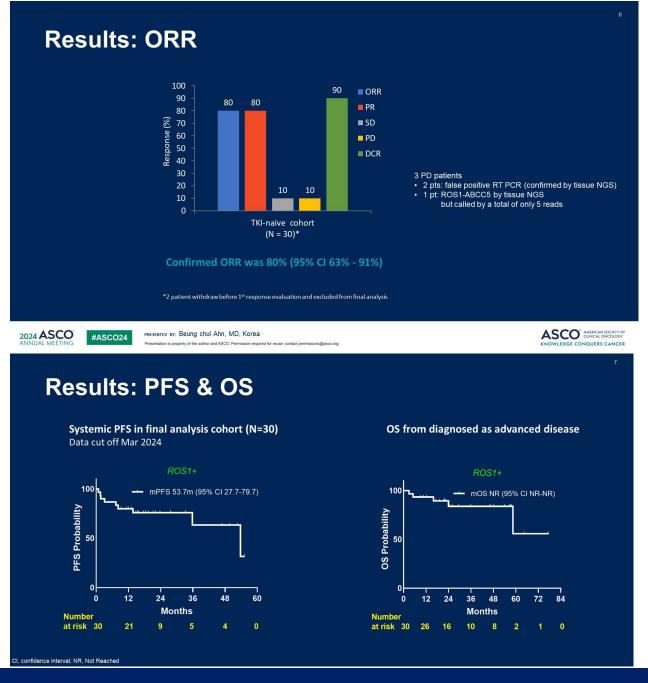
Shaw et al. NEJM 2014 Bubendorf et al. Virchow Arch 2016


ROS1-CRIZOTINIB

ORR=72%
Median DOR=17.6m
Median PFS=19.2m
Survival at 12 m= 85%

-The solvent front mutation Gly2032Arg a frequent mediator of resistance to crizotinib in ROS1 patients


RESISTANCE


Dagogo-Jack et al. JTO 2017

LORLATINIB

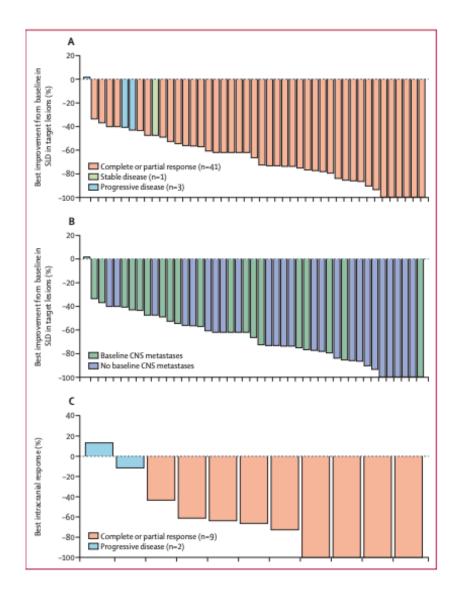
ORR=50% Median DOR 16.6 months

Shaw et al. Lancet Onc. 2017 Ahn et al. ASCO 2024

ENTRECTINIB

- An integrated analysis of three ongoing phase 1 or 2 trials of entrectinib (ALKA-372-001, STARTRK-1, and STARTRK-2)
- All had ROS1 fusion positive NSCLC and previously treated
- Non randomized single arm studies

Treatment-related adverse events led to dose reduction in 46 (34%) of 134 patients, and discontinuation in seven (5%)


	Grade 1-2	Grade 3	Grade
Dysgeusia	56 (42%)	1 (<1%)	0
Dizziness	43 (32%)	1 (<1%)	0
Constipation	44 (33%)	0	0
Diarrhoea	35 (26%)	3 (2%)	0
Weight increase	26 (19%)	10 (7%)	0
Fatigue	32 (24%)	0	0
Paraesthesia	23 (17%)	0	0
Nausea	23 (17%)	0	0
Peripheral oedema	22 (16%)	0	0
Myalgia	19 (14%)	2 (2%)	0
Vomiting	19 (14%)	0	0
Blood creatinine increase	17 (13%)	1 (<1%)	0
Aspartate aminotransferase increase	14 (10%)	2 (2%)	0
Alanine aminotransferase increase	13 (10%)	3 (2%)	0
Hyperaesthesia	12 (9%)	1 (<1%)	0
Arthralgia	12 (9%)	1 (<1%)	0
Anaemia	11 (8%)	1 (<1%)	0
Hyperuricaemia	11 (8%)	0	1 (<1%
Rash	9 (7%)	2 (1%)	0
Pruritus	9 (7%)	1 (<1%)	0
Peripheral sensory neuropathy	8 (6%)	1 (<1%)	0
Cognitive disorder	8 (6%)	1 (<1%)	0
Muscular weakness	6 (4%)	1 (<1%)	0
Hypotension	6 (4%)	1 (<1%)	0
Neutropenia	5 (4%)	5 (4%)	0
Neutrophil count decrease	5 (4%)	3 (2%)	0
Ataxia	5 (4%)	1 (<1%)	0
Pyrexia	5 (4%)	1 (<1%)	0
Dysarthria.	4 (3%)	1 (<1%)	0
Pain of skin	4 (3%)	1 (<1%)	0
Lymphocyte count decrease	2 (1%)	1 (<1%)	0
Blood creatine phosphokinase increase	2 (1%)	1 (<1%)	1 (<1%
Hypophosphataemia	2 (1%)	1 (<1%)	0
Orthostatic hypotension	2 (1%)	1(<1%)	0
Electrocardiogram QT prolonged	1(<1%)	1(<1%)	0
Amylase increased	1(<1%)	1 (<1%)	0
Dehydration	0	2 (1%)	0
Limbic encephalitis	0	0	1 (<1%
Anorectal disorder	0	0	1 (<1%
Myocarditis	0	0	1(<1%
Myoclonus	0	1 (<1%)	0
Hypoxia	0	1(<1%)	0
Hypertension	0	1(<1%)	0
Cardiac failure	0	1(<1%)	0
Cardiac iallure	o .	T (<t26)< td=""><td>-0</td></t26)<>	-0

The safety population includes all patients with ROS1 fusion-positive NSCLC across the three trials who received at least one dose of entrectinib (irrespective of dose or duration of follow-up). All treatment-related adverse events observed are shown. Data are n (%) of patients. Adverse events were encoded using Medical Dictionary for Regulatory Activities (version 21.0). NSCLC=non-small-cell lung cancer.

Table 3: Treatment-related adverse events in the safety-evaluable population with ROS1 fusion-positive NSCLC (n=134)

Drilon et al. Lanc Onc 2020

ENTRECTINIB-DRILON ET AL. AND BFAST STUDY

ORR 77%

Efficacy parameter	ROS1-positive NSCLC (n	ROS1-positive NSCLC (n=54)		
	INV assessment	IRF assessment		
ORR, n (%)	44 (81.5)	44 (81.5)		
95% CI	68.6-90.8	68.6-90.8		
CR, n (%)	2 (3.7)	3 (5.6)		
PR, n (%)	42 (77.8)	41 (75.9)		
SD, n (%)	7 (13.0)	7 (13.0)		
PD, n (%)	3 (5.6)	1 (1.9)		
Missing/nonevaluable (NE)	0	2 (3.7)		
CBR ^a , n (%) 95% CI	47 (87.0) 75.1–94.6	44 (81.5) 68.6–90.8		
Median DoR, months (95% CI)	n=44 13.0 (6.3–18.4)	n=44 16.7 (5.6–24.0)		
Responders with event, n (%)	30 (68.2)	25 (56.8)		
12-month event-free rate, %	53.2	57.3		
Median time to CNS progression, months (95% CI)	n=54 NE (NE)	n=54 NE (NE)		
Patients with event, n (%)	9 (16.7)	6 (11.1)		
12-month event-free rate, %	83.5	86.4		
Median PFS, months (95% CI)	n=55 12.9 (8.7–18.5)	n=55 14.8 (7.2–24.0)		
Patients with event, n (%)	39 (70.9)	33 (60.0)		
12-month event-free rate, %	50.7	52.4		
os	n=55			
Patients with event, n (%)	20 (36.4)			
12-month event-free rate, %	79.0			

Drilon et al. Lanc Onc 2020 Peters et al. Nat Med 2024

REPOTRECTINIB: TRIDENT-1

TRIDENT-1: A Phase 1/2 Study of Repotrectinib

Study Design/Eligibility (Phase 1)

- Advanced solid tumors harboring ROS1/NTRK1-3/ALK fusions
- No limit on prior lines of therapy
- Asymptomatic CNS metastases allowed

Phase 1 Primary Objective

Determine the MTD and RP2D

Phase 1 Secondary Objectives

- Safety and tolerability
- Preliminary objective response rate and clinical benefit rate

		Number of patients per dose cohort								
	40 mg QD	80 mg QD	160 mg QD	240 mg QD	160 mg BID	200 mg BID ¹	120 mg QD w/ Food	160 mg QD w/ Food	160 mg QD/BID w/Food ²	Total
Safety population (ROS1+, NTRK1-3+, ALK+ solid tumors)	13	12	23	10	12	2	3	5	3	83**
Efficacy population (ROS1+ NSCLC)	5	5	10	2	6	0	2	3	0*	33

¹ 2 ALK patients enrolled

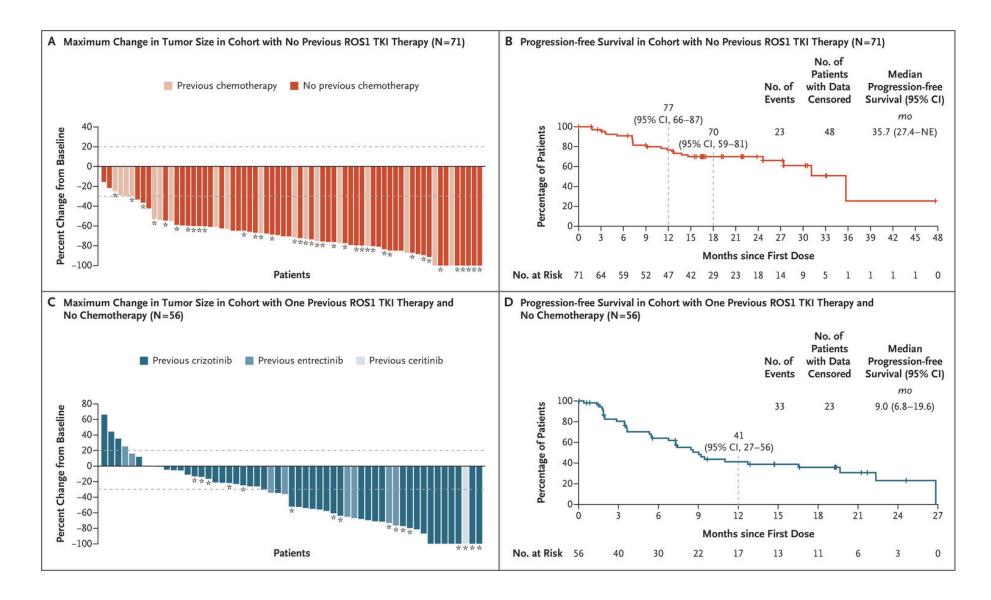
PRESENTED AT: 2019 ASCO ANNUAL MEETING

#ASCO19

Slides are the property of the author, permission required for reuse.

PRESENTED BY: B.C. Cho, M.D., PhD

Data cut-off date of March 4, 2019


4

²160 mg QD for one week followed by 160 mg BID

^{*} Not yet evaluable for efficacy by BICR

^{**} N=83 patients: 31 were ALK+, 9 were NTRK+, and 43 were ROS1+ (of which 33 ROS1+ NSCLC were evaluable for efficacy by BICR) BICR: Blinded Independent Central Review

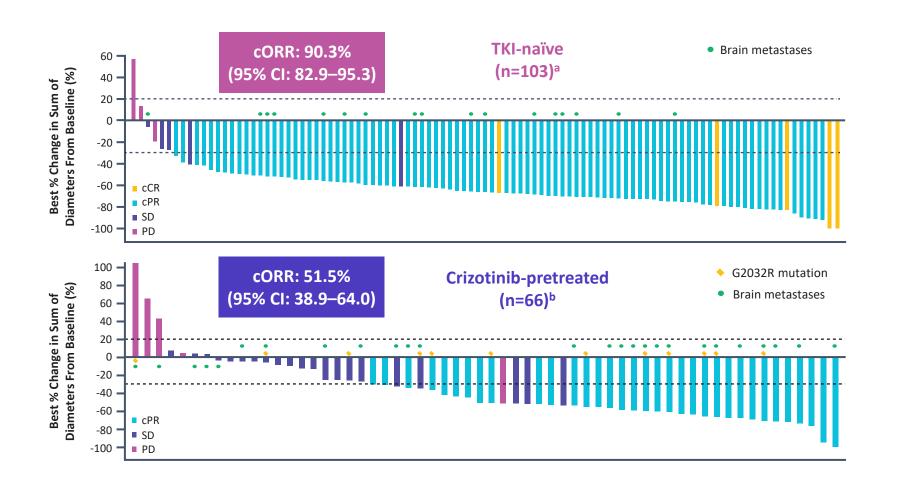
TRIDENT-1

REPOTRECTINIB

Event	During Treat	tment Period	Related to Tro	eatment
	Any Grade	Grade ≥3	Any Grade	Grade ≥3
		number of pati	ents (percent)	
Any event	422 (99)	216 (51)	409 (96)	122 (29)
Event occurring in ≥15% of patients				
Dizziness	264 (62)	11 (3)	245 (58)	11 (3)
Dysgeusia	224 (53)	0	213 (50)	0
Constipation	162 (38)	1 (<1)	111 (26)	0
Anemia	160 (38)	33 (8)	111 (26)	16 (4)
Paresthesia	143 (34)	3 (1)	126 (30)	3 (1)
Dyspnea	117 (27)	27 (6)†	36 (8)	2 (<1)
Increased alanine aminotransferase level	99 (23)	8 (2)	76 (18)	6 (1)
Fatigue	95 (22)	4 (1)	70 (16)	3 (1)
Ataxia	90 (21)	1 (<1)	87 (20)	0
Increased aspartate aminotransferase level	89 (21)	9 (2)	75 (18)	6 (1)
Nausea	85 (20)	3 (1)	51 (12)	2 (<1)
Muscular weakness	85 (20)	8 (2)	59 (14)	6 (1)
Headache	79 (19)	0	42 (10)	0
Increased blood creatine kinase level	75 (18)	15 (4)	72 (17)	15 (4)
Weight increase	67 (16)	11 (3)	49 (12)	7 (2)
Memory impairment	65 (15)	1 (<1)	54 (13)	1 (<1)
Cough	64 (15)	1 (<1)	10 (2)	0
Event that led to treatment discontinuation	31 (7)	0	14 (3)	0
Event that led to dose reduction	163 (38)	0	149 (35)	0
Event that led to dose interruption	213 (50)	0	150 (35)	0
Any serious event	147 (35)	0	38 (9)	0
Death	19 (4)	0	0	0

UPDATED EFFICACY AND SAFETY OF TALETRECTINIB IN CHINESE PATIENTS WITH ROS1+ NON-SMALL CELL LUNG CANCER: PHASE 2 TRUST-I STUDY

Wei Li,¹ Anwen Xiong,¹ Huijie Fan,² Qitao Yu,³ Yanqiu Zhao,⁴ Yongsheng Wang,⁵ Xue Meng,⁶ Jingxun Wu,⁷ Yunpeng Liu,⁸ Xintian Qin,⁹ Kaihua Lu,¹⁰ Wu Zhuang,¹¹ Yizhong Ren,¹² Xiucui Li,¹² Feiwu Ran,¹² Caicun Zhou¹³


¹Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China; ²The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; ³Medical Oncology of Respiratory, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China; ⁴Henan Cancer Hospital, Zhengzhou, China; ⁵West China Hospital Sichuan University, Chengdu, China; ⁶Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China; ⁷The First Affiliated Hospital of Xiamen University, Xiamen, China; ⁸The First Hospital of China Medical University, Shenyang, China; ⁹The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China; ¹⁰Jiangsu Province Hospital, Nanjing, China; ¹¹Fujian Cancer Hospital, Fuzhou, China; ¹²Nuvation Bio, New York, NY, USA; ¹³Department of Medical Oncology, Shanghai East Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China

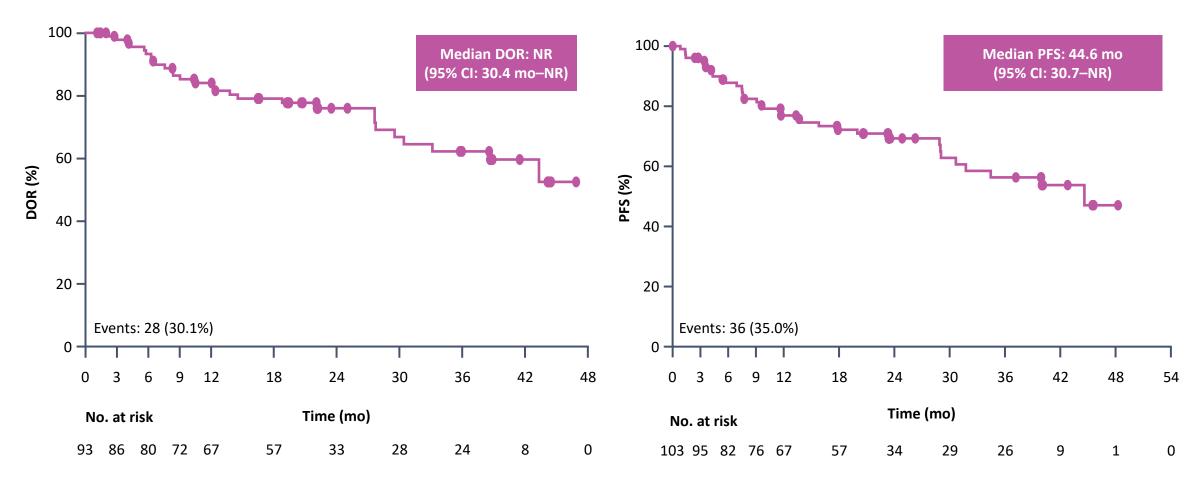
PATIENT DEMOGRAPHICS AND BASELINE CHARACTERISTICS

	TRU	TRUST-I		
Baseline Characteristics	TKI-naïve (n=103)	Crizotinib- pretreated (n=67)	Safety Analysis (N=337)	
Median age, years (range)	56 (26–78)	51 (31–77)	56 (26–83)	
Female, n (%)	57 (55.3)	41 (61.2)	190 (56.4)	
Stage IV disease, n (%)	94 (91.3)	65 (97.0)	318 (94.4)	
ECOG PS 1, n (%)	83 (80.6)	48 (71.6)	228 (67.7)	
Never smoker, n (%)	75 (72.8)	50 (74.6)	NA	
Prior chemotherapy, n (%)	20 (19.4)	23 (34.3)	NA	
Brain metastases, ^a n (%)	18 (17.5)	28 (41.8)	NA	

^aAssessed by IRC per mRECIST v1.1.

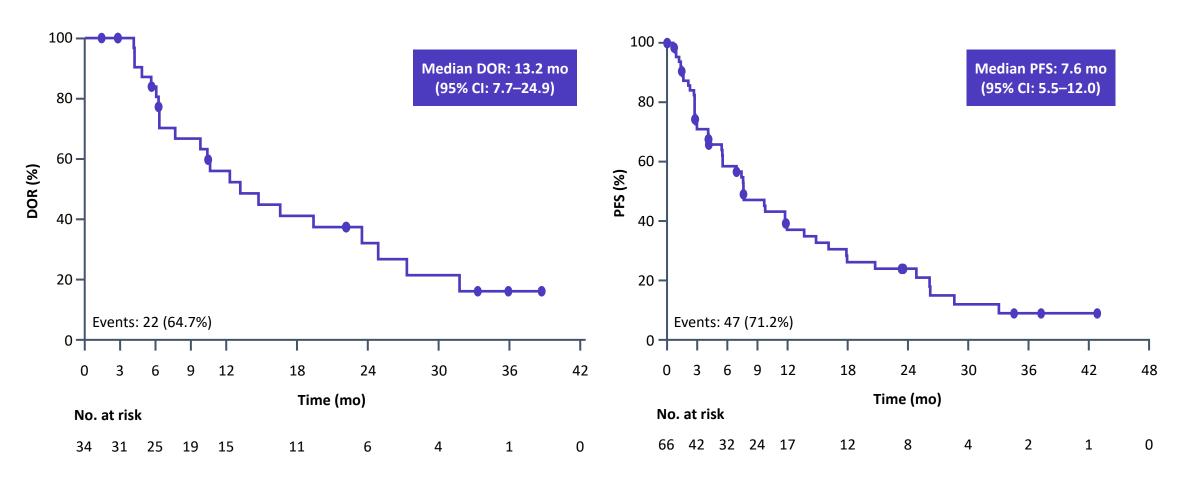
CORR BY IRC ACCORDING TO RECIST V1.1

Data cutoff: October 28, 2024. a Two patients with confirmed BOR of NE are not shown in the figure. b One patient was excluded due to the presence of secondary cancer. One patient had a change of 136.5% which was cut at 100%. Six patients with confirmed BOR of NE are not shown in the figure.


c, confirmed; CI, confidence interval; CR, complete response; IRC, Independent Review Committee; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor.

CORR BY IRC ACCORDING TO RECIST V1.1

Efficacy	TKI-naïve	Crizotinib-pretreated
cORR: G2032R mutations, % (95% CI)		(n=12) 66.7 (34.9–90.1)
cORR: Prior chemotherapy, % (95% CI)	(n=20) 85.0 (62.1–96.8)	(n=23) 43.5 (23.2–65.5)
IC efficacy ^a	(n=8)	(n=16)
IC-ORR, % (95% CI)	87.5 (47.4–99.7)	75.0 (47.6–92.7)


^aAssesed by IRC per mRECIST v1.1 in patients with ≥1 measurable baseline brain metastasis.

DOR AND PFS IN TKI-NAÏVE PATIENTS (N=103)

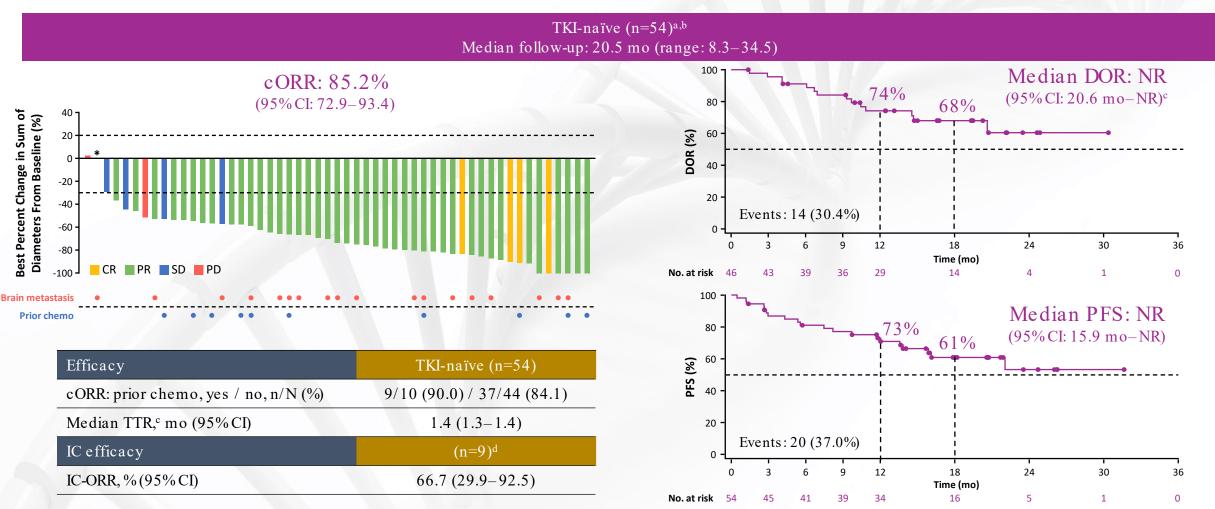
Median OS was NR for TKI-naïve patients

DOR AND PFS IN CRIZOTINIB-PRETREATED PATIENTS (N=66)

Median OS was 25.6 mo for crizotinib-pretreated patients

TEAES OF CLINICAL INTEREST (N=337)

TEAE	Any Grade, n (%)	Median Time to Onset, Days (IQR)	Median Time to Resolution, Days (IQR)	Dose Interruption, n (%)	Dose Reduction, n (%)	Treatment Discontinuation, n (%)
Increased AST	256 (76.0)	16 (9 42)a	EO (20, 149)a	23 (6.8)	17 (5.0)	1 (0.2)
Increased ALT	256 (76.0)	16 (8, 43)ª	50 (29, 148) ^a —	23 (6.8)	29 (8.6)	1 (0.3)
Diarrhea	213 (63.2)	2 (1, 15)	1 (1, 3)	6 (1.8)	8 (2.4)	0
Nausea	159 (47.2)	2 (1, 13)	3 (1, 46)	5 (1.5)	4 (1.2)	0
Vomiting	146 (43.3)	3 (1, 35)	1 (1, 3)	10 (3.0)	5 (1.5)	0
Dizziness	71 (21.1)	34 (3, 199)	3 (1, 47)	2 (0.6)	1 (0.3)	0

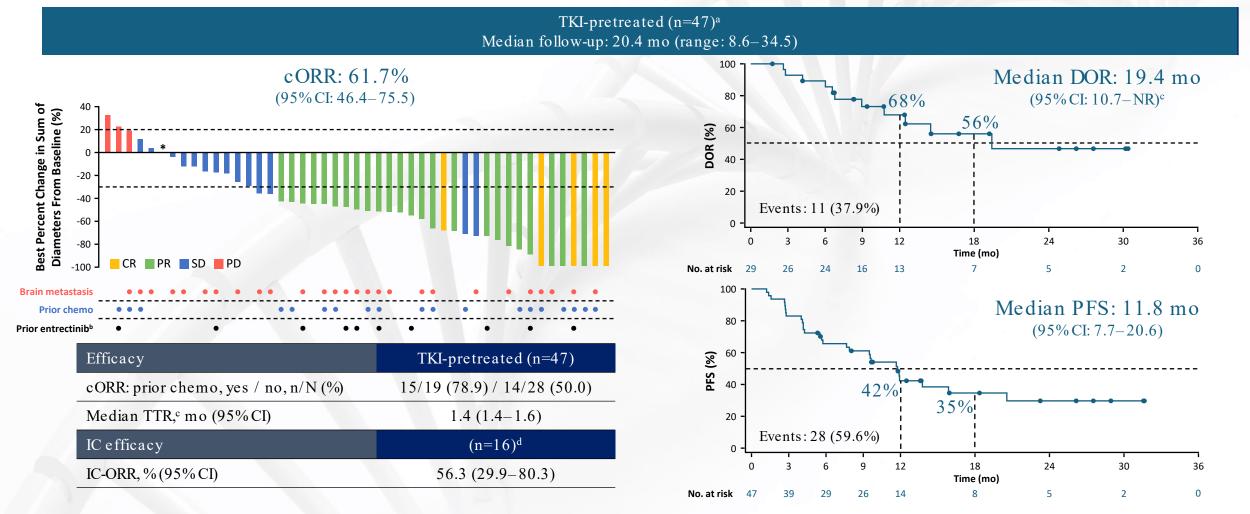

^aMedian time to onset for Grade ≥3 increased AST/ALT was 43 days (IQR: 22, 86) and median time to resolution was 13 days (IQR: 8, 19). These results are based on laboratory data. ALT, alanine aminotransferase; AST, aspartate aminotransferase; IQR, interquartile range; TEAE, treatment-emergent adverse event.

UPDATED EFFICACY AND SAFETY OF TALETRECTINIB IN PATIENTS WITH ROS1+ NON-SMALL CELL LUNG CANCER: THE GLOBAL TRUST-II STUDY

<u>Geoffrey Liu</u>,¹ Chang-Min Choi,² Shunichi Sugawara,³ Noriko Yanagitani,⁴ Filippo De Braud,⁵ Jorge Nieva,⁶ Misako Nagasaka,⁷ Caicun Zhou,⁸ Enriqueta Felip,⁹ Xianyu Zhang,¹⁰ Wei Wang,¹⁰ Nathan A. Pennell,¹¹ Maurice Pérol,¹² Lyudmila Bazhenova¹³

¹Princess Margaret Cancer Centre, Temerty School of Medicine, University of Toronto, Toronto, Canada; ²Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ³Sendai Kousei Hospital, Miyagi, Japan; ⁴The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ⁵University of Milan, Milan, Italy; ⁶Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; ⁷University of California Irvine School of Medicine and Chao Family Comprehensive Cancer Center, Orange, CA, USA; ⁸Department of Medical Oncology, Shanghai East Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China; ⁹Vall d'Hebron University Hospital, Barcelona, Spain; ¹⁰Nuvation Bio, New York, NY, USA; ¹¹Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; ¹²Léon Bérard Cancer Center, Lyon, France; ¹³University of California San Diego Moores Cancer Center, San Diego, CA, USA

TALETRECTINIB: EFFICACY OUTCOMES IN TKI-NAÏVE ROS1+NSCLC



 $Data\ cutoff:\ October\ 28,\ 2024.\ BOR,\ best\ overall\ response;\ CI,\ confidence\ interval;\ CR,\ complete\ response;\ mo,\ months;\ NE,\ not\ evaluable;\ NR,\ not\ reached;\ PD,\ progress\ ive\ disease;\ PR,\ partial\ response;\ SD,\ stable\ disease.$

^aResponse evaluable population includes patients with ≥ 1 measurable lesion at baseline who received ≥ 1 dose of taletrectinib. ^bOne patient with cBOR of NE is not shown in the waterfall plot. ^cTTR and DOR reported in responders only.

 $[^]d$ Patients with ≥ 1 measurable brain metastas is at baseline. *One patient with cBOR of SD had a best percent change of 0%

TALETRECTINIB: EFFICACY OUTCOMES IN TKI-PRETREATED ROS1+ NSCLC

Data cutoff: October 28, 2024. aResponse evaluable population includes patients with ≥ 1 measurable lesion at baseline who received ≥ 1 dose of taletrectinib. All other patients received prior crizotinib. TTR and DOR reported in responders only. Patients with ≥ 1 measurable brain metastasis at baseline. One patient with cBOR of SD had a best percent change of 0%.

TALETRECTINIB SAFETY: TEAES IN ≥15% OF PATIENTS (N=171)^A

Any grade	Grade ≥3
169 (98.8)	90 (52.6)
115 (67.3)	26 (15.2)
112 (65.5)	12 (7.0)
99 (57.9)	1 (0.6)
89 (52.0)	3 (1.8)
59 (34.5)	2 (1.2)
41 (24.0)	0
34 (19.9)	7 (4.1)
34 (19.9)	6 (3.5)
33 (19.3)	0
30 (17.5)	0
28 (16.4)	6 (3.5)
26 (15.2)	1 (0.6)
	169 (98.8) 115 (67.3) 112 (65.5) 99 (57.9) 89 (52.0) 59 (34.5) 41 (24.0) 34 (19.9) 34 (19.9) 33 (19.3) 30 (17.5) 28 (16.4)

- With 5 months of additional follow-up,¹ no new safety signals were identified
- Rates of neurologic TEAEs were low and limited to Grade 1 or 2
 - Dysgeusia: 15.2% Grade 1; 4.1% Grade 2
 - Dizziness: 15.2% Grade 1; 2.3% Grade 2
- 2.3% of patients discontinued treatment due to treatment-related AFs
 - No patients in TRUST-II discontinued treatment due to increased ALT or AST

Data cutoff: October 28, 2024. AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CPK, creatine phosphokinase; TEAE, treatment-emergent adverse event.
^aSafety population includes all patients who received ≥1 dose of taletrectinib 600 mg. Median exposure to taletrectinib was 9.7 mo (range: 0.2–31.8).

1. Liu G. et al. J Thorac Oncol. 2024;19:S72–S73.

SEPTEMBER 6-9, 2025 | BARCELONA, SPAIN

wclc.iaslc.org (180000 m #WCLC25

Pivotal ARROS-1 Efficacy and Safety Data: Zidesamtinib in TKI Pretreated Patients with Advanced/Metastatic **ROS1+ NSCLC**

Alexander E. Drilon, Byoung Chul Cho, Jessica J. Lin, Benjamin J. Solomon, Chia-Chi Lin, Adrianus Johannes de Langen, Enriqueta Felip, Joel W. Neal, Stephen V. Liu, Ross Andrew Soo, Steven Kao, Jürgen Wolf, Geoffrey Liu, Christina S. Baik, Christophe Dooms, Misako Nagasaka, A.J. van der Wekken, D. Ross Camidge, Tatsuya Yoshida, Chien-Chung Lin, Gee-Chen Chang, Myung-Ju Ahn, Jessica R. Bauman, Shirish Gadgeel, Antonio Calles, Elvire Pons-Tostivint, Daniel Shao Weng Tan, Melissa Johnson, Chiara Bennati, Gianluca Spitaleri, Saiama Wagar, Sanjay Popat, Hidetoshi Hayashi, Daniel Haggstrom, Manoj Samant, Junwu Shen, Vivek A. Upadhyay, Benjamin Besse

ARROS-1: A Global First-in-Human Phase 1/2 Clinical Trial of Zidesamtinib in Advanced ROS1-Positive **NSCLC and Other Solid Tumors** (NCT05118789)

ZIDESAMTINIB DESIGN GOALS:

ROS1 Activity

ROS1 Mutant Activity

Brain Penetrance

Avoiding

PHASE 1: Zidesamtinib dose escalation (25 – 150 mg QD) in ROS1 TKI pre-treated patients with advanced ROS1+ solid tumors

PHASE 2: Zidesamtinib 100 mg QD (RP2D)

ARROS-1 PHASE 2 PATIENT POPULATION	PRIOR ROS1 TKI	PRIOR CHEMO/I-O
	ROS1 TKI-naïve a	≤ 1
ROS1+ NSCLC	1 POOL TVI h	None
	1 prior ROS1 TKI b	1 °
	≥ 2 Prior ROS1 TKIs d	≤ 1
Any ROS1+ Solid Tumor e	Any	Any
DUACE 2 OF IECTIVES		

PHASE 2 OBJECTIVES

- Primary: ORR by blinded independent central review (BICR)
- Secondary: Additional efficacy measures (DOR, TTR, CBR, PFS, OS), intracranial activity, overall safety and tolerability, confirmation of PK profile, PROs

Zidesamtinib is an investigational product and has not been approved by the FDA or any other health authority. BICR, blinded independent central review; CBR, clinical benefit rate; DOR, duration of response; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetics; PRO, patient reported outcomes; QD, once daily; RP2D, recommended phase 2 dose; TKI, tyrosine kinase inhibitor; TRK, tropomyosin-related kinase; TTR, time to response. ^a Open for enrollment; ^b Either crizotinib or entrectinib; ^c Platinum-based chemotherapy with or without immunotherapy; ^d With initial TKI of either crizotinib or entrectinib; e Exploratory cohort, currently enrolling; Includes NSCLC who do not qualify for any of the other cohorts.

Patient Populations

Data cut-off: March 21, 2025

Total Enrolled: N = 514

Any ROS1+ solid tumor, any dose Phase 1 + Phase 2 pooled

Pivotal Safety Population: N = 432

Advanced ROS1+ NSCLC Received zidesamtinib at 100 mg QD

Pivotal Efficacy Population:

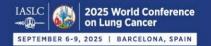
ROS1 TKI Pre-treated

with measurable disease by BICR

Treated by May 31, 2024 (≥ 6 months DOR follow up)

n = 117

Preliminary Data


TKI-Naïve

with measurable disease by BICR

Treated by August 31, 2024

n = 35

ARROS-1: Patient Population

Patient Characteristic	ROS1 TKI Pre-Treated ^a Pivotal Efficacy Population N = 117
Age, median (range)	57 (31 - 83)
Female	66 (56%)
Never smoker	80 (68%)
Geographic Region	
Asia Pacific	30 (26%)
Europe	38 (32%)
North America	49 (42%)
ECOG PS	
0	45 (38%)
1	72 (62%)
Active CNS disease b	57 (49%)
Secondary ROS1 mutation c	42 (36%)
G2032R	26 (22%)

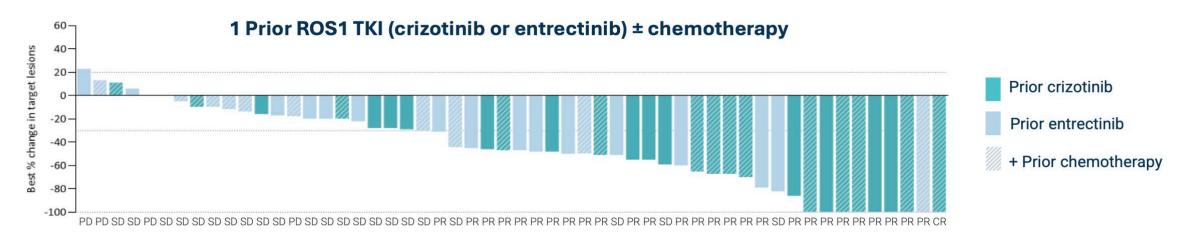
Treatment History	ROS1 TKI Pre-Treated ^a Pivotal Efficacy Population N = 117
Prior anticancer therapy, median (range)	2 (1 – 11)
Prior chemotherapy	62 (53%)
Prior ROS1 TKIs ± chemotherapy	
1 prior (crizotinib or entrectinib)	55 (47%)
Crizotinib	28/55 (51%)
Entrectinib	27/55 (49%)
1 prior (repotrectinib or taletrectinib)	4 (3%)
≥2 prior	58 (50%)
Lorlatinib, repotrectinib, or taletrectinib	54/58 (93%)
Lorlatinib	43/58 (74%)
Repotrectinib	15/58 (26%)
Taletrectinib	5/58 (9%)

Data cut-off: March 21, 2025. All data shown as n (%) unless otherwise specified. CNS, central nervous system.

a Includes 4 patients with other oncogenic driver(s) in addition to ROS1.

b By BICR; includes patients with untreated CNS lesions and patients with prior disease progression on the brain-penetrant TKIs entrectinib, lorlatinib, repotrectinib, and/or taletrectinib.

c ROS1 mutations as per local or central testing of blood (ctDNA) or tissue.

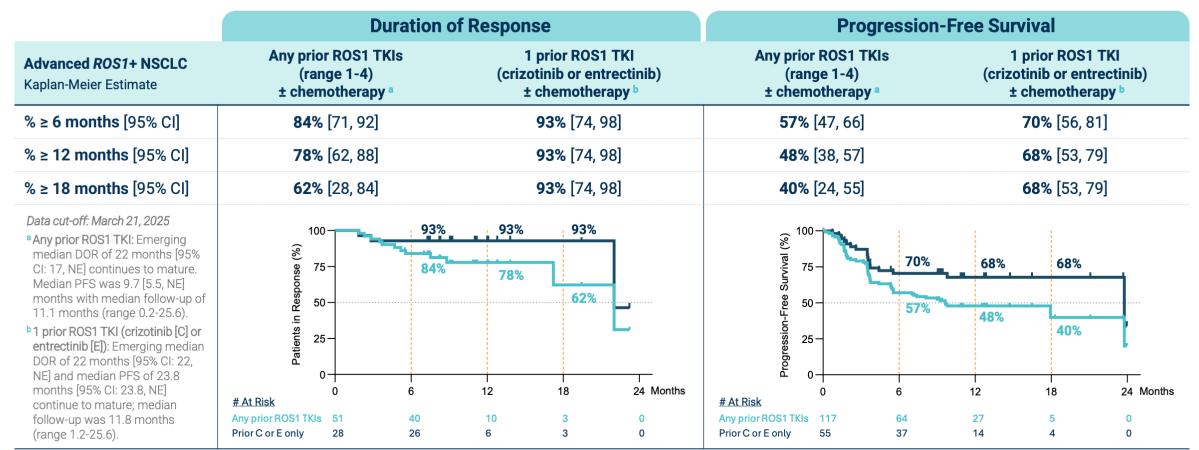


Advanced ROS1+ NSCLC RECIST 1.1 by BICR	(range 1 – 4) (crizotinib	
ORR, % (n/N) [95% CI]	44% (51/117) [34, 53]	51% (28/55) ^a [37, 65]
CR, % (n/N)	1% (1/117)	2% (1/55)

^a Prior crizotinib only ± chemotherapy: ORR = 68% (19/28). Prior entrectinib only ± chemotherapy: ORR = 33% (9/27).

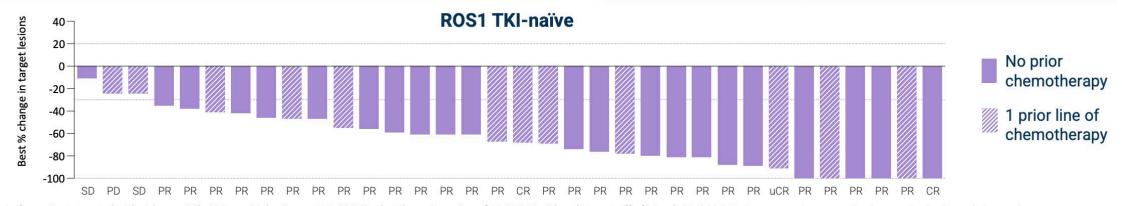
Responses were also observed in patients previously treated with:

- ≥2 prior ROS1 TKIs ± chemotherapy: ORR = 38% (22/58; 95% CI: [26, 52])
- Prior repotrectinib: ORR = 47% (8/17),
 DOR range 3.5 to 17.2 months
- Prior taletrectinib: ORR = 43% (3/7),
 DOR range 5.2 to 7.0+ months


Data cut-off: March 21, 2025. CI, confidence interval; CR, complete response. PD, progressive disease; PR, partial response Evaluation Criteria in Solid Tumours version 1.1; SD, stable disease.

ARROS-1: Duration of Response and Progression-Free Survival

- In patients that received prior crizotinib only, there were no progression events among responders (DOR range: 7.3+ to 23.2+ months). PFS rate was 89% (95% CI: 70, 96) at 6, 12, and 18 months with median not reached.
- In patients that received ≥2 prior ROS1 TKIs ± chemotherapy, DOR rate was 71% (95% CI: 46, 86) at 6 months and 56% (95% CI: 29, 76) at 12 months.



ARROS-1 Preliminary Data: TKI-Naïve Patients with Advanced ROS1+ NSCLC

TKI-naïve advanced ROS1+ NSCLC Analysis by BICR	Response-evaluable n = 35
ORR, % (n/N)	89 % (31/35)
CR, % (n/N)	9 % (3/35) ^a
% DOR ≥ 6 months [95% CI] b	96 % [76, 99]
% DOR ≥ 12 months [95% CI] b	96 % [76, 99]
DOR range	1.9+ to 13.9+ months

TKI-naïve advanced ROS1+ NSCLC Analysis by BICR	Measurable intracranial lesions n = 6				
IC-ORR, % (n/N)	83 % (5/6)				
IC-CR, % (n/N)	67 % (4/6)				
IC-DOR	No CNS progression events among intracranial responders				
IC-DOR range	4.6+ to 11.1+ months				

Data for patients treated with zidesamtinib 100 mg QD by August 31, 2024 in the Phase 2 portion of ARROS-1 with a data cut-off of March 21, 2025. Patients may have received up to 1 prior line of chemotherapy.

ARROS-1: Safety in Advanced ROS1+ NSCLC

All Treatment-Emergent Adverse Events (TEAEs) in ≥15% of Patients Treated with Zidesamtinib 100 mg QD (N = 432) ^a

Preferred or grouped term	Any Grade	Grade ≥ 3
Peripheral edema ^b	36%	0.7%
Constipation	17%	0%
Blood CPK increased	16%	3.5%
Fatigue ^c	16%	0.7%
Dyspnea ^d	15%	3.0%

^a Patients received at least 1 dose of zidesamtinib at 100 mg QD with median duration of exposure of 5 months (range: 0, 32).

Dose reduction due to TEAEs: 10% (43/432)

 Most common (>2 patients): peripheral edema (n=8), blood CPK increased (n=4), peripheral sensory neuropathy (n=4), arthralgia (n=3), paresthesia (n=3)

Discontinuation due to TEAE: 2% (10/432)

Most common (>2 patients): pneumonia (n=3)

The only treatment-related adverse event in ≥15% of patients was peripheral edema b (29%)

Data pooled for patients in the Phase 1 or Phase 2 portion of ARROS-1 with a data cut-off of March 21, 2025. CPK, creatine phosphokinase.

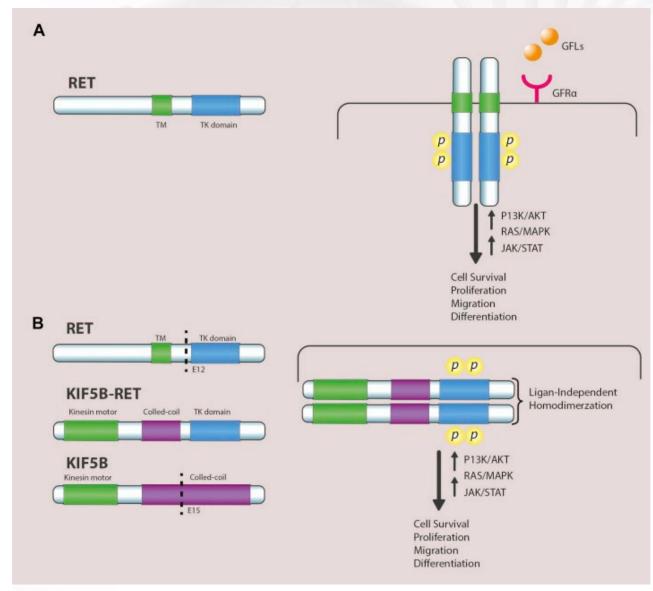
b Includes terms peripheral edema, peripheral swelling, edema, generalized edema.

^c Includes terms fatigue, asthenia, malaise.

d Includes terms dyspnea, dyspnea exertional, orthopnea

ROS1

- -Multiple good agents available. I think my new standard will be Taletrectinib given the efficacy to toxicity ratio.
- -Zidesamtinib is exciting as well.
- -Challenging to figure out best sequencing with so many new agents but no good data to guide
- -how to approach early stage disease, mimic ADAURA, ALINA, LAURA?
- -Combination therapy make sense


RET fusions in NSCLC

RET proto-oncogene was first identified in 1985

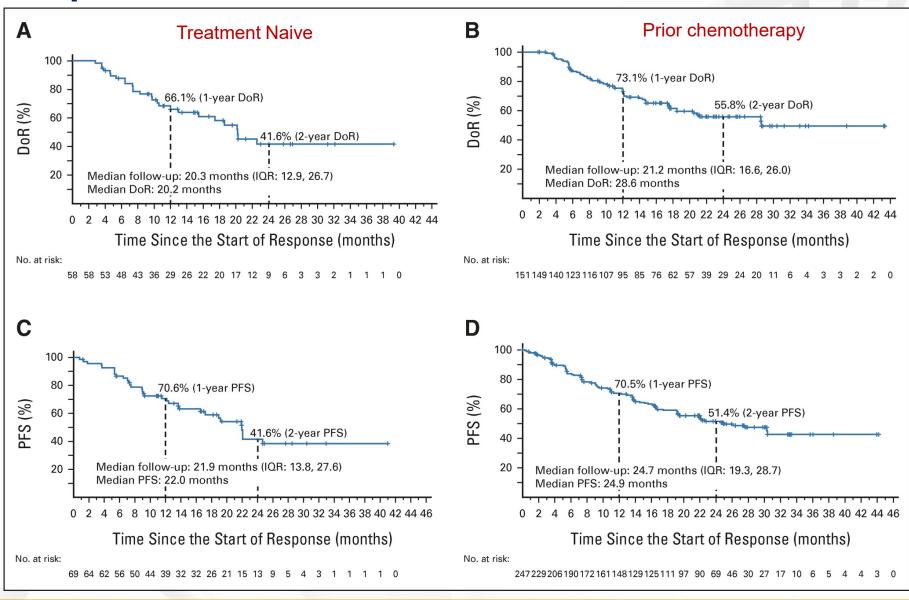
- Found in lung cancer in 2012

RET fusions occur in 1% to 2% of non-squamous NSCLC (at least 45 different partners have been identified)

Predominantly younger patients Light or no prior smoking history

Ferrara et al. JTO 2018; https://doi.org/10.1016/j.jtho.2017.10.021

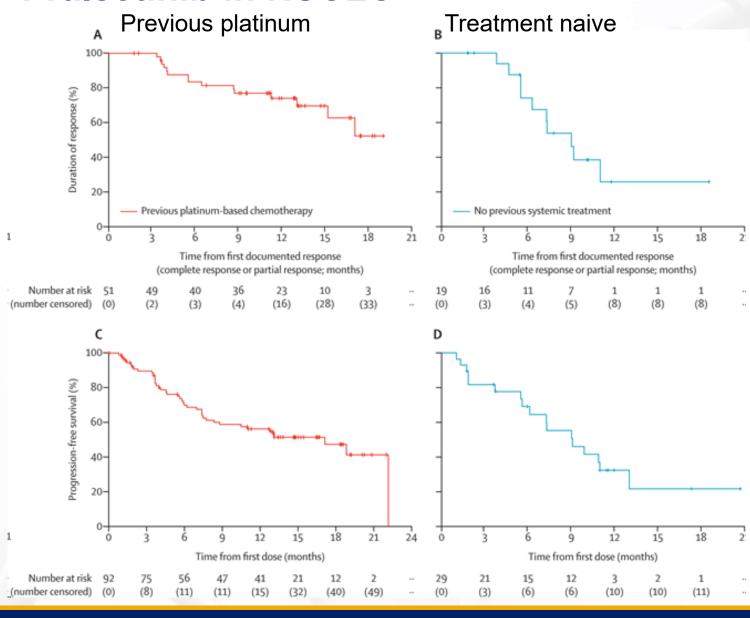
Multitarget kinase inhibitors in RET altered NSCLC


Drug	Clinical trial or case series (n)	ORR	Median PFS	
Cabozantinib	Phase II trial ⁹ (n = 26; 25 evaluable for response)	Overall: 7/25 (28%) • KIF5B–RET: 3/15 (20%) • FISH+: 2/6 (33%) • Other: 2/4 (50%)	Overall: 5.5 months • KIF5B–RET: 4.6 months • FISH+: 8.4 months • Other: 7.5 months	
	Retrospective series ⁸³ ($n = 19$)	Overall: 7/19 (37%)*	Overall: 3.6 months	
Vandetanib	Phase II trial ¹⁰ (n = 17)	Overall: 3/17 (18%) • KIF5B–RET: 0/5 (0%) • CCDC6–RET: 1/2 (50%) • MYO5C–RET: 0/1 (0%) • Unknown: 2/9 (22%)	Overall: 4.5 months	
	Phase II trial ¹¹ (n = 19)	Overall: 9/19 (47%, intention-to-treat); 9/17 (53%, primary analysis) • KIF5B–RET: 2/10 (20%) • CCDC6–RET: 5/6 (83%) • Unknown: 2/3 (67%)	Overall: 4.7 months • KIF5B–RET: 2.9 months • CCDC6–RET: 8.3 months • Unknown: 4.7 months	
	Retrospective series ⁸³ $(n=11)$	Overall: 2/11 (18%)*	Overall: 2.9 months	
	Retrospective series ²¹⁵ $(n=3)$	Overall: 0/3 (0%) • KIF5B–RET: 0/3 (0%)	NA	
Lenvatinib	Phase II trial ¹² (n=25)	Overall: 4/25 (16%)	Overall: 7.3 months	
	Retrospective series ⁸³ $(n=2)$	Overall: 1/2 (50%)*	NA	

Sorafenib	Phase II trial ²¹⁶ $(n=3)$	Overall: 0/3 (0%) • KIF5B–RET: 0/1 (0%) • CCDC6–RET: 0/1 (0%) • Unknown: 0/1 (0%)	NA
	Retrospective series ⁸³ $(n=2)$	Overall: 0/2 (0%)*	NA
Sunitinib	Retrospective series ⁸³ $(n=9)$	Overall: 2/9 (22%)*	Overall: 2.2 months
Alectinib	Retrospective series ¹⁸⁰ $(n=4)$	Overall: 1/4 (25%) • KIF5B–RET: 0/2 (0%) • CCDC6–RET: 0/1 (0%) • Unknown: 1/1 (100%)	NA
	Retrospective series ⁸³ $(n=2)$	Overall: 0/2 (0%)*	NA
Ponatinib	Retrospective series ⁸³ $(n=2)$	Overall: 0/2 (0%)*	NA
RXDX-105	Phase I trial ¹⁹⁰ (n = 22)	Overall: 6/22 (27%) • KIF5B–RET: 0/14 (0%) • Non-KIF5B–RET: 6/8 (75%)	
Regorafenib	Retrospective series ⁸³ $(n=1)$	Overall: 0/1 (0%)*	NA
Nintedanib	Retrospective series ⁸³ $(n=2)$	Overall: 1/2 (50%)*	NA

The antitumour activity of multikinase inhibitors with activity against RET in patients with *RET*-rearrange subsets of patients with specific *RET* rearrangements are likewise listed when available. Percentages we fusion by fluorescence *in situ* hybridization; unknown, upstream gene partner unknown; *n*, number of partner unknown; *n*, objective response rate; OS, overall survival; PFS, progression as responses were not systematically confirmed in this retrospective series.

Drilon, A. et al. (2017) Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2017.175


Selpercatinib in NSCLC

<u>Treatment Naïve:</u>
ORR 84% (95%CI 73-92)
mDOR 20.2 months (95% CI 13- NE)

Drilon et al. JCO 2022

Pralsetinib in NSCLC

Previous platinum:

ORR: 61% (95% CI 50-71) n=87

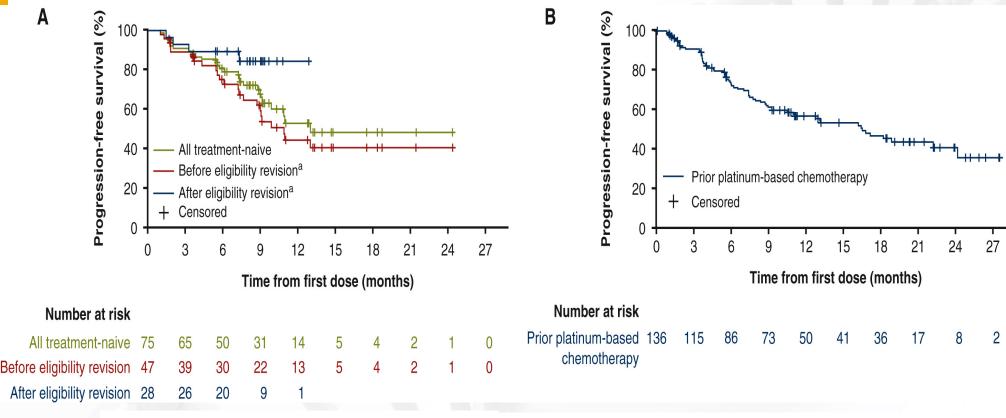
Median PFS: 17.1 months

Median DOR: not reached (95% CI

15·2–not estimable)

Treatment-naïve: (not candidates for chemo)

ORR: 70% (95% CI 50-86) n=27

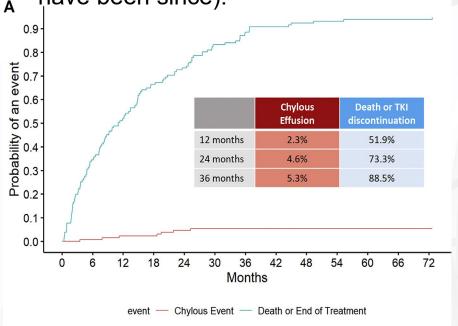

Median PFS: 9.1 months Median DOR: 9 months

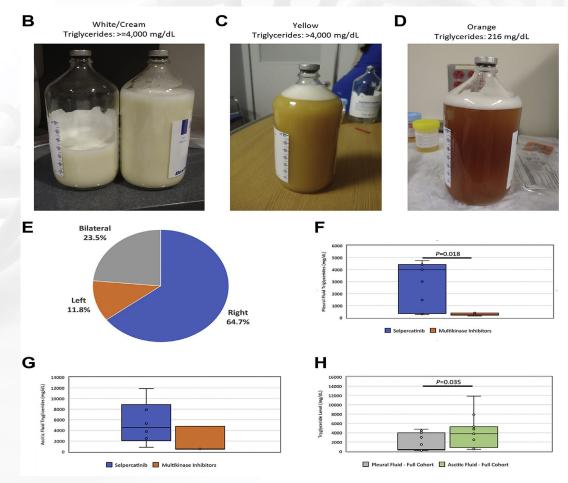
Note- this is an older group (median age 65 and 41% with brain mets)

Gainor et al. Lancet Oncology 2021 22959-969

DOI: (10.1016/S1470-2045(21)00247-3)

Pralsetinib in NSCLC – update on 281 patients




Treatment naïve: n=75 ORR was 72% (95%Cl 60-82) Median DOR was not reached Prior platinum: n=136 ORR 59% (95% CI 50-67) Median DOR 22.3 months

Grisinger et al. Annals of Oncology 2022

Chylous effusions seen with RET inhibitors

Pan cancer cohort 7517 patients selpercatinib (7%), agerafenib (4%), cabozantinib (0.3 lenvatinib (0.02%) none were observed with pralsetinib (but have been since).

Overall, 12 patients had chylothorax, 5 had chylous ascites, and 5 had both. Time from TKI initiation to diagnosis ranged from 0.5 to 50 months.

Kalchiem-Dekel et al. JTO, 2022

Final results of a Phase 1 study of EP0031, a next-generation selective RET inhibitor (SRI), in patients with SRI-naïve or pretreated advanced RET-altered tumors

Most frequent mutations in the

Cain of new DET alterations.

off-target and included DNMT3A, MSH3, TP53, and LRPIB

- DE RECEDENCE L'ARREST L'ALECT

- BILLIST BEITELLIST BEITE -

en STITERETTALISATION TO ALL

Guzman Alonso Casal¹, Pilar Garrido², Judy S. Wang³, Andrew G. Gianoukakis⁴, Matthew H. Taylor⁵, Stephen V. Liu⁶, Luis Paz-Ares⁷, Martin D. Forster⁸, David Spigel⁹, Saad Khan¹⁰, Jyoti Patel¹¹, Salman Punekar¹², Daniel Morgensztern¹³, Susanne M, Arnold¹⁴, Javier Garcia-Corbacho¹⁵, Matthew G, Krebs¹⁶, Jack Welch¹⁷, Sonia Serrano¹⁸, Hendrick-Tobias Arkenau¹⁸, Elena Garralda¹

1. Hospital Universitari Vali d'Hebron and Institute of Oncology, Barcelona, Soain 2. Hospital Universitation Cancer Specialists/Sarah Cannon Research Institute, Sarasota, F.L. USA 4. The Lundouist Institute at Harbor-UCLA Medical Center, Torrance, and The David Ceffer School of Medicine at UCLA. Los Angeles, CA, USA 5. Providence Cancer Institute, Portland, OR, USA awn University Medical Center, Washington, D.C., USA 7. Hospital 12 de Octubre, Madrid, Spain 8. UCL Cancer Institute, Navivole, TN, USA 13. Washington University, Stanford Univ 14. University of Kentucky/Markey Cancer Center, Lexington, KY, USA 15. Hospital Universitario Virgen de la Victoria/IBIMA, Malaga, Spain 16. The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK 17. Theradex Oncology, Crewley, UK 18. Ellipses Pharma, London, UK

- EPO031 [A400/kt.590586] is a next-generation selective RET inhibitor [SRI] with greater-potency against common RET alterations (including resistance mutations) and greater brain penetration, and results in deeper responses compared with 1st-generation SRIs in preclinical inon-small cell lung cancer (INSCLC) models*
- A Phase V2 study in China (KL400-I/8-0), NCT05265091) reported a high overall response rate (ORR) in patients with RET fusion-positive NSCLC naive to SRI, as well as res in patients with prior lat-generation SRI, activity against brain metastases, and encouraging tolerability. Two Phase 2 registration cohorts are ongoing
- EP003) has been granted US Food and Drug Administration Orphan Drug and Fast Track Designation, and over 400 patients have received EP003 globally
- EPOCE-101 demonstrated promising safety and efficacy in a Phase 1 dose escalation and
- The Phase 2 part of this study is currently enrolling patient

STUDY DESIGN

Dose finding

- Dose escalation was based on a rolling 6 design, followed by expansion of 3 dose levels for optimization and selection of the recommended phase 2 dose (RP2D)
- Once daily (QD) dosing in 28-day cycles

Eligibility

Patients with RET-altered NSCLC, medullary thyroid cancer (MTC), or other solid tumors [measurable or non-measurable disease]; ziB years of age, Eastern Cooperative Oncology Group performance status (ECOG PS) 0 or 1, with/without asymptomatic, stable

Key endpoints

- Safety and tolerability
- Determine maximum tolerated dose or RP20
- Pharmacokinetics (PK), biomarkers (circulating tumor (ct[DNA, calcitonin))
- ORR, best overall response (BOR), duration of response (DOR), change in tumor size, progression-free survival, and overall survival

Figure 1. Study design

Tumor biopsy to determine RET gene fusions and mutations and correlation with efficacy

RESULTS

Summary of demography and patient characteristics

A total of 40 patients were enrolled across dose levels ranging from 20mg (n=3), 60mg (n=10), 90mg (n=16), to 120mg (n=17), 31 had received an SRt. At the data cut-off (15 Feb 2025):

- 40 patients were evaluable for safety; 22 with NSCLC, 12 with MTC, and 5 with other turnor types; 23 female, 17 maje; median age 58.5 years france, 32-771; 18 ECOC PS 0, 22 ECOC PS
- Patients with prior SRI treatment had received a median of 3 Irange, 1-6) prior lines of treatment
- 9 patients had stable brain metastases documented at baseline

Pharmacokinetics

- Plasma exposures increased proportionately with doses up to 120mg QD
- PK/pharmacodynamics (PD) modelling predicted that the 90mg and 60mg QD doses result in >90% inhibition of key target RET fusions/mutations at steady state for >97.5% and >83.2%
- 90mg QD was selected as RP2D following consideration of the PK/PD, efficacy, and safety/tolerability data from this study and the study completed in China (KL400-l/N-01, NCT0526509)

Safety and tolerability

EP003) demonstrated an acceptable safety and tolerability profile (Tables 1 and 2)

- No dose-limiting toxicities or treatment-related deaths were reported
- Grade ≥3 adverse events (AEs) considered related or possibly related to
- Alanine aminotransferase (ALT) increased, aspartate aminotransferase (AST) increased, headache, ulcerative keratitis, hyponatremia, and hypertension (2 patients aed [58]).
- Weight increased, peripheral sensory neuropathy, keratitis, keratopathy, neutropenia, and muscle weakness (I patient each [2.5%))
- Most treatment-related AEs (TRAEs) were manageable with temporary dose interruptions (40%) and reductions (20%), with one TRAE of decreased visual aculty leading to treatment discontinuation (2.5%)

We are grateful to the patients and their loved ones for their key contribution to this work, and the participating sites for their hard work. Editorial support was provided by Flaminia Fenoaltea, MSc, of Ashfield MedComms, an Inizio company, and was funded by Ellipses Pha

Table 1. Summary of safety findings by dose

Category, n (%)	Total H=40	20mg n=3	60mg n=10	Stimp mili	120mg n=11
TEAts, all grades	39 (97.5)	2 (100)	9 (90.0)	16 (100)	11 (100)
TEASs, Grade 43	30 (75.0)	3 (100)	7 (700)	11 (68.8)	9 (01.0)
TRAEs, all grades	34 (85.0)	3 (100)	7 (70.0)	14 (87.5)	10 (909
TRAEs, Grade x3	13 (32.5)	3 (100)	3 (30.0)	4 (25.0)	4 (36.4)
TRAEs leading to drug interruption	16 (40.0)	1 (3333)	1 (10.0)	7 (43.0)	7 (63.6)
TRAIIs leading to dose reduction	8 (20.0)	1 (33.10)	1 (0.0)	2 (12.5)	4 (36.4)
TRAEs leading to treatment discontinuation	1(25)		-96	19	1 (9.0)
FAE DECEMBED STRENGT COLORES PRINT					

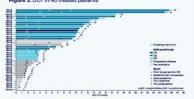
- 1. Zhou Q, et al. J Clin Oncol 2023;41:16_suppl, abstract 3007
- 2. Garralda E, et al. J Clin Oncol 2024;42:16_suppl, abstract 8556
- 3. Garralda E. et al. Ann Oncol 2024;35:S824-5, abstract 1295P

- FP0031: Is a promising next-generation SRI in development globally
 - · Has an acceptable tolerability and safety profile over long durations of treatment
 - . Shows evidence of deep and durable responses in NSCLC regardless of exposure to prior SRI including selpercatinib
 - Efficacy extends to patients with brain metastases, with complete resolution in several patients
 - Showed clearance of on-target RET resistance mutations, namely G810R solvent front (patient with papillary thyroid cancer (PTC), prior selpercatinib) and L730V, L730I RET roof mutations (patient with NSCLC, prior praisetinib
 - · Also demonstrates encouraging efficacy in other tumor types such as MTC

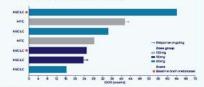
Table 2. TEAEs in ≥20% of patients by dose group and grade

Event	Total	Total M=40		39mg QO nn3		60mg QD nr10		90mg QD n#96		T20mg QD n=11	
	Grada 1 or 2, n (%)										
Headache	16 (40.0)	2 (5.0)	7	-	3	. 1	5		7	1	
Constipution	15 (37.5)		2	7.5	2		4	-	7		
Anemia	13-(32-5)	3 (7.5)	-	95	3	1	5	1	5	1	
ALT increased	12 (90.0)	2 (5.0)	94	-	2		5	1	5	1	
AST incressed	11 (27.5)	3 (7.5)	55	1/2	1	-	4	2	6	1	
Hyperphosphatemia	17 (27.5)	100	3*	10	3		- 6	-	4	-	
Otrzineis	10 (250)	4	2		2	-	2	46	4	-	
Kenstitis	9 (22.5)	1 (2.5)	-	2.5		1	4	\$1	1	-	
Vision blurred	9 (22.5)	1 (2.5)	2	9.5	4	1	1	+1:	2	1-1	
Back pein	8 (200)	1(23)	- 1		1	5.95	2	1	4	-	
Fatigue	8 (200)	1 (2.5)	(1)	52	1	-	4	10	2	9	
Dyspnea	8 (200)	109		7.5	2	100	2	7.0	2	1	
Dry mouth	(DOS) 8	-	2	25	1		2	-	3	-	
District		2000				2.432	4	40	-		

Efficacy


■ EP0031 resulted in stabilization of disease or marked tumor shrinkage and response

across doses of 20-120mg (Figures 2-4) In 40 treated patients, 32 were evaluable for response (defined as having measurable) disease per Response Evaluation Criteria In Solid Tumors version 1.1 at baseline, at least one post-baseline tumor assessment, and completed cycle 1 (CII): 24 evaluable patients had prior 1st-generation SRI treatment and 8 were SRI-naive


Prior 1st-generation SRI

- RET fusion -ve NSCLC 5 with confirmed partial response (cPR, DOR range, 3.7-14.8 mo) and 5 with stable disease (SD) in 14 evaluable patients
- At pharmacologically active and tolerated dose levels of 60mg and 90mg (n=12):
 ORR was 42% and disease control rate was 83%
- 2 patients not evaluable due to having no measurable disease at baseline includ a patient with NSCLC with clinically SD for 16 weeks and a patient with PTC with clearance of CROOD resistance mutation and clinically SD for 36 weeks
- Advanced MTC: 2 cPRs at 120mg (DOR range, 6.5-9.6+ mo ongoing) and 2 SDs at 90mg and 120mg out of 7 evaluable patients
- Other solid tumors: median duration of treatment (DOT) was 2.5 mo (range, 17-3.9 mo) in 3 evaluable patients
- SRI-naive
- RET fusion +ve NSCLC 1 complete response (CR) and 1 PR observed in 2 out of 2 evaluable patients at 90mg
- Advanced MTC: 4 out of 5 evaluable patients achieved a cPR (at 20mg and 120mg)
- NSCLC central nervous system (CNS) response
- Prior SRt: 3 out of 4 evaluable patients that presented with CNS disease had complete resolution of brain lesions (at 60mg and 90mg)
- SRI-naïve: I evaluable patient that presented with CNS disease had complete

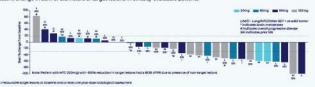

Figure 2, DOT in 40 treated patients

Figure 3. DOR in prior SRI-treated patients

Figure 4. Best % change in sum of diameters of target lesions in efficacy-evaluable patients

Figure 5, 43-year-old male with CCD6-RET fusion advanced NSCLC

Patient history

- Diagnosed with advanced NSCLC in May 2022 and received 2 prior lines of chemotherapy
- Treated with EP0031 at 90mg QD, with no dose modifications PR at C3 47% overall reduction, -53% at 60 weeks
- Disappearance of brain lesion after 8 weeks
- Complete clearance of ctDNA after 4 weeks of EPO033, sustained complete clearance at Cl6.
- Patient continues to receive treatment after 70+ weeks

Figure 6. 65-year-old male with RET-mutated MTC (SRI-naive) [MTC-3] Patient history

- Diagnosed with MTC in Nov 2022; no prior cancer therapies or radiation
- Dec 2023 total thyroidectomy, excision of upper thoracic lymph nodes (LN), bliateral neck dissection
- 2 target lesions (right level III LN, right paratracheal LN)
- Treated with EP0031 at 20mg QD for 17 weeks, then escalated to 60mg QD; patient ongoing after 25 months
- First response at 33 weeks and ongoing (DOR 17+ mg/75 weeks)
- Best change in target lesions -61% (both target lesions in LNs reduced to s10mm) Low ctDNA after 4 weeks of EP003; complete clearance of ctDNA maintained at C27

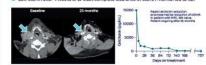
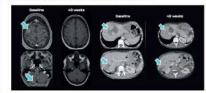
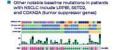



Figure 7. 41-year-old female with 2x KIFSB-RET fusion +ve NSCLC with L730V/I RET roof and A883V RET mutations (prior praisetinib) [NSCLC-2]

- Patient history Prior therapy: platinum-based doublet chemotherapy = immunotherapy, followed by praisetinib for 18 months (BOR PR)
- Patient treated with EP0031, 60mg QD, escalated to 90mg QD after 5 cycles;
- Sustained reduction in ctDNA at Cl3 (-78%) compared with baseline, with suppression of
- Patient received treatment for 72 weeks, with a DOR of 64 weeks

Figure 8. 77-year-old male with KIFSB-RET fusion advanced NSCLC


Patient history

- Diagnosed with NSCLC in Jun 2018 and received 3 lines of treatment including a
- 2 target lesions (lung and liver) and 4 non-target lesions (lung, pieura, bone, pancreas
- Treated with EP0031 at 90mg OD and ongoing on trial after 54 weeks
- First response at 8 weeks and continuing IDOR censored at 24 weeks)
- ctDNA: -88% reduction (methylated) after 4 weeks of EP0031; patient continues to have
- Best change in target lesions -68%

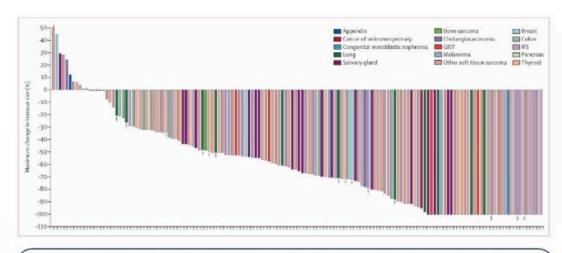
Genomics analysis (EQT) OncoPrint (n=26) Figure 9. Baseline OncoPrint (n=39)

- Most frequent baseline RET alterations were RET fusions, followed by putative driver RET mutations 1 patient had a RET
- structural variant Patients with NSCLC exhibited TP53 n more frequently than patients with MTC and other solid tumors

SUMMARY & CONCLUSIONS

- These data confirm that EP003 has the potential to address the high unmet clinical need in patients who experience disease progression on 1st-generation SRIs
- EP0031 was associated with durable responses in advanced RET-altered solid tumors previously treated with SRI, including patients with brain metastases
- Phase 2 trials continue to evaluate EP0031 (A400/KL590586) in the US, Europe, UAE, and China

and has an acceptable and manageable tolerability and safety profile


TAKE HOME: RET TARGETED AGENTS

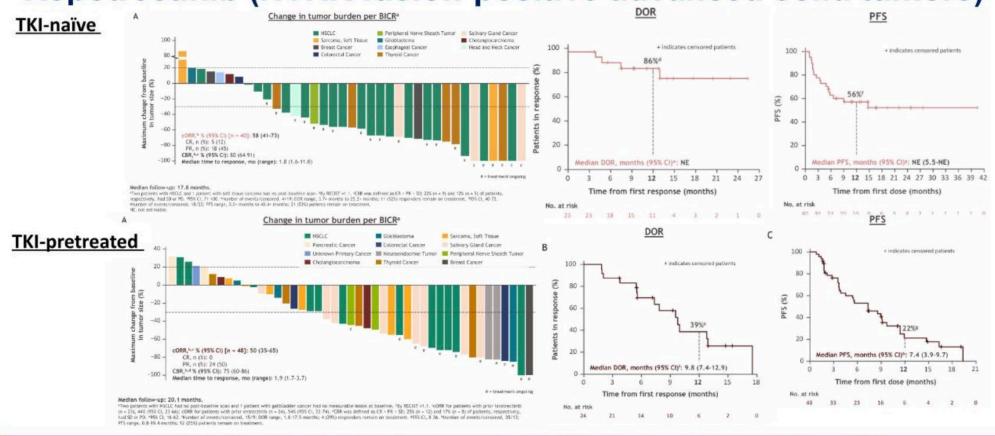

- Selpercatinib (full approval, including tumor agnostic 9/2022) and Pralsetinib (accelerated approval 9/2020, regular 8/23) have:
- -Activity in frontline and post-chemo setting
- -CNS penetration
- -Similar side effect profile, consider dose reductions and holding for wound healing
- -Think about for localized disease?
- *** beware rare TEAE of chylous effusions

Larotrectinib (NTRK fusionpositive advanced solid tumors)

Entrectinib (NTRK fusionpositive advanced solid tumors)

ORR 79% CR 16% PR 63% SD 12% (N=153 evaluable patients)
Md DoR 35.2 mo Md PFS 28.3 mo
At 12 months, estimated ongoing responses: 80%; Estimated 12
months PFS 67%

ORR 57% CR 7% PR 50% SD 17% (N=54 Evaluable Patients)
Md DoR 10.4 mo Md PFS 11.2 mo


Hong DS et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020 Apr;21(4):531-540. Doebele RC et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020 Feb;21(2):271-282. doi: 10.1016/S1470-2045(19)30691-6. Epub

2019 Dec 11, Erratum in: Lancet Oncol. 2020 Feb;21(2):e70

Dipesh Uprety | @DipeshUpretyMD| Karmanos Cancer Institute, MI

Repotrectinib (NTRK fusion-positive advanced solid tumors)

Presented by Dipesh Uprety @TTLC25; Original Presentation by B. J. Solomon. ESMO 2023. Slide courtesy James Fix © BMS