

How I Treat Triple Negative Breast Cancer

A-BRAVE and PEARLY trial reference and TBCRC 048 OptiTROP Breast 01 and Huppert sequencing

Tung N et al ASCO 2024 Huppert LA et al npj Breast Cancer 2025 Sohn J et al. ASCO 2024 Xu B et al. ASCO 2024

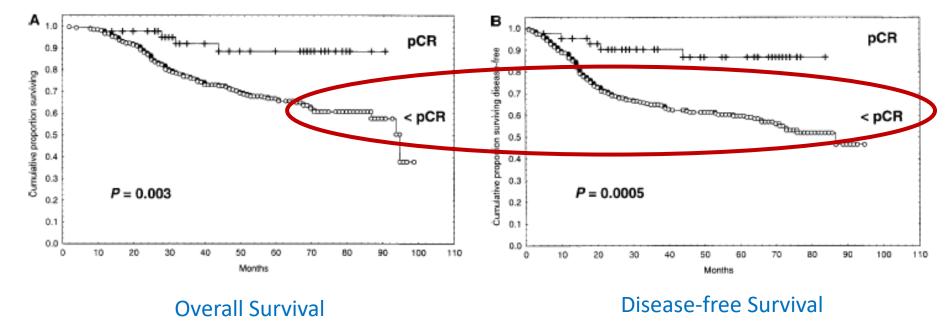
Joyce O'Shaughnessy, MD

Celebrating Women Chair in Breast Cancer Research
Baylor University Medical Center
Texas Oncology
Sarah Cannon Research Institute
Dallas TX

Triple-Negative Breast Cancer Compared with Other Phenotypes in the California Cancer Registry Study

Population-based study

• 6370 with "triple-negative" disease (12%) vs. with 44,704 "other" cases

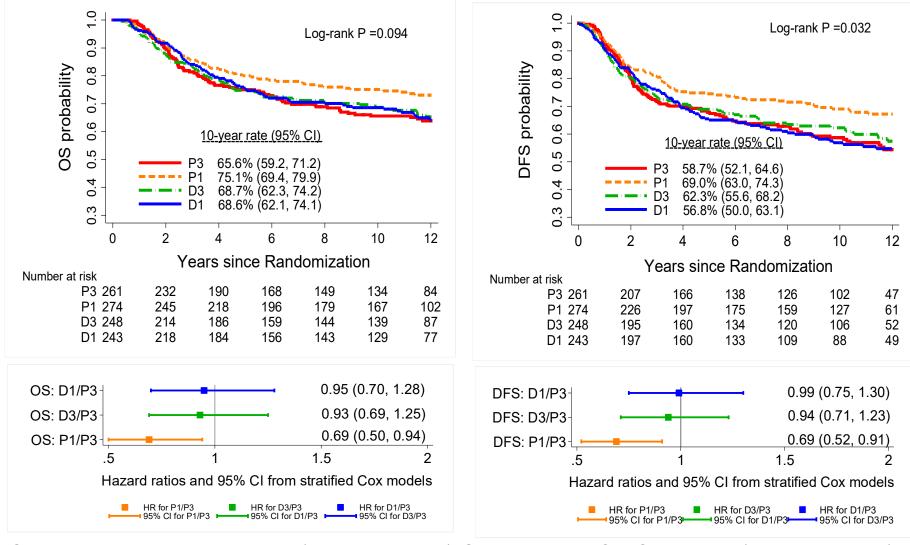

TNBC more likely to be associated with

- Younger age (<40): OR 1.53
- Non-Hispanic black (OR 1.77) or Hispanic (OR 1.23)
- Higher grade (72% grade 3)
- More advanced stage (66% ≥ stage II vs. 50% ER+HER2-)
- Poorer 5 year RFI irrespective of stage
 - TNBC: 76% (similar to 76% for HER2-Pos)
 - HR-Pos, HER2-Neg: 94%

Benefits of neoadjuvant chemotherapy in TNBC

pCR is a surrogate for both disease free and overall survival

Approach 1:
Change
neoadjuvant
therapy to
increase pCR
rate

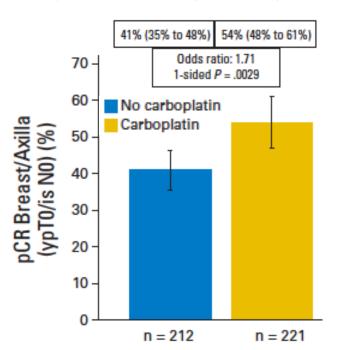


Approach 3:
Stop systemic therapy in patients achieving a pCR

Approach 2:
Add adjuvant
therapy to
improve
outcome for
high-risk pts

E1199: AC followed by Paclitaxel or Docetaxel (Weekly vs. Every 3 Weeks)

Exploratory Analysis in TNBC (N=1025) – Weekly Paclitaxel Associated with Improved DFS and OS

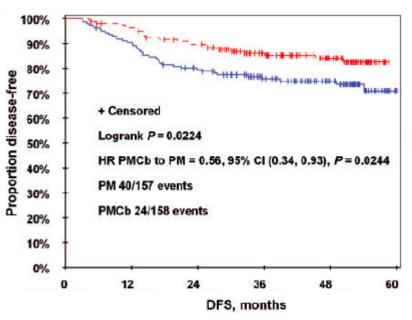

Sparano et al. N Engl J Med. 2008 (PMID: 18420499); Sparano et al. J Clin Oncol. 2015 (PMID: 26077235)

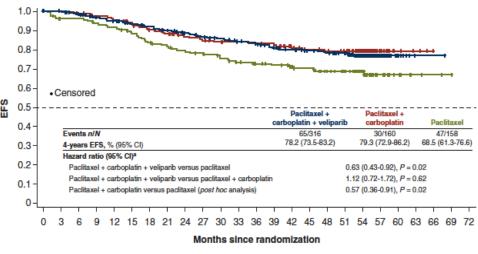
Does Carboplatin Improve Outcomes?

Addition of neoadjuvant carboplatin to taxanes/anthracycline regimens in TNBC

CALGB 40603

- 2x2 factorial randomized phase II (n=443)
- pCR increased: 41% to **54%** (p=0.003)
- Addition of Cb did *not* improve EFS:
 5-yr EFS HR 0.99 (0.70-1.40)

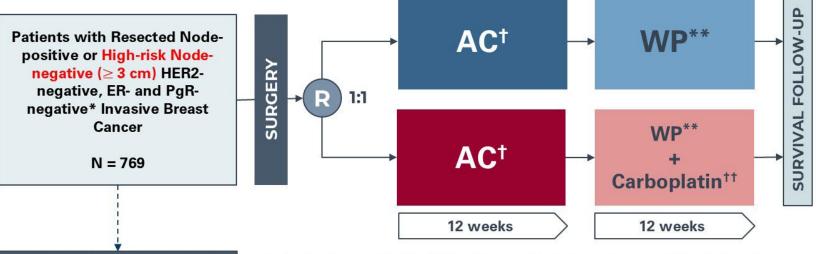



GeparSixto

- Randomized phase II (n=588)
- pCR: 43% to **53%** (p=0.015)
- Addition of Cb *improved* DFS (not OS):
 3-yr DFS HR 0.56 (0.34-0.93): 76% to 86%

BrighTNess

- Randomized phase III (n=634)
- pCR increased: 49% (T), **58%** (TCb), 53% (TCbV)
 - Addition of Cb improved EFS (not OS): 4-yr EFS
 - T vs. TCbV: HR 0.63 (0.43-0.92): 69% to 78%
 - T vs. TCb: HR 0.57 (0.36-0.91): 69% to 79%



Sikov W et al. J Clin Oncol. 2015; Sikov W et al. ASCO 2019; Modified from von Minckwitz G et al. Lancet Oncol. 2014; Loibl S et al. Ann Oncol. 2018; Loibl S et al. Lancet Oncol. 2018; Geyer CE et al. Ann Oncol. 2022

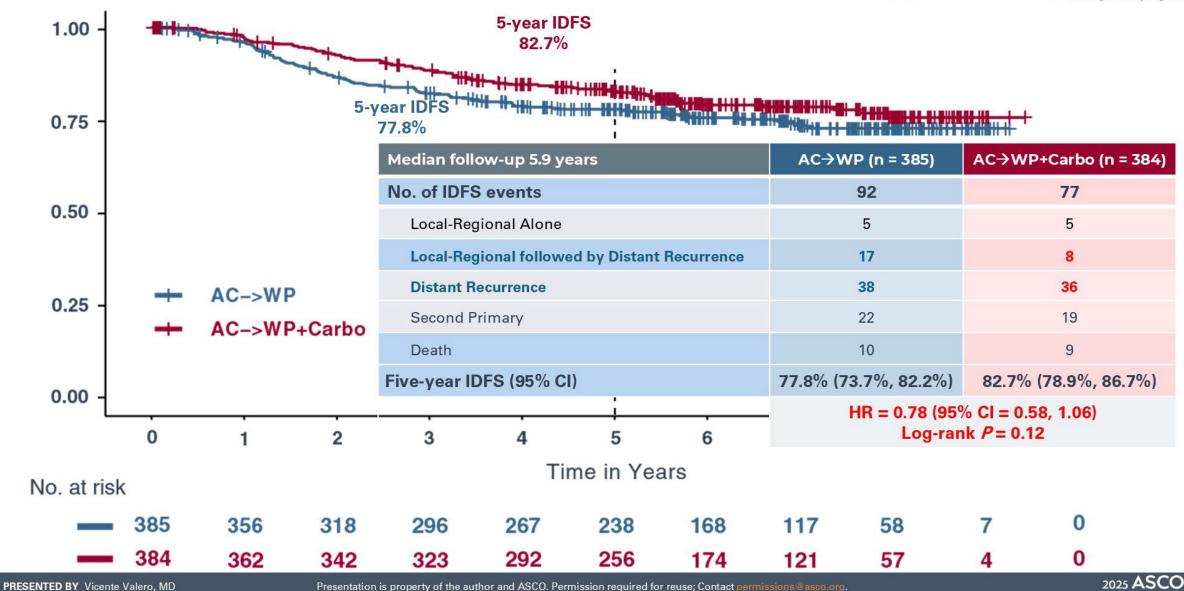
NRG-BR003 Study Design

- STRATIFICATION FACTORS
- Number of positive nodes
 (0, 1–3, 4–9, 10+)
- BRCA mutation status (positive; negative or unknown)

- Patients are eligible if the tumor staining meets one of the following criteria:
 - o ER-negative and PgR-negative by ASCO/CAP guidelines, OR
 - ER or PgR stains are positive in 1-9% of cells and neither is positive in ≥10% of cells
- † Doxorubicin (A) 60 mg/m2 IV + cyclophosphamide (C) 600 mg/m2 IV every 2 weeks for 4 cycles (dose-dense schedule)
- ** Paclitaxel 80 mg/m2 IV weekly for 12 doses
- †† Carboplatin AUC of 5 IV every 3 weeks for 4 cycles

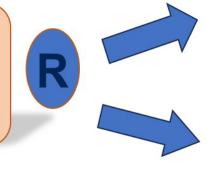
Primary Endpoint

 Invasive disease-fresurvival (IDFS)


Secondary Endpoints:

- Overall survival (OS)
- Breast cancer-free survival (BCFS)
- Recurrence-free interval (RFI)
- Distant recurrence-free interval (DRFI)
- Frequencies of adverse events categorized using the NCI Common Terminology Criteria for Adverse Events Version 4.0 (CTCAE v4.0)

2025 ASCO


Invasive Disease-Free Survival

PEARLY Study Design (NCT02441933)

TNBC patients
with LN (+) or LN (-)
and T ≥ 2 cm
(N=878)

AC x 4 cycles followed by taxane x 4 cycles

AC x 4 cycles followed by taxane + carboplatin x 4 cycles

AC: 60/600mg/m² q3 wks x 4 **Taxane**:

Paclitaxel 80mg/m² q1 wk x 12

Docetaxel 75mg/m² q3 wks x 4 **Carboplatin:** AUC 5 q3 wks x 4

AC, doxorubicin and cyclophosphamide

Stratified by:

Institution, nodal status, BRCA status and treatment setting

Primary Endpoint

- 5-year EFS (Event-Free Survival) rate

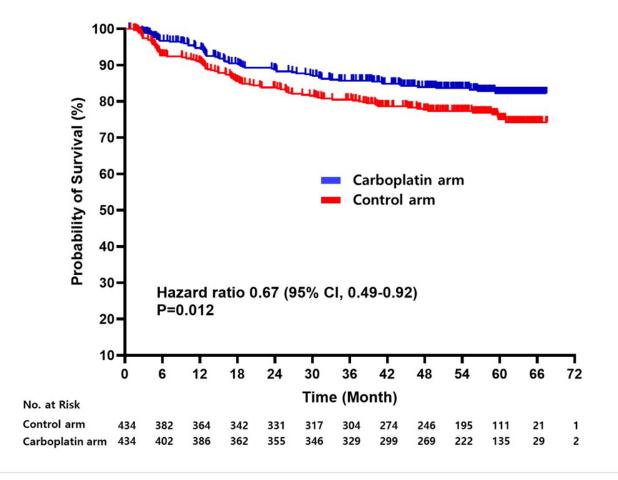
Disease progression or inoperable status for neoadjuvant group Local or distant recurrence, second primary cancer, or death from any cause

Secondary Efficacy Endpoints

Overall survival, OS
Distant recurrence-free survival, DRFS
Invasive disease-free survival, IDFS

Safety Endpoints

Safety and tolerability QoL : EORTC-QLQ-CIPN20, EQ-5D

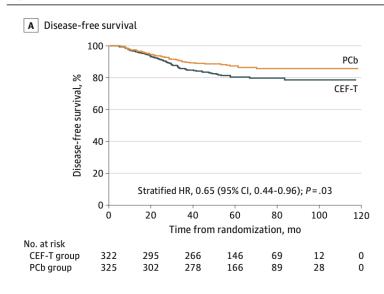


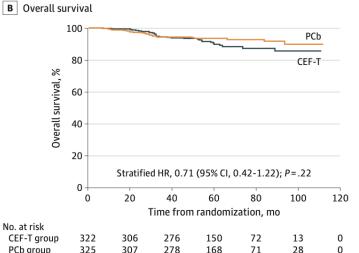
Primary Efficacy Endpoint: EFS

ITT analysis	Carbo arm (n=434)	Control arm (n=434)
5-year EFS rate	82.3%	75.1%
Stratified HR (95% CI)	0.67 (0.49-0.92)	
Stratified Log Rank <i>P value</i>	0.012	

Adjuvant Paclitaxel + Carboplatin in Early TNBC

N=647 1:1 randomization to (mg/m2)

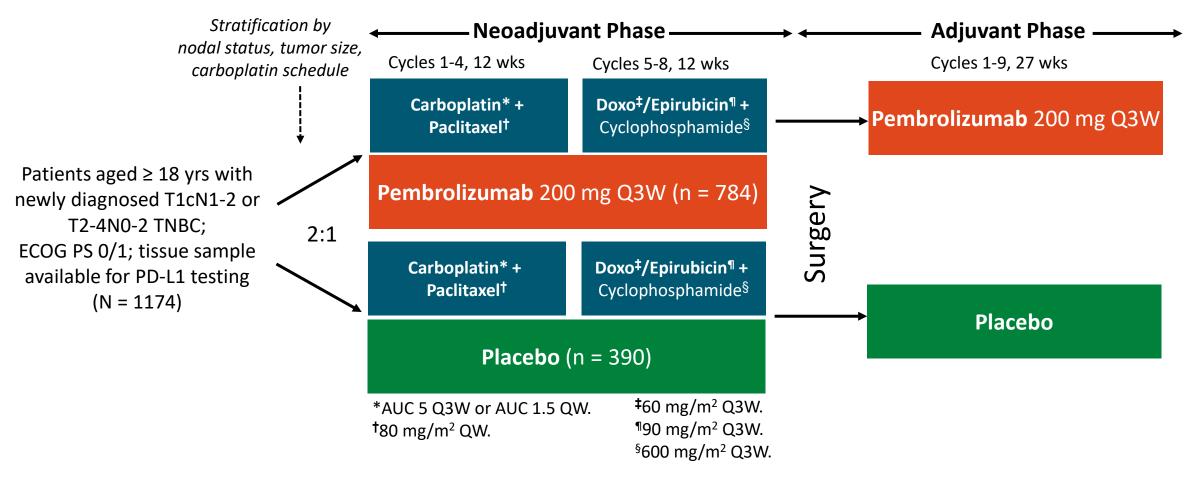

- Weekly paclitaxel 80/carboplatin AUC 2 D1, 8, 15 q28d x 6 cycles
- CEF (500/100/500) x3 cycles then docetaxel 100 x 3 cycles


74% Node- & 26% Node+ 54% T1 & 46% T2/T3 27% Grade 1/2 & 73% Grade 3

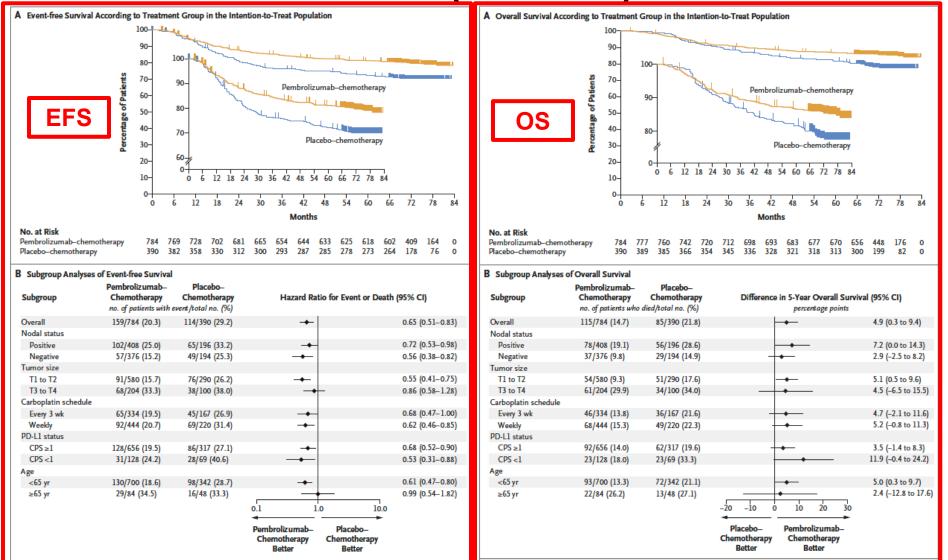
	No. (%)		
Disease-free survival event	CEF-T (n = 322)	PCb (n = 325)	
Local and regional recurrence	10 (3.1)	4 (1.2)	
Contralateral breast tumor	8 (2.5)	9 (2.8)	
Distant metastasis	33 (10.2)	20 (6.2)	
Second primary malignancy	8 (2.5)	7 (2.2)	
Death	3 (0.9)	2 (0.6)	
Total	62 (19.3)	42 (12.9)	

Yu et al. JAMA Oncol. 2020 (PMID: 32789480)

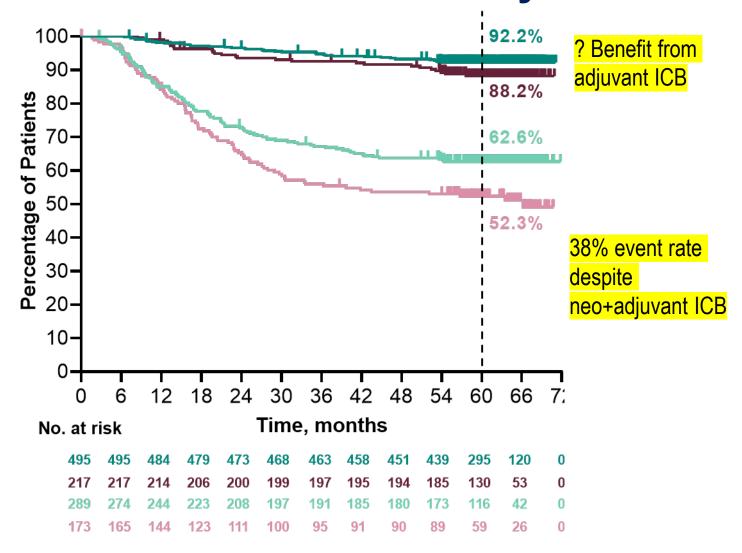
Figure 2. Disease-Free Survival and Overall Survival



Does Carboplatin Improve Outcomes?


Yes, likely improves IDFS by about 5% when added to AC/T

KEYNOTE-522: Study Design


- Primary endpoints: pCR (ypT0/Tis ypN0) by local review, EFS by local review
- Secondary endpoints: pCR (ypT0 ypN0 and ypT0/Tis), OS, EFS, AE
- Exploratory endpoints: RCB, pCR by subgroups, EFS by pCR
 Schmid. NEJM. 2020;382:810.

KEYNOTE-522 (Phase 3): FINAL EFS & OS

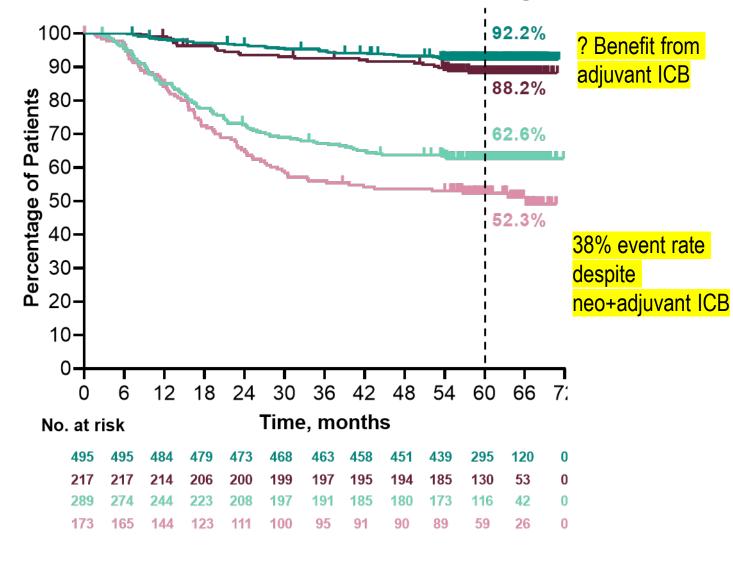
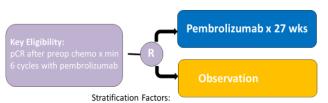


Table 1. Summary of First Events in Analysis of Event-Free Survival.			
Event	Pembrolizumab— Chemotherapy (N=784)	Placebo— Chemotherapy (N = 390)	
	number (percent)		
Any event	159 (20.3)	114 (29.2)	
Progression of disease that pre- cluded definitive surgery	14 (1.8)	15 (3.8)	
Local recurrence	33 (4.2)	20 (5.1)	
Distant recurrence	77 (9.8)	56 (14.4)	
Second primary cancer	16 (2.0)	10 (2.6)	
Death	19 (2.4)	13 (3.3)	

KEYNOTE-522: EFS by PCR


KEYNOTE-522: EFS by PCR

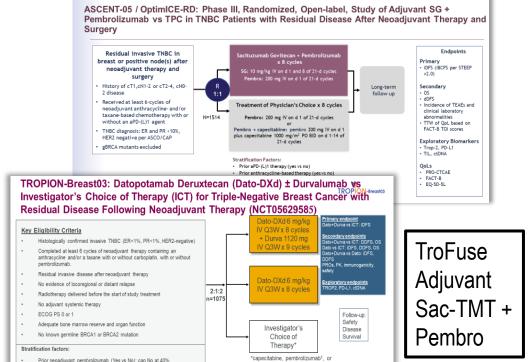
Preop Data-DXd + Durvalumab, Sac-TMT + Pembro and HER3-DXd + Pembro

OptimICE-pCR

A Randomized, Open-label, Phase 3 Study of Adjuvant Pembrolizumab Versus Observation in Triple Negative Breast Cancer with pCR After Surgery and Neoadjuvant Chemotherapy and Checkpoint Inhibitor Therapy

Baseline nodal status

Residual disease (< 1 cm vs ≥ 1 cm): cap < 1 cm (in the absence of lympl

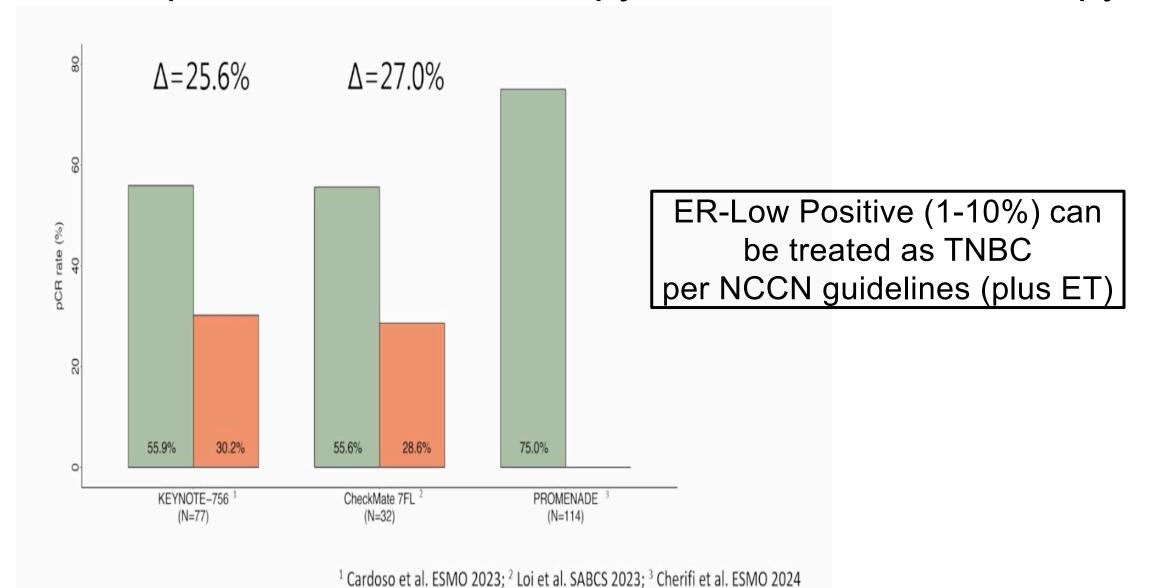

Prior neoadjuvant platinum chemotherapy (Yes vs No)

node involvement) at 20%

Receipt of anthracycline chemotherapy: yes vs. no

 Primary Objective:

To evaluate whether observation results in a non-inferior RFS compared to adjuvant pembrolizumab in early-stage TNBC patients who achieve a pCR after neoadjuvant chemotherapy with ICI therapy



capecitabine + pembrolizumab1

1 Only participants who have received prior pembrolizumah in the

Do pts with ER low disease benefit from immunotherapy?

Patients with ER-Low Positive Breast Cancer Benefit from Preoperative Immunotherapy added to Chemotherapy

Phase II NeoPACT: Neoadjuvant Pembrolizumab + Carboplatin/Docetaxel without Anthracyclines (n=115)

Overall pCR 58%

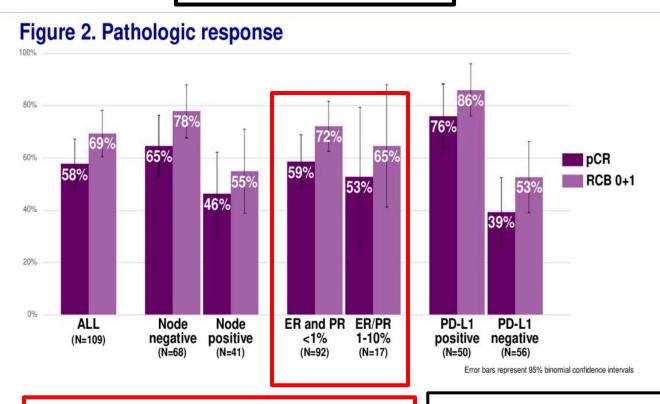
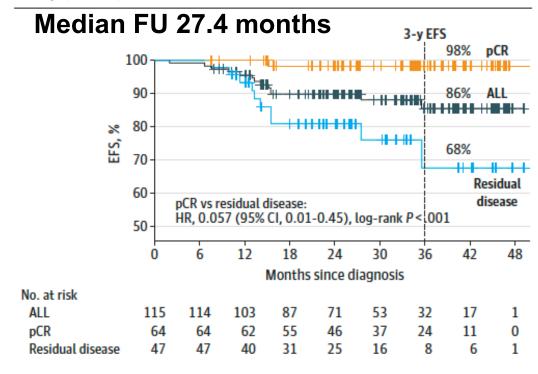
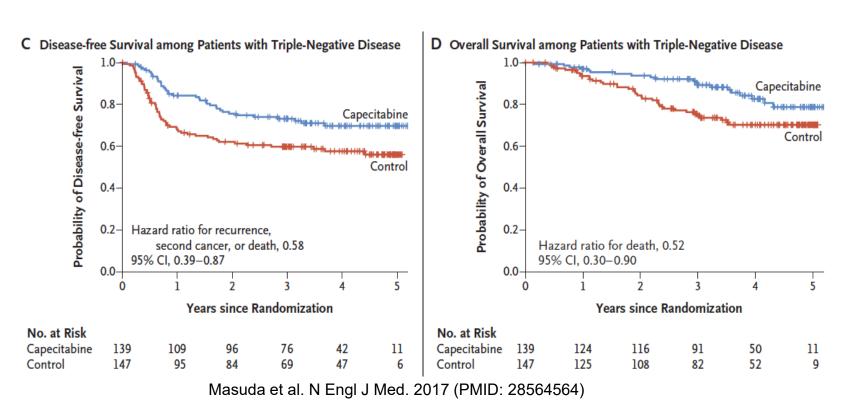
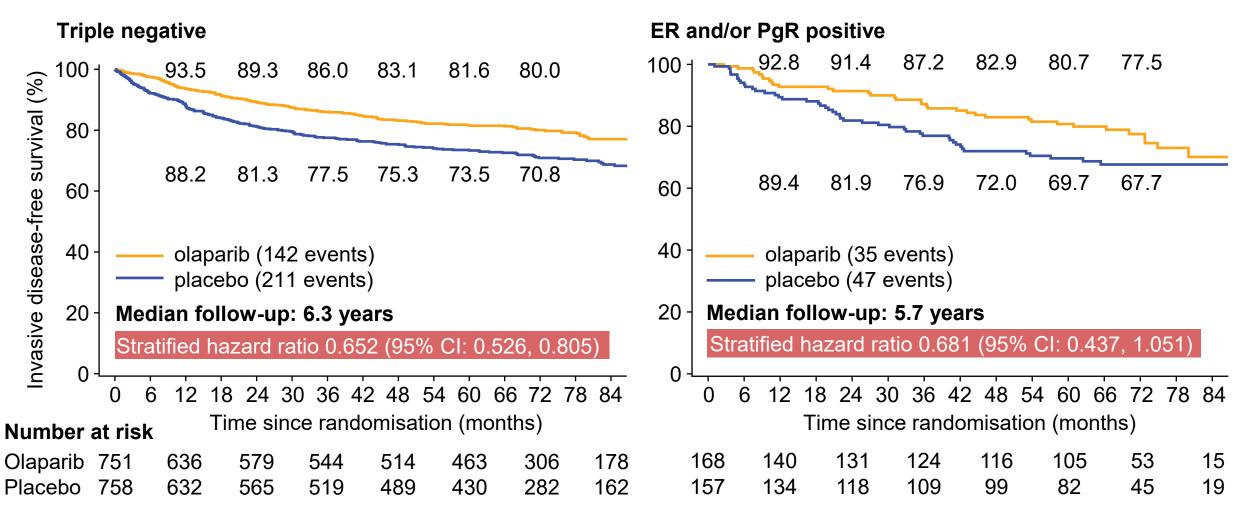



Figure 2. Event-Free Survival (EFS) of Patients in the Intent-to-Treat Group (N = 115)

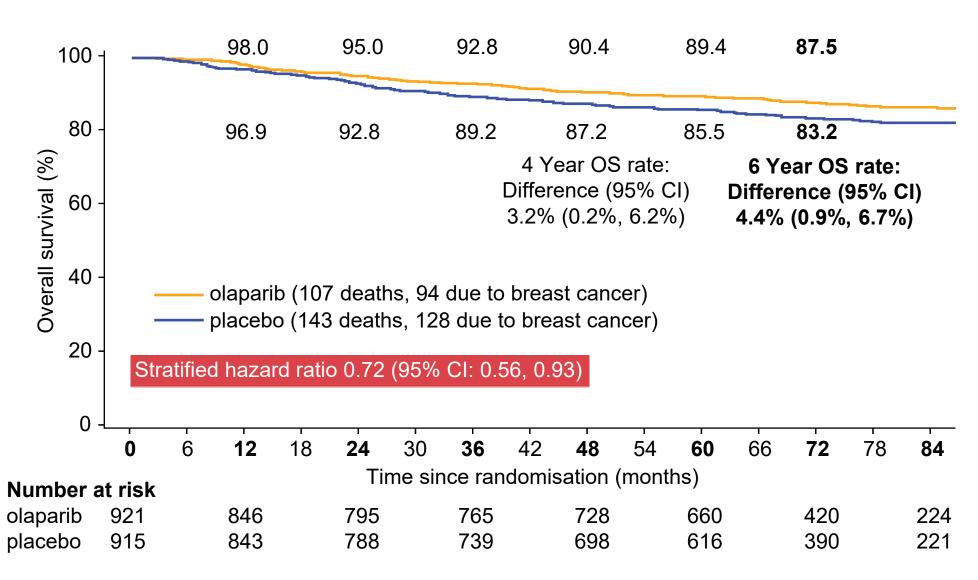



≥Grade 3 IRAEs 3.8%

SCARLET Trial" NeoPACT vs KN522 in Stage II/III TNBC


Which adjuvant therapies improve outcomes in pts with residual disease after preoperative therapy?

Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy



IDFS with Olaparib by HR Status in gBRCA1/2 high risk EBC pts in OlympiA Trial

Analysis of OS (ITT) n OlympiA Trial

Does adjuvant pembro improve outcomes if pts did not receive preop chemo/pembro?

A-BRAVE Trial - Study Design

High Risk TNBC patients who completed locoregional and systemic treatment with curative intent

Key eligibility criteria:

- Age ≥18 years
- ECOG PS 0-1
- TNBC (ER & PgR <10%, HER2 0-1+ or 2+ FISH-)^
- Anthracycline and taxane (neo)-adjuvant ChemoRx
- Tissue samples for central PD-L1 assessment
- Randomization <10 weeks from last chemo or surgery
- Stratum A (Adjuvant): pT2N1, pT3-4 N0-3, pN2-3 anyT#
- <u>Stratum B (Post-neoadjuvant)</u>: residual invasive carcinoma in the breast and/or axillary lymph nodes[§]*

^for patients in the neoadjuvant stratum, TN status required in the preoperative and in the post-surgical specimen

Randomization balanced for Stratum A and Stratum B.

Investigator-driven study, sponsored by University of Padova. Drug supply and Grant support by Merck KGaA.

Conte PF et al. Ann Oncol 2025

Avelumab

10mg/kg, iv, q 2 weeks for 52 weeks

Observation

In case of ER 1-9%, adjuvant HT allowed at discretion of treating physicians. Whenever indicated, radiotherapy allowed concomitantly with avelumab.

Primary efficacy objectives

- Disease-free survival (DFS)
- DFS in Stratum B (post-neoadjuvant)

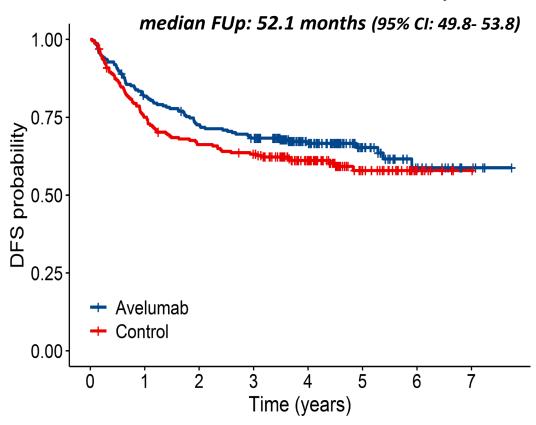
Secondary efficacy objectives

- Overall survival (OS)
- DFS in PD-L1 positive patients*

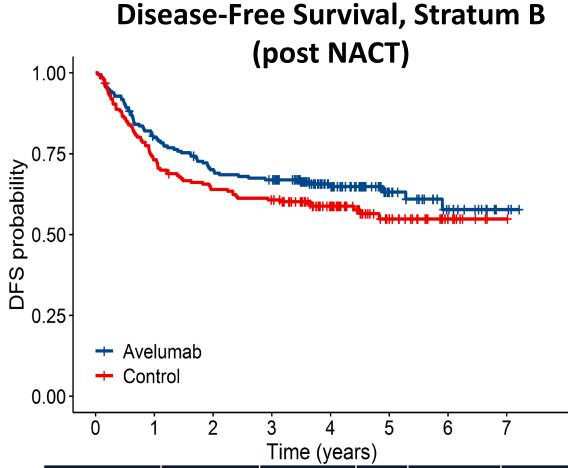
Safety objectives

R 1:1

N=477

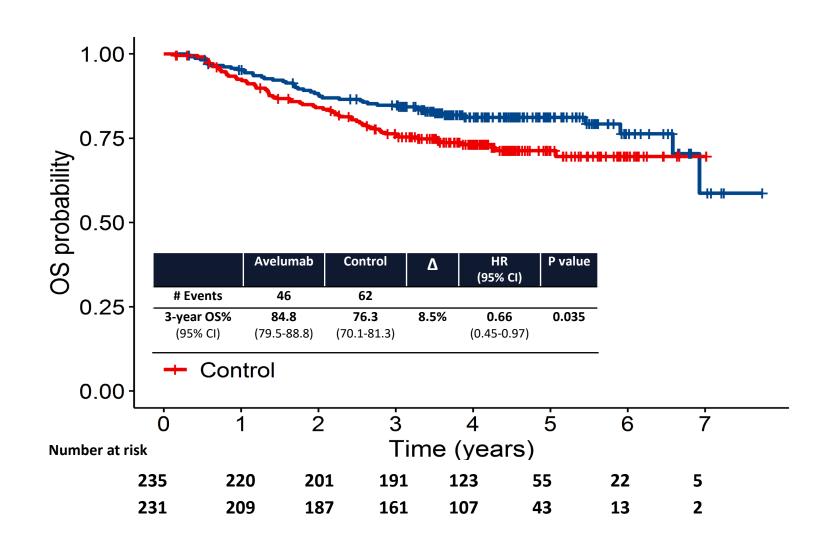

- Overall safety of avelumab

[#]trial initially limited to pN≥2; protocol amendment in 10/2017 to include patents with pT2N1 and pT3-4 N0-3 disease stage § excluding ypT1micN0, ypT1micN0i+, ypT0N0i+


^{*} After amendment on 06/2018, patients in stratum B were allowed to receive additional post-operative chemotherapy and were randomized at completion of treatment.

A-BRAVE Trial - Disease-free Survival

Disease-Free Survival, ITT



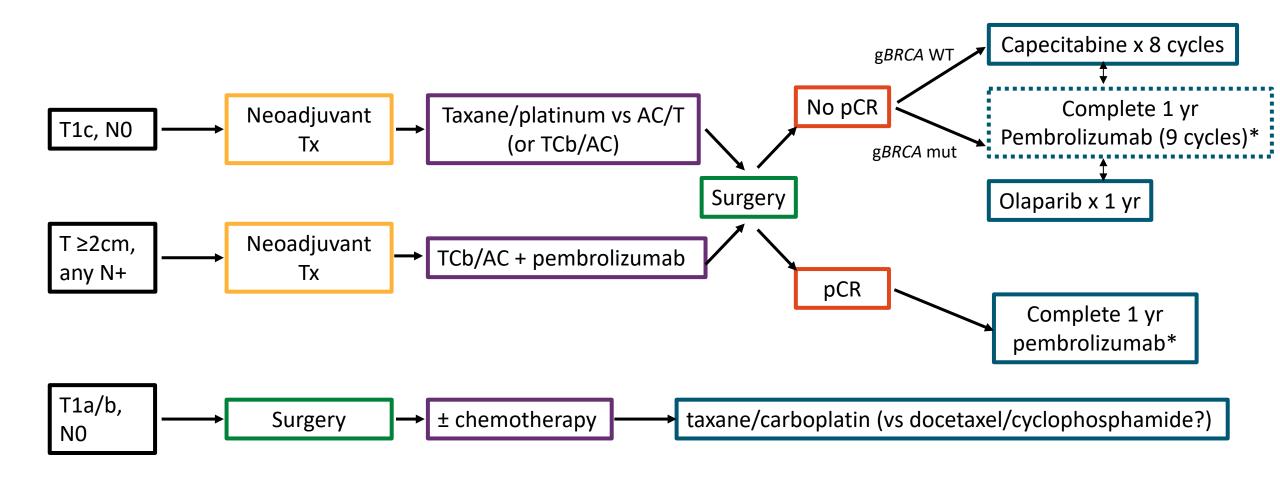
	Avelumab	Control	Δ	HR (95% CI)	P value
# Events	81	91			
3-year DFS%	68.3	63.2	5.1	0.81	0.172
(95% CI)	(61.9-73.8)	(56.5-69.0)	%	(0.61-1.09)	

		Avelumab	Control	Δ	HR (95% CI)	P value
	# Events	70	79			
-	3-year DFS%	66.9	60.7	6.2	0.80	0.170
	(95% CI)	(59.8-73.1)	(53.3-67.3)	%	(0.58-1.10)	

A-BRAVE Trial – ITT Overall Survival

Conte PF et al. Ann Oncol 2025

Is adjuvant pembrolizumab effective in TNBC patients with RD after neoadjuvant chemotherapy?

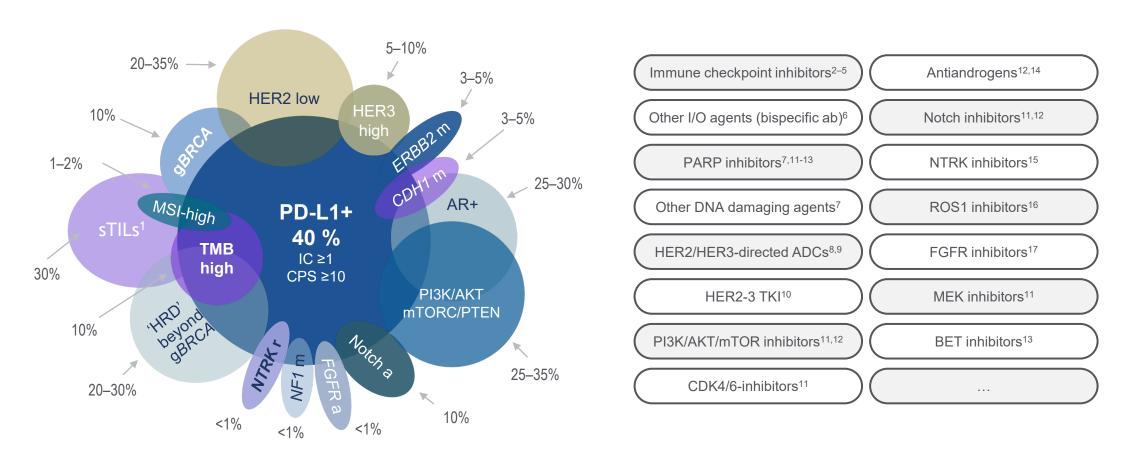

SWOG S1418/NRG BR-006 Randomized phase III trial

Stratified by nodal stage (ypNo vs ypN+), residual tumor (≥ 2 cm vs < 2 cm), PD-L1 status (pos vs neg), prior adjuvant chemo (yes vs no) Pembrolizumab 200 mg IV Patients with nonmetastatic TNBC with PD or Q3W x 1yr residual invasive tumor (≥ 1 cm) after unacceptable neoadjuvant CT; no adjuvant anti-HER2 toxicity; RT or endocrine therapy; tumor tissue allowed within 12 available for PD-L1 testing wks of surgery or **Observation** (planned N = 100)after treatment Q12W x 1yr

PI: Lajos Pusztai


- Primary endpoints: iDFS, severity of fatigue, physical function
- Secondary endpoints: OS, DRFS, safety, QoL

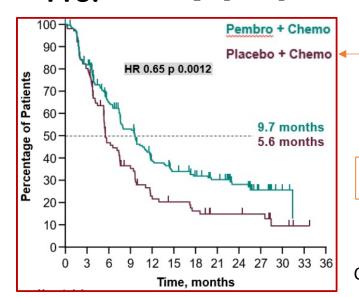
Strategy for Managing Patients With Stage I-III TNBC


^{*}For patients who received neoadjuvant chemotherapy plus pembrolizumab

Metastatic TNBC represents one of the biggest unmet needs in breast oncology

Median OS has remained <18 months for decades, with improvements seen only in the ~20–30% of PD-L1–positive patients eligible for chemo-immunotherapy (KN355, mOS: 23.0 vs 16.1 mos).

In TNBC, the clinical impact of biomarkers remains limited due to absence of consensus, robust predictive data and availability of registered drugs


^{1.} Brown LC, et al. *Cancer J.* 2021;01:27(1):25–31; 2. Emens L, et al. *J Natl Cancer Inst.* 2021;113(8):1005–1016; 3. Obeid E, et al. Presentation at SABCS 2017. Abstract PD6-03; 4. Winer E, et al. Presentation at ASCO Virtual Meeting 2020. Abstract 1013; 5. Kurata K, et al. *Cancer Res.* 2019;79(suppl 4):P1-06-11; 6. Sobhani N, et al. *Int J Mol Sci.* 2020;21:2011; 7. Hartman AR, et al. *Cancer.* 2012;118:2787–2795; 8. Schettini F, et al. *NPJ Breast Cancer.* 2021;7:1; 9. Tarantino P, et al. *J Clin Oncol.* 2020;38:17:1951–1962; 10. Schlam I, Swain SM. *NPJ Breast Cancer.* 2021;7:56; 11. Bareche Y, et al. *Ann Oncol.* 2018;29:895–902; 12. Giuli M, et al. *J Oncol.* 2019:8707053; 13. Aftimos P, et al. Presentation at SABCS 2020. Abstract PS11-10; 14. Gucalp A, et al. *Curr Probl Cancer.* 2016;40:141–150; 15. Rosen E, et al. *Cancer Res.* 2021;81(suppl 4):PS11–06; 16. Bajrami I, et al. *Cancer Discov.* 2018;8(4):498–515; 17. Chew C, et al. *Cell Commun Signal.* 2020;18;13.

KEYNOTE-355 Study Design (NCT02819518)

Key Eligibility Criteria

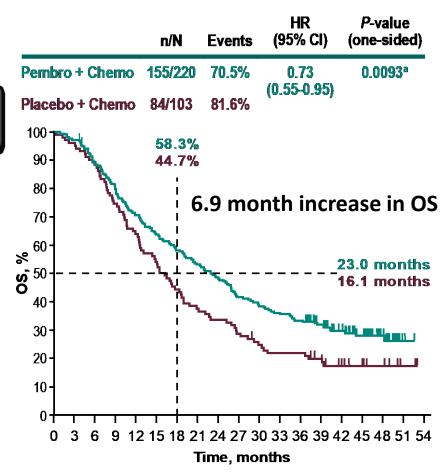
- Age ≥18 years
- Central determination of TNBC and PD-L1 expression^a
- Previously untreated locally recurrent inoperable or metastatic TNBC
- De novo metastasis or completion of treatment with curative intent ≥6 months prior to first disease recurrence
- ECOG performance status 0 or 1
- Life expectancy ≥12 weeks from randomization
- Adequate organ function
- · No systemic steroids
- · No active CNS metastases
- · No active autoimmune disease

PFS: PD-L1 CPS ≥10

Pembrolizumabb + Chemotherapyc

Progressive diseasee/cessation of study therapy

Placebod + Chemotherapyc


Stratification Factors:

- Chemotherapy on study (taxane or gemcitabine-carboplatin)
- PD-L1 tumor expression (CPS ≥1 or CPS <1)^f
- Prior treatment with same class chemotherapy in the neoadjuvant or adjuvant setting (yes or no)

Prespecified P value boundary of 0.00411 met

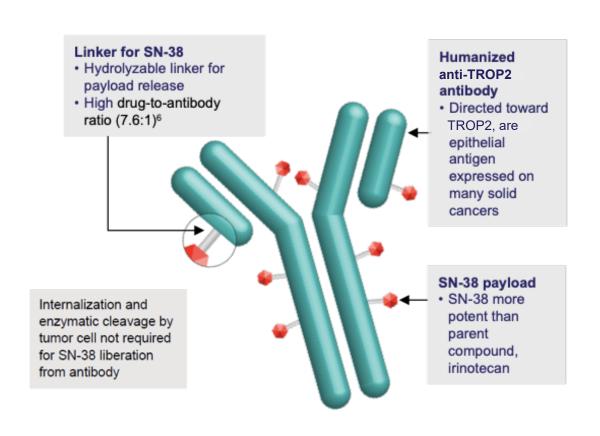
PD-L1 CPS≥10: only 38% of pts

OS: PD-L1 CPS ≥10

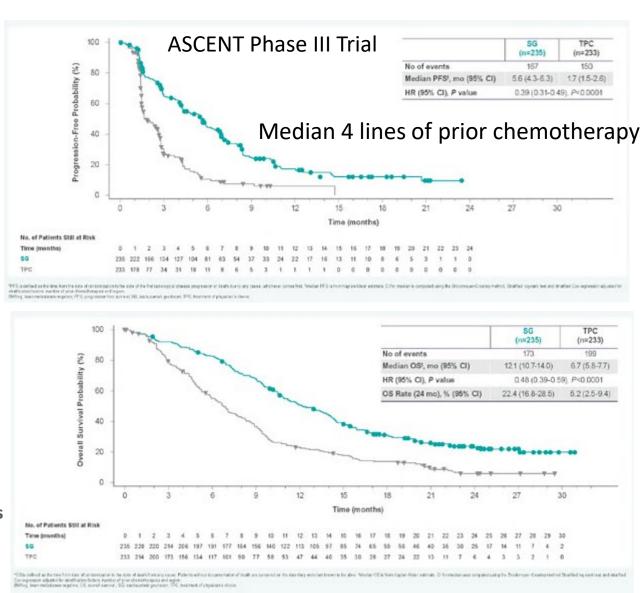
No. at risk

220 214 193 171 154 139 127 116 105 91 84 78 73 59 43 31 17 2 0 103 98 91 77 66 55 46 39 35 30 25 22 22 17 12 8 6 2 0

Cortes et al, Lancet 2020; Rugo et al, ESMO 2021; Cortes et al, NEJM 2022


Will ADC +/- IO Become the New 1L SOC for mTNBC?

TROP2-directed ADCs


	Sacituzumab govitecan (IMMU-132)	Datopotamab deruxtecan (DS-1062a)	Sacituzumab tirumotecan (MK-2870)	
Antibody	hRS7 MAAP-9001a Humanized IgG1 mAb Humanized IgG1 mAb		hRS7 Humanized IgG1 mAb	
Payload	SN38 (DNA Topoisomerase I inhibitor)	DXd (DNA Topoisomerase I inhibitor)	KL610023 (DNA Topoisomerase I inhibitor)	
Linker Cleavage	Enzymatic and pH-dependent	Enzymatic	Enzymatic and pH-dependent	
Bystander Effect	ler Effect Yes Yes		Yes	
DAR	7.6	4	7.4	
Half-life	11-14h ~5 days	~5 days	57h	
Dosing	D1, D8 of Q3W schedule	Q3W	Q2W	

Sacituzumab Govitecan (SG): First-in-Class TROP2-Directed ADC

- TROP2 is expressed in all subtypes of breast cancer and linked to poor prognosis
- Key grade ≥3 TRAEs (SG vs TPC): neutropenia (51% vs 33%), diarrhea (10% vs <1%), leukopenia (10% vs 5%), anemia (8% vs 5%), FN (6% vs 2%)
- G-CSF: 49% in the SG arm vs 23% in the TPC arm
- Dose reductions due to TRAEs were similar (22% SG vs 26% TPC)
- No severe CV toxicity, no grade >2 neuropathy or grade >3 ILD with SG

ASCENT-04/KEYNOTE-D19 Study Design

Previously untreated, locally advanced unresectable, or metastatic TNBC^a:

- PD-L1-positive (CPS ≥ 10 by the 22C3 assay^b)
- ≥ 6 months since treatment in curative setting (prior anti-PD-[L]1 use allowed)

N = 443

Stratification factors:

- De novo mTNBC^c vs recurrent within 6 to 12 months from completion of treatment in curative setting vs recurrent
 12 months from completion of treatment in curative setting
- US/Canada/Western Europe vs the rest of the world
- Prior exposure to anti-PD-(L)1 (yes vs no)

SG + pembro^d

(SG 10 mg/kg IV, days 1 and 8 of 21-day cycles; pembro 200 mg, day 1 of 21-day cycles)

n = 221

Chemo* + pembro^d

(paclitaxel 90 mg/m² OR nab-paclitaxel 100 mg/m² on days 1, 8, & 15 of 28-day cycles, OR gemcitabine 1000 mg/m² + carboplatin AUC 2 on days 1 & 8 of 21-day cycles; pembro 200 mg on day 1 of 21-day cycles)

n = 222

All treatment, including SG or chemo, was continued until BICR-verified disease progression or unacceptable

toxicity

End points

Primary

PFS by BICR^e

Secondary

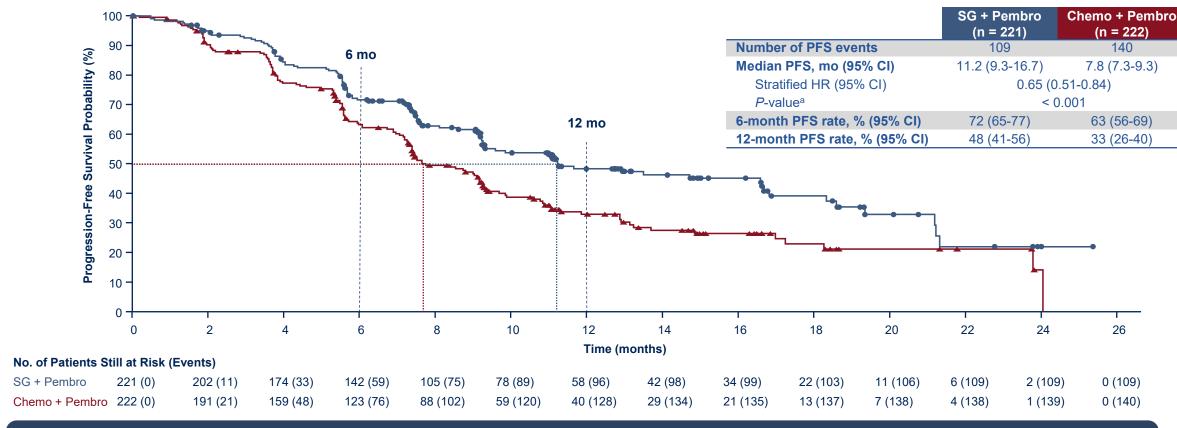
- OS
- ORR, DOR by BICR^e
- Safety
- QoL

ClinicalTrials.gov identifier: NCT05382286.

^aTNBC status determined according to standard American Society of Clinical Oncology-College of American Pathologists criteria. ^bDako, Agilent Technologies. ^cUp to 35% de novo mTNBC. ^dPembro was administered for a maximum of 35 cycles. ^ePer RECIST v1.1.

AUC, area under the curve; BICR, blinded independent central review; chemo, chemotherapy; CPS, combined positive score; DOR, duration of response; IV, intravenously; ORR, objective response rate; OS, overall survival; PD-L1, programmed cell death ligand 1; pembro, pembrolizumab; PFS, progression-free survival; QoL, quality of life; R, randomized; RECIST v1.1; Response Evaluation Criteria in Solid Tumors, version 1.1; SG, sacituzumab govitecan; TNBC, triple-negative breast cancer; TTR, time-to-response.

*Eligible patients who experienced BICR-

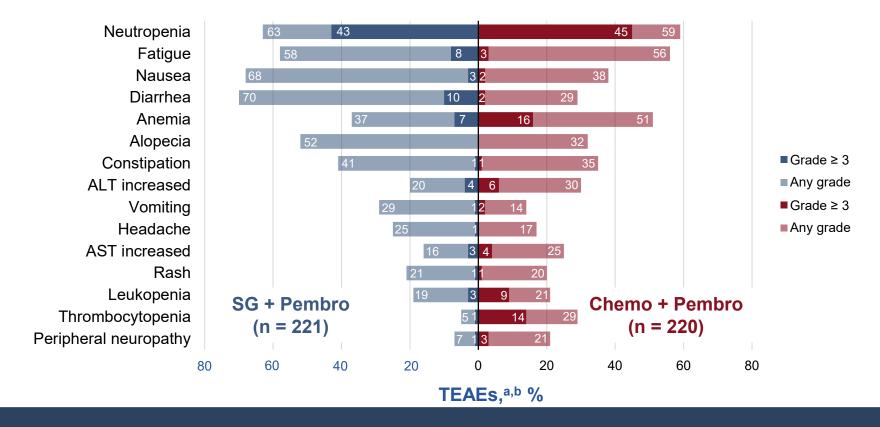

verified disease progression were

offered to cross-over to

receive 2L SG monotherapy

Tolaney S et al. ASCO 2025

Progression-Free Survival by BICR



SG + pembro demonstrated statistically significant and clinically meaningful improvement in PFS vs chemo + pembro by BICR analysis, with a 35% reduction in risk of disease progression or death

OS data were immature (maturity rate, 26%), however, a positive trend in improvement was observed for SG + pembro vs chemo + pembro

Most Common Adverse Events (≥20% in any group)

The AEs observed are consistent with the known profiles of both SG and pembro

Results from ASCENT-04/KEYNOTE-D19 support the use of SG + pembro as a potential new standard of care for patients with previously untreated, PD-L1+, locally advanced unresectable or metastatic TNBC

TEAEs were defined as any adverse events that began or worsened on or after the first dose date of study drug up to 30 days (or up to 90 days for SAEs) after the last dose date of study drug or the initiation of subsequent anticancer therapy (including crossover treatment), whichever occurred first. Data cutoff date: March 3, 2025.

aTEAEs were included if they occurred in ≥ 20% of patients in either arm. Combined preferred terms of Neutropenia includes neutrophil count decreased, Leukopenia includes white blood cell count decreased, Anemia includes hemoglobin decreased and red blood cell count decreased. Thrombocytopenia includes platelet count decreased, Fatigue includes asthenia.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; chemo, chemotherapy; pembro, pembrolizumab; SG, sacituzumab govitecan; TEAE, treatment-emergent adverse event.


ASCENT-03:

MET PRIMARY PFS ENDPOINT

Sacituzumab govitecan vs TPC in 1L PD-L1- mTNBC

1L mTNBC PD-L1-

- Previously untreated, inoperable, locally advanced, or metastatic **TNBC**
- PD-L1- tumors (CPS <10, IHC 22C3 assay) OR PD-L1+ tumors (CPS ≥10, IHC 22C3 assay) if treated with anti-PD-(L)1 agent in the curative setting
- ≥6 months since treatment in curative setting
- Prior anti-PD-(L)1 agent allowed in the curative setting
- PD-L1 and TNBC status centrally confirmed

Crossover to SG allowed after BICRverified disease progression

- the curative setting
- Geographic region

TROPION-PanTumor01 Study: Dato-DXd Efficacy

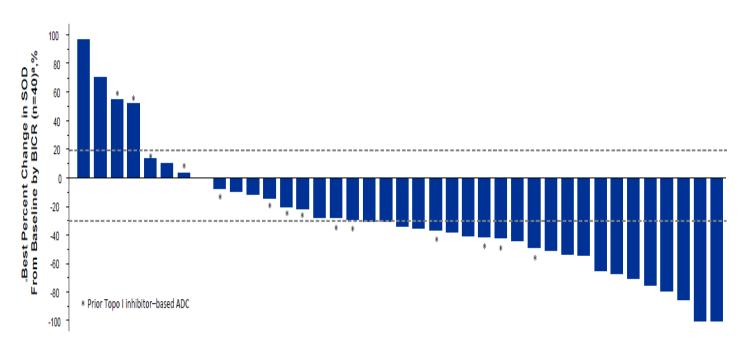
ORR by BICR:

• All patients: 32%

Topo I inhibitor-naive patients: 44%

mDOR: 16.8 months in both groups

mPFS:


- All patients: 4.4 months
- Topo I inhibitor-naive patients: 7.3 months

mOS:

- All patients: 13.5 months
- Topo I inhibitor-naive patients: 14.3 months

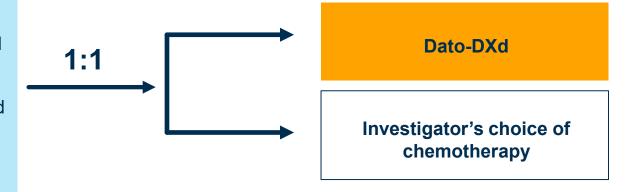
AEs: Most common TEAEs: stomatitis (73%), nausea (66%), vomiting (39%)

Antitumor Tumor Responses by BICR

Ongoing Phase 3 Clinical Trials with Dato-DXd in 1L

TROPION-Breast02¹

Key Eligibility Criteria:


- Locally recurrent inoperable or metastatic TNBC
- No prior chemotherapy or targeted systemic therapy for metastatic breast cancer
- Not a candidate for PD-1/PDL1 inhibitor therapy
- Measurable disease as defined by RECIST v1.1
- ECOG PS 0 or 1
- Adequate hematologic and end-organ function

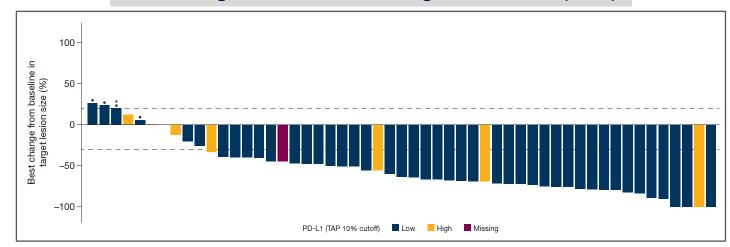
Stratification Factors:

- Geographic location
- DFI (de novo vs DFI ≤ 12 months vs DFI >12 months)

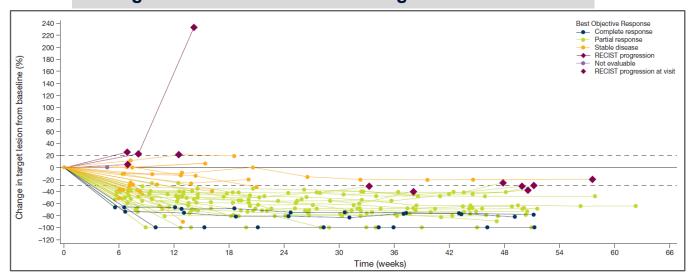
Dual Primary Endpoint: PFS (BICR) and OS

Secondary Endpoints: PFS (inv), ORR, DoR, Safety

- 1st line therapy for TNBC
- PD-L1 negative


BEGONIA: Dato-DXd + durvalumab in 1L m TNBC

Best Change from Baseline of Target Lesion Size (n=53)


• Confirmed ORR= 39 (73.6%)

$$\checkmark$$
 CR = 4

$$√
PR = 35$$

Change from baseline in sum of target lesions over time

Most responses were durable

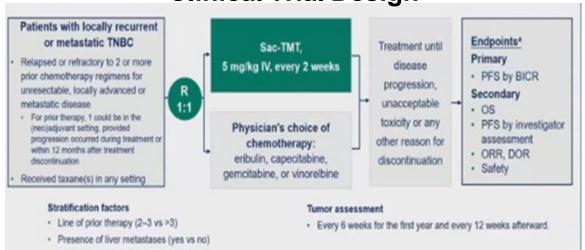
✓ Responses in PD-L1 low and PD-L1 high tumors

TROPION-Breast05

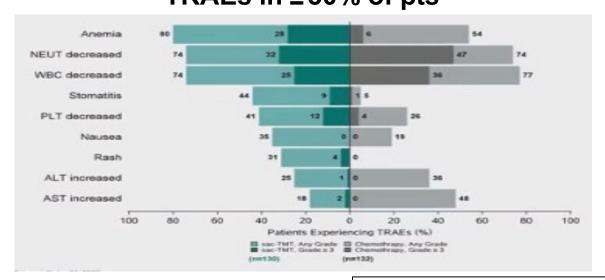
Dato-DXd +/- durva vs TPC + pembro in 1L PD-L1+ mTNBC

Key Eligibility Criteria

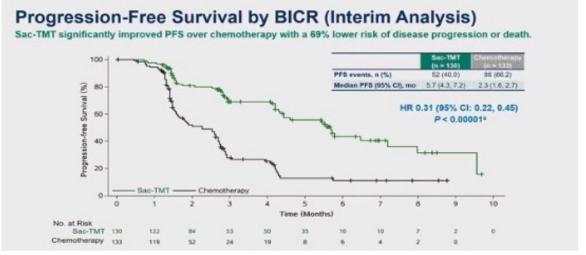
- Previously untreated metastatic or locally advanced inoperable TNBC (ER<1%, PR<1%, HER2neg)
- Measurable disease as defined by RECIST v1.1
- Adequate ECOG, hematologic and end-organ function
- PD-L1+ (CPS ≥ 10 IHC 22C3) by central testing
- No active brain metastases
- DFI≥ 6 mo since treatment in curative setting
- Prior PD-1/PD-L1 treatment for early stage TNBC allowed

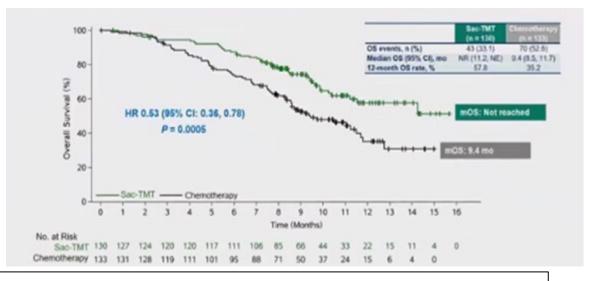

Stratification factors:

- De novo, prior DFI 6 to ≤ 12 mo[†], prior DFI >12 mo
- Geographic region (US/Canada/Europe vs Dato-DXd monotherapy arm enrolling countries vs ROW)
- Prior PD-1/PD-L1 treatment for early stage TNBC

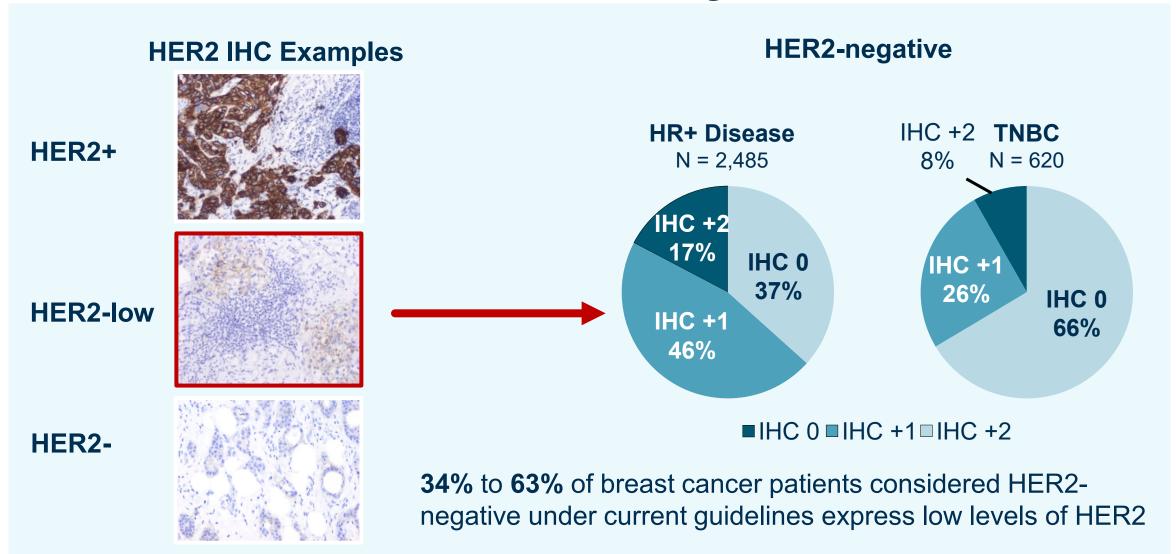


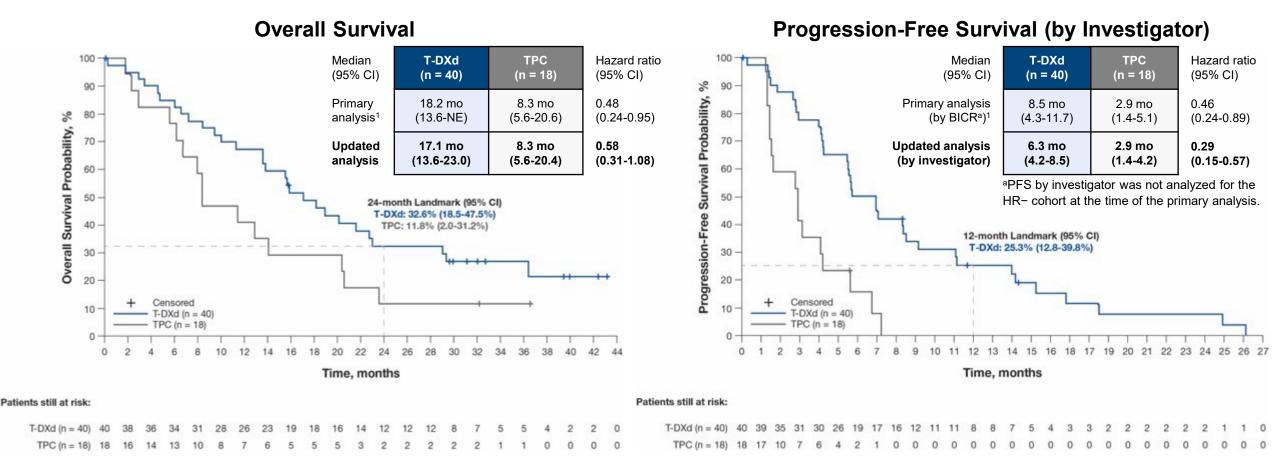
OptiTROP-Breast01: Phase 3 Study of Sacituzumab Tirumotecan in mTNBC


Clinical Trial Design


TRAEs in ≥30% of pts

PFS by BICR

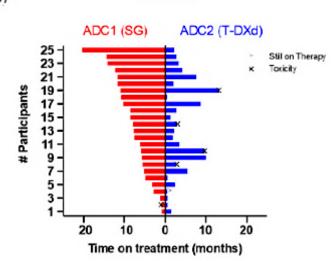

OS


Xu B et al. ASCO 2024. Abstract 104.

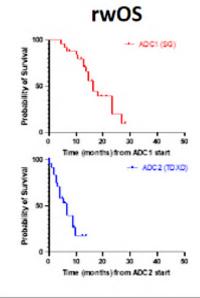
1L TroFuse-011 Trial mTNBC PD-L1 CPS < 10: Sac-TMT +/- Pembro vs TPC chemoRx

Prevalence of HER2-low by HR status

DESTINY-Breast04: T-DXd vs TPC Efficacy in HR- HER2 Low MBC (Exploratory Analyses)


- Median FU now 32 months vs 18.4 at primary analysis
- There was a 42% reduction in risk of death and 71% reduction in risk of disease progression or death for HRpatients receiving T-DXd compared with TPC

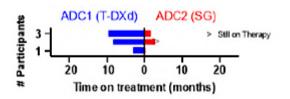
Can we Sequence ADCs in HR-/HER2-low MBC?


SG → T-DXd (n=25, 89.3%)

- Median lines of therapy for MBC prior to SG: 2.0 (range 0-5)
- Intervening therapies between ADCs: 40.0%

	ADC1 (SG)	ADC2 (T-DXd)
ORR (CR+PR) by investigator assessment, %	68.0%	35.0%
CBR (CR + PR + SD) by investigator assessment, %	80.0%	45.0%
Median rwPFS, months	7.8	2.8
Median rwOS from time of each ADC start, months	16.5	6.5

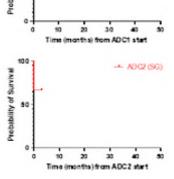
rwPFS



T-DXd → SG (n=3, 10.7%)

- Median lines of therapy for MBC prior to T-DXd: 3.0 (range 1-5)
- Intervening therapies between ADCs: 66.7%

	ADC1 (T-DXd)	ADC2 (SG)
ORR (CR+PR) by investigator assessment, %	33.3%	0.0%
CBR (CR + PR + SD) by investigator assessment, %	66.7%	50.0%
Median rwPFS, months	undetermined	
Median rwOS from time of each ADC start, months	undetermined	


rwPFS

Multiple randomized trials sequencing ADCs in MBC are underway

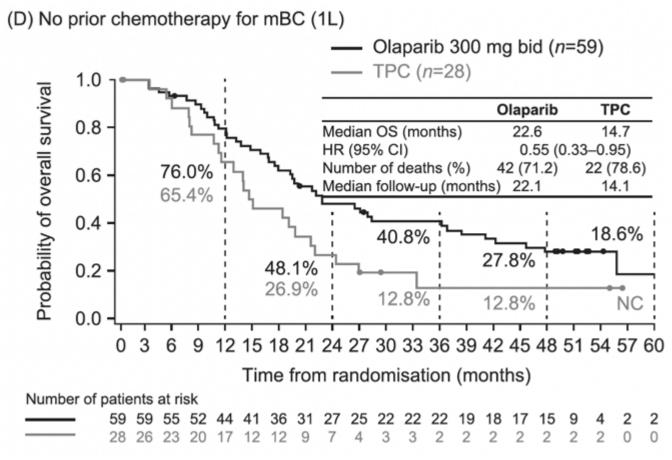
rwOS

- ADC1 (TDXD)

Poor Outcomes with Chemotherapy in 2L+ Metastatic TNBC

Drug	Phase	N	Population	Median PFS (mo)	Median OS (mo)
>1st-line treatmenta					
Ixabepilone ¹	2 (pooled analysis)	60	Resistant to anthracycline, cyclophosphamide & taxane or taxane only	1.6 - 2.7	_
Capecitabine ¹	3 (pooled analysis)	208	Prior or resistant to anthracycline & taxane	1.7	_
Eribulin ²	3 (pooled analysis)	199	≥1 prior chemo	2.8	12.4
Single-agent chemotherapy ³ (taxane, gemcitabine, capecitabine, or vinorelbine)	3 (subgroup analysis in TNBC)	47	Progressed on prior non-bevacizumab-containing 1L chemotherapy	2.7	12.6
Capecitabine ⁴	3	38	Prior anthracycline and taxane; no more than 2 prior cytotoxic regimens for MBC	2.5	13.2
Pembrolizumab ⁵ Single-agent chemotherapy ⁵ (capecitabine, eribulin, gemcitabine, or vinorelbine)	3	312 310	PD on last therapy; prior anthracycline or taxane; 1-2 prior systemic therapies	2.1 3.3	9.9 10.8

<sup>alncludes breast cancer drugs with data from phase 2/3 studies.
1. Perez EA, et al. Breast Cancer Res Treat. 2010;121:261-271. 2. Pivot X, et al. Ann Oncol. 2016;27:1525-1531.
3. Brufsky A, et al. Breast Cancer Res Treat. 2012;133:1067-1075. 4. Park IH, et al. Cancer Res Treat. 2019;51:43-52.
5. Cortes J, et al. Ann Oncol. 2019;30:v859-v86. Abstract LBA21.</sup>


Efficacy of Single Agent Carboplatin and PARP Inhibitors in Patients with *gBRCA* Mutations and MBC

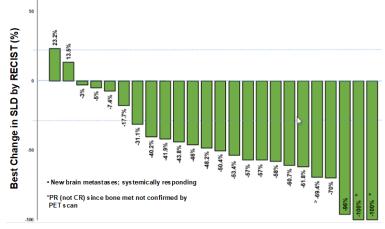
	OlympiAD ^{1,2} Olaparib vs. TPC	EMBRACA ³ Talazoparib vs. TPC	TNT⁴ Carboplatin vs. docetaxel
PFS	5.6 months vs. 2.9 months HR = 0.43 95% CI (0.29, 0.63)	5.8 months vs. 2.9 months HR= 0.60 95% CI (0.41, 0.87)	6.8 months vs. 4.4 months
ORR	51.8% vs. 5.4% (n=83) (n=37) Investigator assessment	61.8% vs. 12.5% (n=102) (n=48) Investigator assessment	68.0% vs. 33.3% (n=25) (n=18)

TNT: small numbers, more toxicity with carboplatin vs PARPi, and all 1st line

OlympiAD: Improved OS with Olaparib in 1L MBC Pts

- No statistically significant differences in survival curves in:
 - Overall population and > 1 lines of chemotherapy in metastatic setting
 - hormone receptor subtype
 - Prior exposure to platinum
- No new safety signal No AML/MDS

TBCRC 048 Olaparb Expanded


Responses for gPALB2

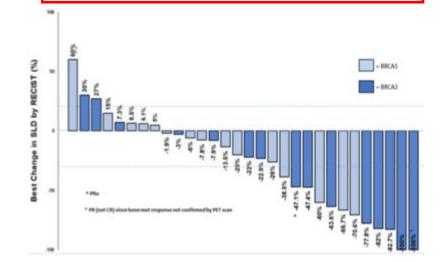
g <i>PALB</i> 2 N=24			
Best Response	Responses (rate, %)		
Complete Response (CR)	1 (4%)		
Partial Response (PR)	17 (71%)		
Stable Disease (SD)	5 (21%)		
Progressive Disease (PD)	1 (4%)		
ORR = 75% (18/24, 80%-CI: 60%-86%)			
CBR (18 wks) = 83% (20/24, 90%-CI: 66%-94%)			

MUST TEST ALL TNBC Pts for germline mutations

Datacut May 3, 2024

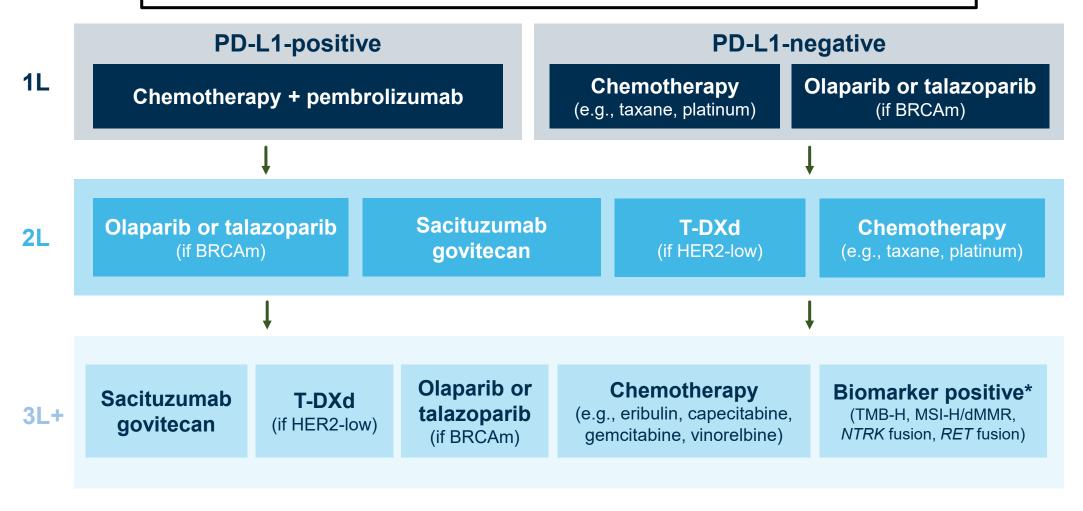
Median PFS= 9.6 months (90%-CI: 8.3-12.4)
Median DOR= 7.1 months (90% CI: 5.5-11.0)

Tumor subtype	Responses
TNBC	2/2
ER+/HER2-neg	13/19
HER2+	3/3


Tung et al, ASCO 2024

Responses for sBRCA1/2

s <i>BRCA1/2</i> N=30				
Best Response	Responses, (rate, %)			
Complete Response (CR)	1 (3%)			
Partial Response (PR)^	10 (33%)			
Stable Disease (SD)	13 (43%)			
Progressive Disease (PD)	6 (20%)			
ORR = 37% (11/30, 80%-CI: 25%-50%)				
CBR (18 wks) = 53% (16/30, 90%-CI: 37%-69%)				


^{^ 1} unconfirmed PR did not count for ORR or CBR

Median PFS= 7.2 months (90%-CI: 3.9- 13.6) Median DOR= 12.4 months (90% CI: 4.3- NR)

Treatment Algorithm for Metastatic TNBC

1L Sacituzumab +/- pembrolizumab likely new SOC regimens

