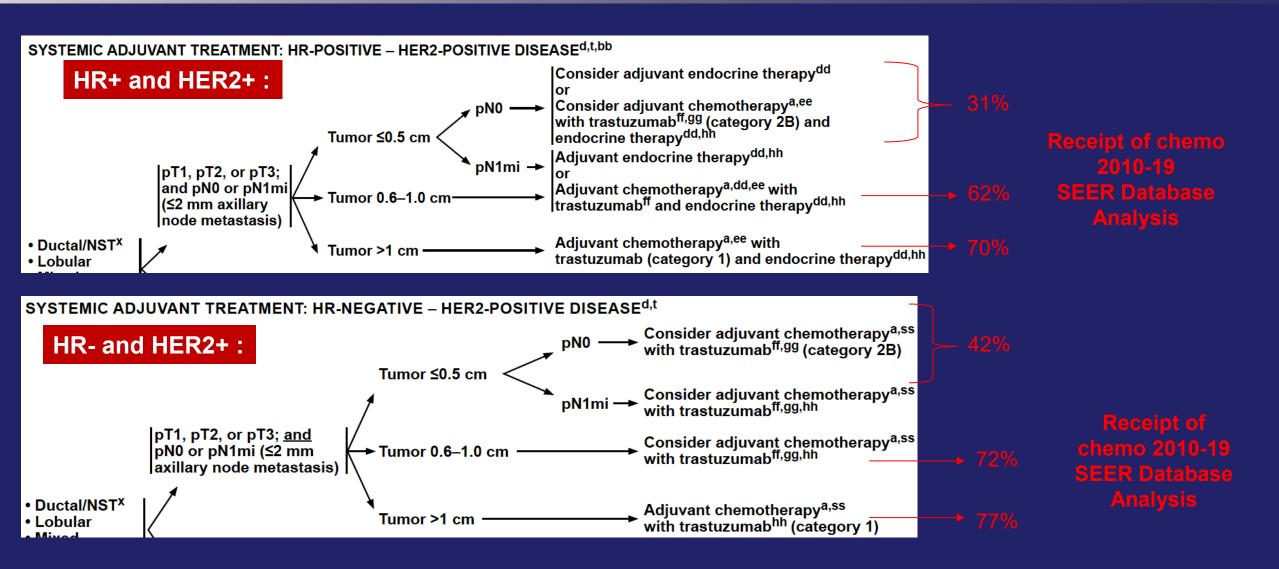


How Do I Treat HER2+ Breast Cancer

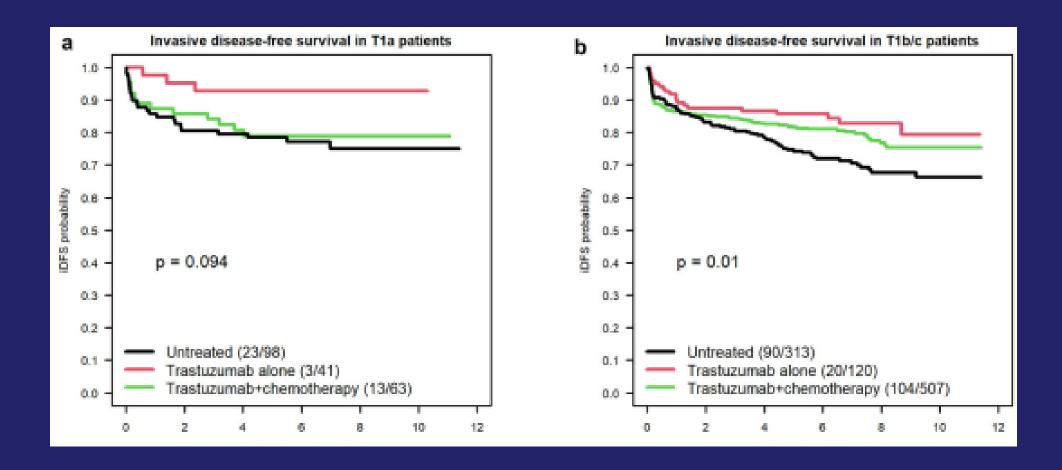
Sara Hurvitz, MD

Professor of Medicine


Head, Division of Hematology/Oncology,
University of Washington School of Medicine
Senior Vice President, Clinical Research Division,
Fred Hutchinson Cancer Center

Small node negative (cT1a/T1b)

NCCN Guidelines 2024: Stage I

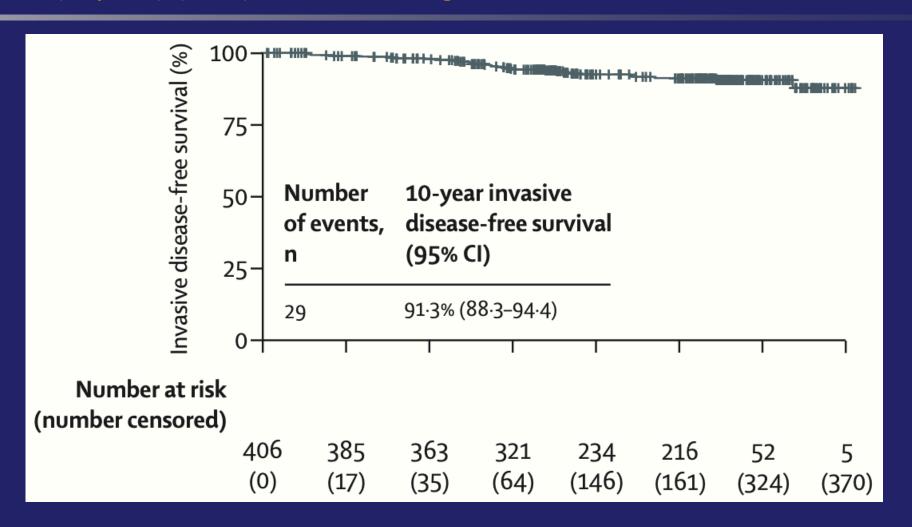


SEER 2010-19 Stage IA HER2+ 7-year Breast Cancer Specific Survival, N=12896

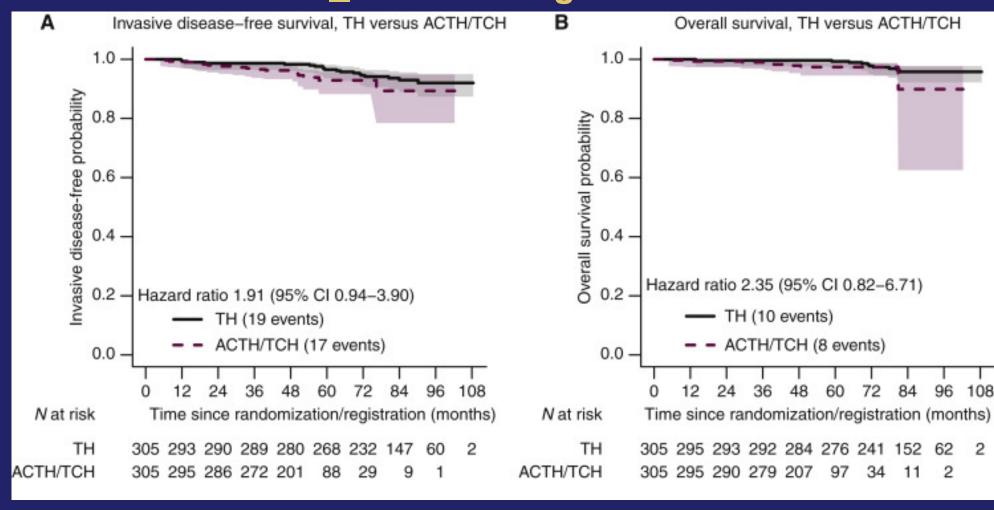
HR Positive	Overall	pT1mi	pT1a	pT1b	pT1c
74%	N-9547	N-504	N-1479	N-2441	N-5123
Yes Chemo	97.9	100.0	98.7	98.8	97.5
	(N=5625)	(N=59)	(N=453)	(N=1522)	(N-3591)
No Chemo	96.6	99.1	98.9	97.6	93.7
	(N=3922)	(N=445)	(N=1026)	(N=919)	(N=1532)
Adj HR Adj p-value	0.60 0.009	Not Reported	Not Reported	.068 0.426	0.60 0.02
HR Negative	Overall	pT1mi	pT1a	pT1b	pT1c
26%	N-3349	N-492	N-730	N-712	N-1415
Yes Chemo	96.3	100.0	97.2	97.4	95.4
	(N=1976)	(N=69)	(N=303)	(N=514)	(N-1090)
No Chemo	96.0	97.8	97.7	96.5	91.0
	(N=1373)	(N=423)	(N=427)	(N=198)	(N=325)
Adj HR Adj p-value	0.70 0.19	Not Reported	Not Reported	Not Reported	0.61 0.137

Waks A, et al. *Cancer*. 2025;131:e 35729

Outcomes T1a-b HER2+ 2010-21 Multi-Institutional Retrospective Analysis ASCO LinQ Database


Receipt of chemo was not randomized thus confounding variables may bias results, affecting the observed differences

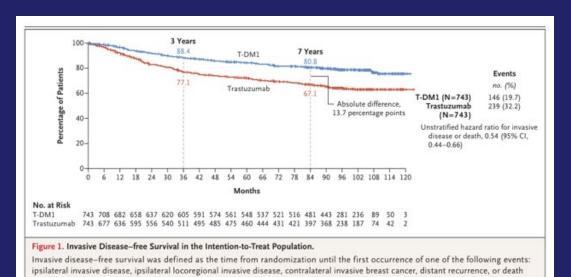
10-year Analysis of Phase II Trial of Adjuvant Paclitaxel (weekly x 12) and Trastuzumab (1-year) (APT) for Node-Neg, HER2+


Note:

2/3 HR+; 19% T1a, 31% T1b; 42% T1c

10-year RFI (excludes death from non-BC/contralateral BC) 96.3%

FDA Analysis of 5 RCTs Propensity Score Matching to Compare iDFS of APT with ACTH/TCH in T<3.0 Node Negative BC

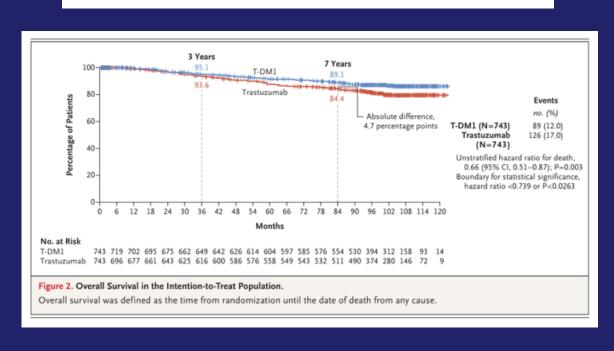

How Do I Treat Small node negative (cT1a/T1b) HER2+?

Weekly paclitaxel x 12 plus trastuzumab x 1 year

How Do I Treat ≥cT1c or Clinically Node Positive Tumors?

Neoadjuvant Setting is Not Just a Research Tool Acting on residual disease has long term impact in HER2+ BC

KATHERINE TRIAL (8.4 years follow uP)



Neoadjuvant treatment also reduces amount of surgery (mastectomy, axillary lymph node dissection)

ORIGINAL ARTICLE

Survival with Trastuzumab Emtansine

in Residual HER2-Positive Breast Cancer

from any cause. T-DM1 denotes trastuzumab emtansine.

For a patient with clinical node negative disease that is T1, should I offer neoadjuvant therapy or upfront surgery?

What is the risk that the patient has occult node positive disease?

Nodal Status in HER2+ cN0 Disease Treated with Upfront Surgery: Two International Cohorts

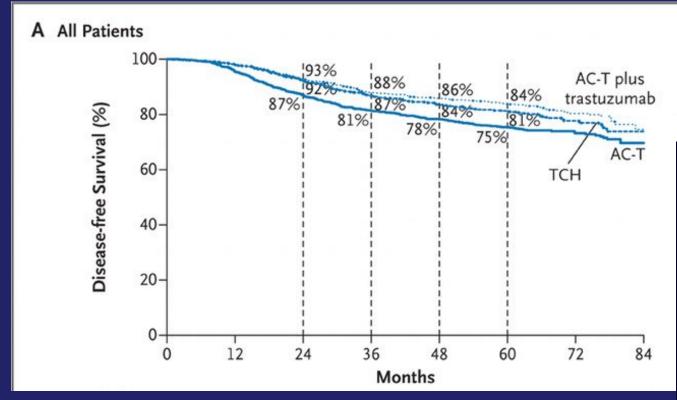
	Upfront Surgery Patients N= 368			
	Pathologic Node Positive			
Center	USA N=368	Spain N=119		
cT Category Total 1mic	73/368 (19.8%) 6/48 (10.4%) 3/26 (11.5%)	25/119 (21%) 0/2		
1a 1b 1c	7/87 (8.0%) 38/154 (24.7%)	1/8 (12.5%) 3/34 (8.8%) 16/56 (28.6%)		

- 20% of patients with clinical node negative disease had node positive disease at surgery
- 26% of patients with cT1cN0 tumors had pN+ disease at surgery
- 10% of pts with T1mi/a/b had pN+ disease

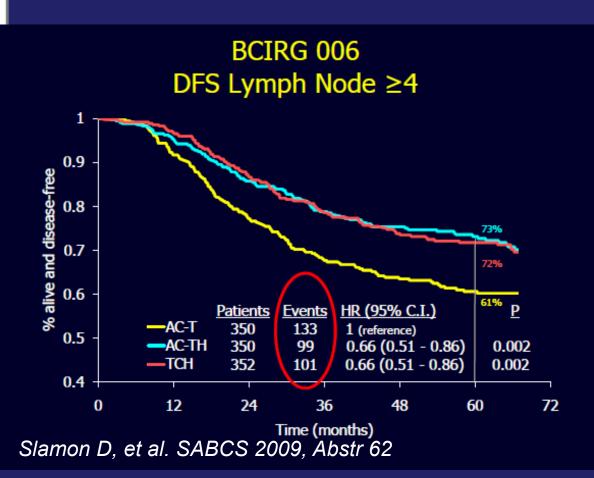
Nodal Status in HER2+ cN0 Disease Treated with Upfront Surgery: Two International Cohorts

	Upfront Surgery Patients		Neoadjuvant Tx		
	Pathologic Node Positive		Pathologic Node Positive		
Center	USA N=368	Spain N=119	USA N=211	Spain N=173	
cT Category Total 1mic 1a 1b 1c	73/368 (19.8%) 6/48 (10.4%) 3/26 (11.5%) 7/87 (8.0%) 38/154 (24.7%)	25/119 (21%) 0/2 1/8 (12.5%) 3/34 (8.8%) 16/56 (28.6%)	26/211 (12.3%) 1/7 (14.3%) 5/30 (16.7%)	18/173 (10.4%) 0/4 9/68 (13.2%)	

How Do I Treat ≥cT1c or Clinically Node Positive Tumors

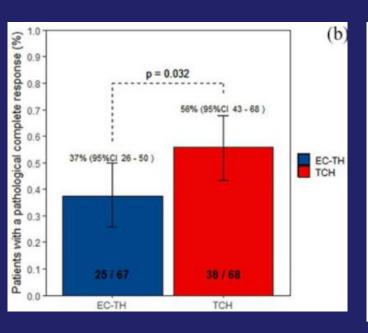

Neoadjuvant Therapy

What systemic therapy should I use for LN+ or T1c+ Disease?


Anthracyclines?

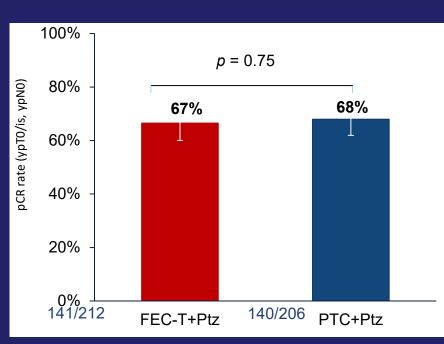
Platinum vs No-platinum?

BCIRG006: TCH vs AC-TH Regimen

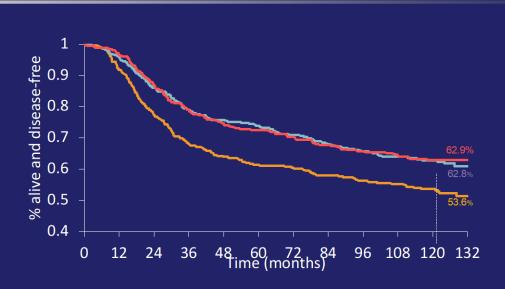


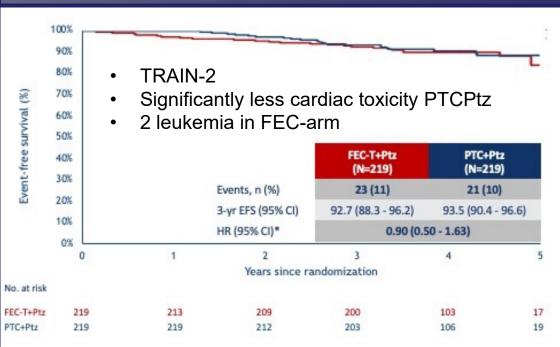
Slamon D et al. N Engl J Med 2011;365:1273-1283.

Neoadjuvant Trials of Anthracycline vs Non-Anthracycline Based Regimens in HER2+ BC

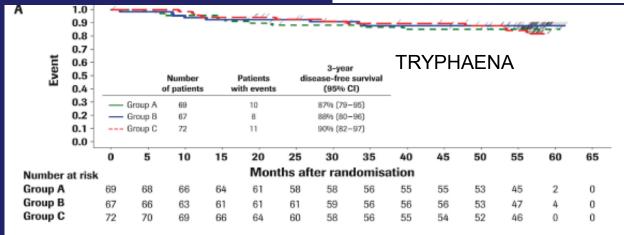

NeoCARH

TRYPHAENA


TRAIN-2



ypT0/is ypN0 FECHP-THP < TCHP


Disease Free/Event Free Survival Anthracycline vs. Non-Anthracycline Based Regimens for HER2+

BCIRG 006 DFS Lymph Node ≥4

Slamon D et al. Ca Research 2015;76: Abstr S5-04

Van der Voort A, et al. JAMA Oncol. 2021;7:978-84.

Cardiomyopathy in HER2+ Disease

- Rate of CHF or cardiac death in trastuzumab-treated patients at 6-7 years up to 4.0%
- Proportion who could not receive trastuzumab after AC due to cardiomyopathy, up to 7%
- Occult heart damage difficult to gauge; studies only measured LVEF in asymptomatic pts 18-21 mos
 - B31: 15.5% (N=147) in total stopped trastuzumab early due to cardiac related issues
 - N9831: Up to 24% in ACTH arm had LVEF drop below normal

What systemic therapy should I use for LN+ or T1c+ Disease?

Anthracycline Free, Taxane Based Neoadjuvant Therapy

pCR for Neoadjuvant Taxane/Carbo-Based HER2-Targeted Therapy

Regimen/ Study		pCR
TCH x 6 TRIO B07/Hurvitz SA, et al. Nat Commun. 2020;11:5824	34	47%
TCH x 6 neoCARH/Gao HF, et al. Ther Adv Med Oncol. 2021	68	56%
TCHP x 6 TRYPHAENA/Schneeweiss, et al. Ar	75	64%
TCH x 6 TRIO B07/Hurvitz SA, et al. Nat Commun. 2020;11:5824 TCH x 6 neoCARH/Gao HF, et al. Ther Adv Med Oncol. 2021 TCHP x 6 TRYPHAENA/Schneeweiss, et al. Ar TCHP x 6 KRISTINE-TRIO-02 Cal. Lancet Oncol 2018 TCHP x 4 (ir.	221	56%
TCHP x 4 (ip 'NSABP B, et al. Cancer Res 2016, SABCS S3-06	155	41% HR+ only
Paclitaxel/Larbo/Trastuzumab/Pertuzumab x 9 TRAIN-2/van Ramshorst et al. Lancet Oncol 2018	206	68%
TCHP x 6 PHERGAIN/Perez-Garcia, et al. Lancet 2021	71	58%

Select Neoadjuvant Non-Anthracycline Taxane + HP Regimens

Regimen/ Study	N	pCR
Docetaxel + Trastuzumab/Pertuzumab (HP) x 4 cycles NeoSphere	107	39.3%
Docetaxel + HP x 6 cycles PREDIX HER2	99	45.5%
Paclitaxel x 12 weeks + HP WSG-ADAPT-HR-/HER2+	42	90.5%
Paclitaxel x 12 weeks + HP Triple Positive-II (TPII)	107	56.9%
Paclitaxel x 12 weeks + HP DAPHNE	98	57%

^{1.} NeoSphere: Gianni L, et al. *Lancet Oncol*. 2012;13:25-32; Gianni L, et al. *Lancet Oncol*. 2016;17:791–800. 2. ADAPT HR-: Nitz U, etl a. *Annals Oncol*. 2017. 3; 3. Triple Positive-II: Gluz O, et al. *JAMA Oncol*. 2023; 4. PREDIX HER2: Hatschek T, et al. *JAMA Oncol*. 2021;7:1360-1367. 5. DAPHNE: Waks AG, et al. npj Breast Cancer 2022.

neoCARHP Study Design (NCT04858529)

Aged ≥18, untreated, staged II-III, HER2positive breast cancer

Stratification

- Hormone status
- Nodal status
- Primary endpoint: pCR (ypT0/is ypN0)
- Secondary endpoints: Safety, clinical response during neoadjuvant therapy, the percentage of patients who underwent breast-conserving surgery, EFS, DFS, OS

THP×6 Q3W (n=387) (Investigator-selected taxane* + Trastuzumab IV 6 mg/kg, loading dose 8 mg/kg + Pertuzumab IV 420 mg, loading dose 840mg)

TCbHP×6 Q3W (n=387)
(Investigator-selected taxane*
+ Carboplatin IV AUC 6
mg/mL/min + Trastuzumab IV 6
mg/kg, loading dose 8 mg/kg +
Pertuzumab IV 420 mg,
loading dose 840mg)

* Docetaxel, Paclitaxel or Nab-paclitaxel

Potential Limitation: All taxane given q3 weeks. Studies have indicated that for paclitaxel and nab-paclitaxel, weekly dosing may be superior

Green MC. J Clin Oncol 2005;23. Sparano J. NEJM 2008;358:1663-71. Seidman A. J Clin Oncol. 2008;26:1642-9. Martin M. Breast Cancer Res 2015;17.

Surgery

R (1:1)

N = 774

Baseline Patients Characteristics

	THP (n=382)	TCbHP (n=384)
Age (median [IQR], years)	52 (45-58)	51 (44-56)
Menopausal status, n (%)		
Premenopausal	191 (50.0%)	200 (52.1%)
Postmenopausal	191 (50.0%)	184 (47.9%)
T stage, n (%)		
T1-2	311 (81.4%)	302 (78.6%)
T3-4	7 i (18.6%)	82 (21.4%)
Nodal status, n (%)		
Negative	137 (35.9%)	138 (35.9%)
Positive	245 (64.1%)	246 (64.1%)
Disease stage, n (%)		
Stage II	294 (77.0%)	275 (71.6%)
Stage III	88 (23.0%)	109 (28.4%)
Histological type, n (%)		
Ductal	375 (98.2%)	376 (97.9%)
Lobular	1 (0.3%)	2 (0.5%)
Others	6 (1.6%)	6 (1.6%)

	THP (n=382)	TCbHP (n=384)
Hormone receptor status, n (%)		
ER-negative andPR-negative	142 (37.2%)	144 (37.5%)
ER-positive and/orPR-positive	240 (62.8%)	240 (62.5%)
HER2 status, n (%)		
Immunohistochemistry 3+	338 (88.5%)	348 (90.6%)
Immunohistochemistry 2+ and ISH-positive	44 (11.5%)	36 (9.4%)
Ki67, n (%)		
≤30%	163 (42.7%)	172 (44.8%)
>30%	219 (57.3%)	212 (55.2%)
Taxane therapy, n (%)		
Nab-paclitaxěl ^{Q3 wk}	170 (44.5%)	171 (44.5%)
Docetaxel	137 (35.9%)	141 (36.7%)
Paclitaxel ^{Q3 wk}	75 (19.6%)	72 (18.8%)

^{*}nab-paclitaxel not FDA approved for this indication

Pathologic Complete Response No different by adding carboplatin

Trial	pCR Overall	pCR in ER-positive	pCR in ER-negative
neoCARHP-TCHPx6	66%	59%	78%
neoCARHP-THPx6	64%	56%	78%

Safety:

- Increased grade 3/4 adverse events in TCHP arm: neutropenia (16.4% vs 6.8%), febrile neutropenia (2.6% vs. 1.3%), thrombocytopenia (4.2% vs. 0.3%), anemia (6.6% vs. 2.1%)
- Higher all grade nausea, vomiting, increased creatinine

HELEN-006 Phase 3 RCT:

Population Enrolled:

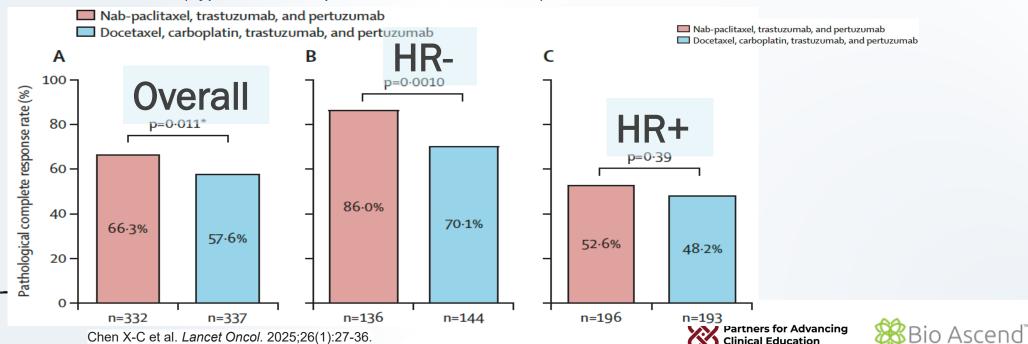
64% stage II 36% stage III 73% node-positive

Atlanta

Stage II-III HER2+ BC Age 18-70 yo

Docetaxel/carbo/HP x18 weeks

Weekly nab-paclitaxel/HP x18 weeks


Clinical Education

Primary Endpoint: pCR (ypT0/is N0)

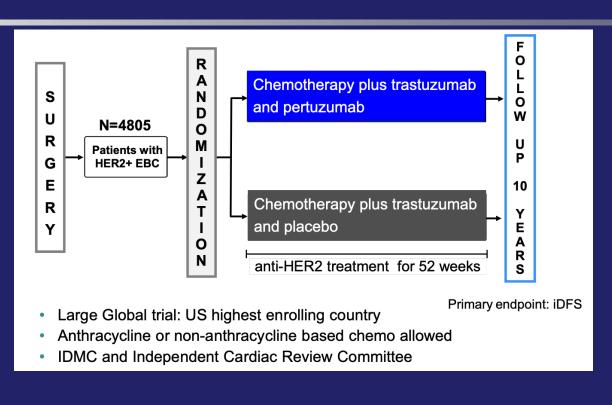
Superiority design

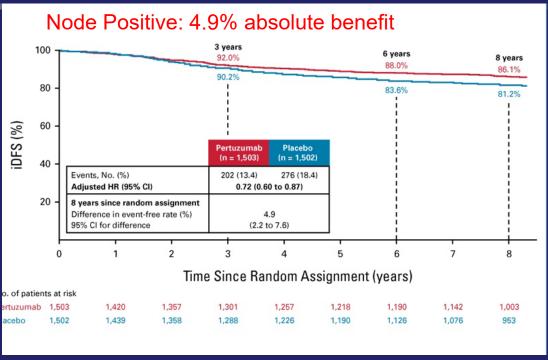
Chen X-C et al. Lancet Oncol. 2025;26(1):27-36.

(hypothesis: nab-paclitaxel > docetaxel arm)

Pathology Complete Response across trials

		Overall	HR-	HR+
Taxane-HP x12 wks	Tax-HP (CompassHER2-pCR)	44%	64%	33%
	THP (DAPHNe)	57%	85%	42%
	THP (WSG-TP-II)	-	-	56%
	DHP (NeoSphere)	45%	-	-
Taxane-HP x18 wks	nab-THP (HELEN006)	66%	86%	53%
	Tax-HP (NeoCARHP)	64%	78%	56%
Taxane-Cb-HP x18 wks	DCbHP (TRYPHAENA)	52%	-	-
	DCbHP (KRISTINE)	56%	73%	44%
	DCbHP (HELEN006)	58%	70%	48%
	Tax-CbHP (NeoCARHP)	66%	78%	59%

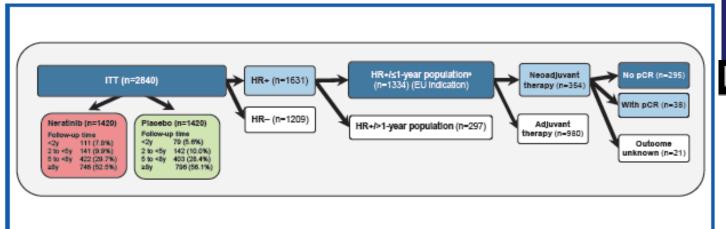


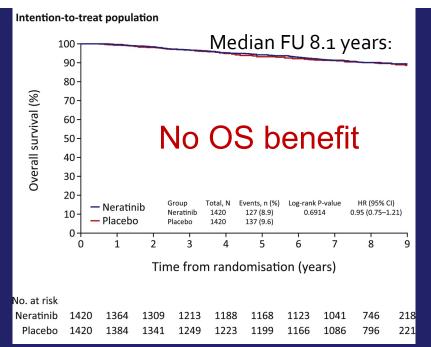

When Do I Omit Carboplatin?

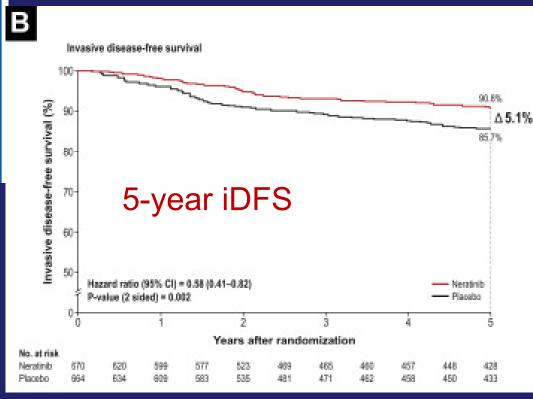
Stage II Disease, will consider omission

How Do I Treat Very High Risk Disease (Node Positive, Residual Disease)

APHINITY: Adjuvant Pertuzumab 8-year iDFS

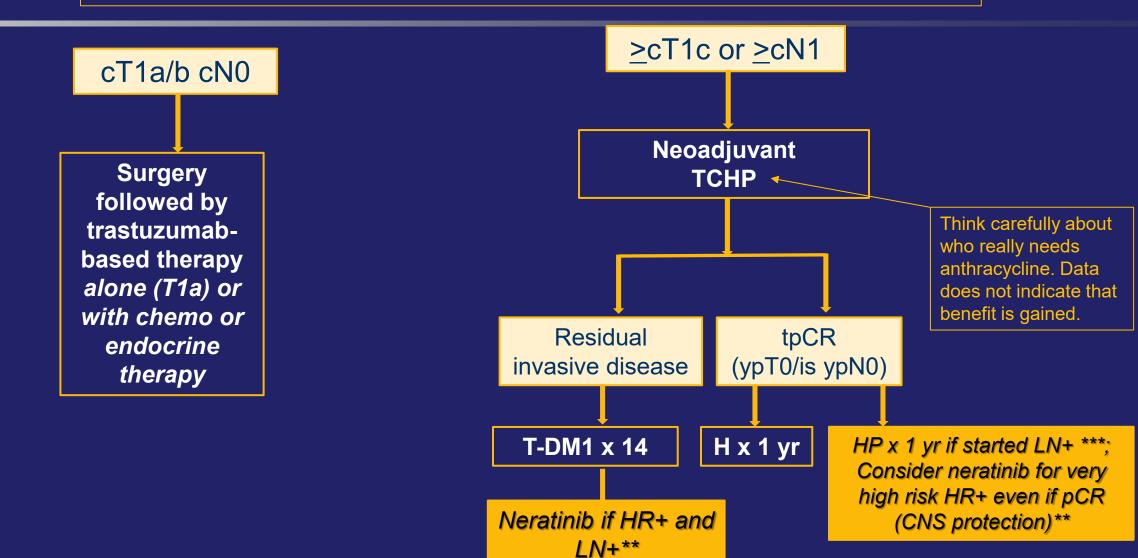



No differential benefit based on HR status


New Data 2025: OS difference in the ITT population with 11.3 yrs median f/u

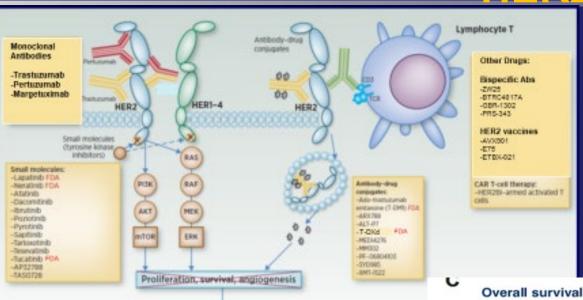
- HR 0.83 (△1.8%) in ITT
- HR 0.79 (\triangle 2.7%) in node-positive
- Loibl S et al. *ESMO Breast*. 2025.

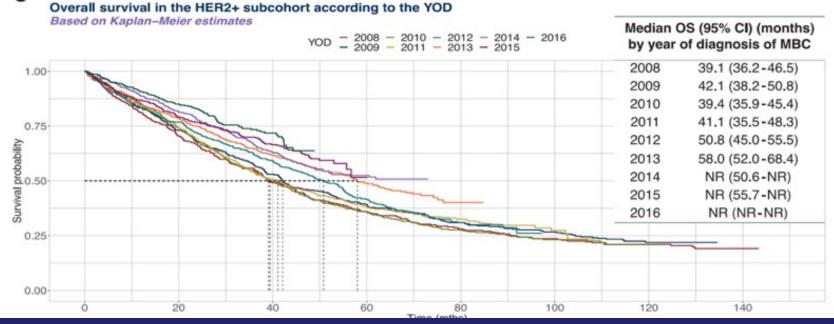
Extended Adjuvant HER2-Targeted Therapy ExteNET: Neratinib



*Benefit restricted to Hormone Receptor Positive

KEY TAKEAWAY: Current Strategy for HER2-Positive Stage I-III

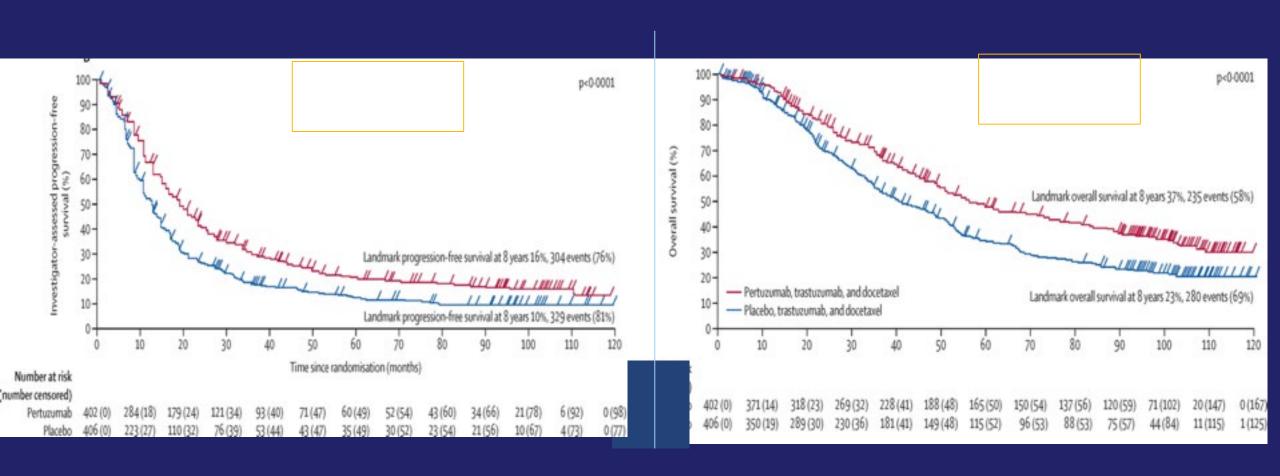



^{**}neratinib not tested after T-DM1 or pertuzumab in EXTENET

^{***}adjuvant pertuzumab not tested after neoadjuvant pertuzumab in APHIINTY

How Do I Treat Stage IV Disease?

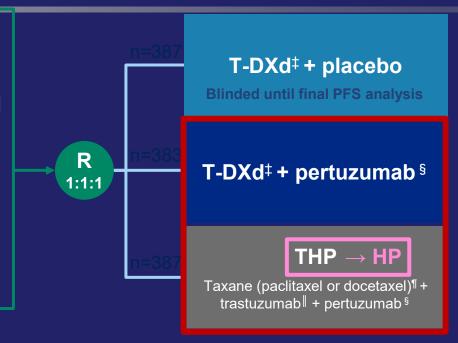
An Expanding Armementarium Is Improving Outcomes for HER2+ Disease



Bernstam FM, Clin Cancer Res 2019;25:2033 Grinda T, et al. ESMO Open. 2021;6:100114

Cell death

CLEOPATRA End-of-Study Results: Adding Pertuzumab to Taxane + Trastuzumab Improves PFS and OS


(median follow-up ~100 months)

DESTINY-Breast09 – 1L HER2+ mBC

Eligibility criteria

- HER2+ a/mBC
- Asymptomatic/inactive brain mets allowed
- DFI >6 mo from last chemotherapy or HER2-targeted therapy in neoadjuvant/ adjuvant setting
- One prior line of ET for mBC permitted
- No other prior systemic treatment for mBC[†]

Endpoints

Primary

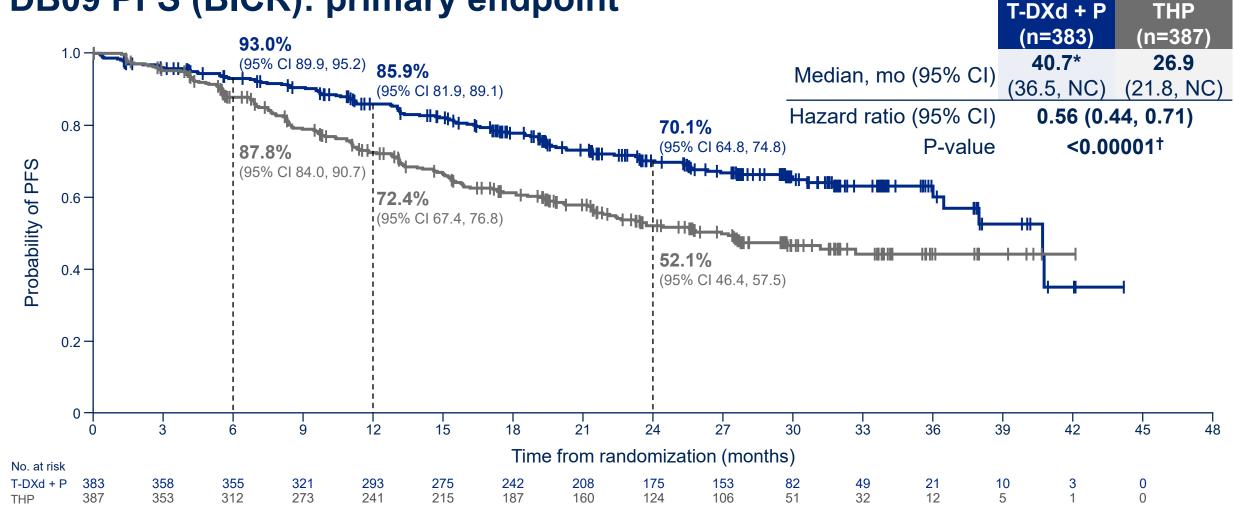
PFS (BICR)

Key secondary

OS

Secondary

- PFS (INV)
- ORR (BICR/INV)
- DOR (BICR/INV)
- PFS2 (INV)
- Safety and tolerability


Key participant characteristics:

- 51% de novo mBC; 54% HR+; ~82% IHC 3+
- Of those initially diagnosed with ESB: ~ 80-85% received (neo)adjuvant chemo; ~ 58% trastuzumab; ~15% pertuzumab; 2% T-DM1
- Concurrent use of ET in HR+: 13.5% in T-DXd + P arm; 38.3% in THP arm

THP

DB09 PFS (BICR): primary endpoint

Statistically significant and clinically meaningful PFS benefit with T-DXd + P (median Δ 13.8 mo)

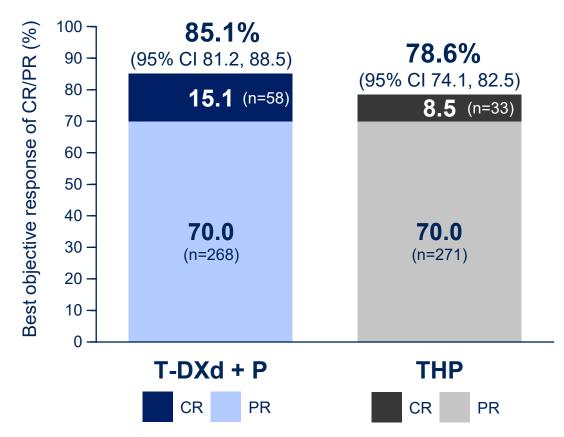
*Median PFS estimate for T-DXd + P is likely to change at updated analysis; †stratified log-rank test. A P-value of <0.00043 was required for interim analysis superiority BICR, blinded independent central review; CI, confidence interval; mo, months; (m)PFS, (median) progression-free survival; NC, not calculable; P, pertuzumab; T-DXd, trastuzumab deruxtecan; THP, taxane + trastuzumab + pertuzumab

DB09-PFS (BICR): subgroup analyses

	No. of events / r	No. of events / no. of patients		iths (95% CI)		
	T-DXd + P	THP	T-DXd + P	THP	Hazard ratio (95% CI)
Prior treatment status					1	
De novo	52/200	85/200	NC (36.5, NC)	31.2 (23.5, NC)	⊢	0.49 (0.35, 0.70)
Recurrent	66/183	87/187	38.0 (26.9, NC)	22.5 (18.1, NC)		0.63 (0.46, 0.87)
HR status						
Positive	65/207	87/209	38.0 (36.0, NC)	27.7 (22.4, NC)	H	0.61 (0.44, 0.84)
Negative	53/176	85/178	40.7 (40.7, NC)	22.6 (17.3, 32.7)	⊢	0.52 (0.37, 0.73)
PIK3CA mutation status						
Detected	41/116	64/121	36.0 (29.7, NC)	18.1 (15.1, 25.6)		0.52 (0.35, 0.77)
Not detected	76/266	108/266	40.7 (38.0, NC)	32.7 (24.4, NC)		0.57 (0.43, 0.77)
Age at randomization					H O H	
<oo p="" years<=""></oo>	90/315	139/315	,	27.4 (22.4, NC)		U.5U (U.38, U.05)
>65 years	28/68	33/72	27.6 (14.0, NC)	21.5 (13.0, NC)		0.02 (0.55, 1.51)
Geographical region					⊢	
Asia	62/188	87/191	40.7 (36.5, NC)	,	⊢	0.60 (0.43, 0.83)
Western Europe and North America	27/87	31/78	36.0 (30.6, NC)	31.2 (15.8, NC)		0.60 (0.35, 1.01)
Rest of World	29/108	54/118	NC (38.0, NC)	24.4 (14.8, NC)		0.48 (0.30, 0.76)
Brain metastases at baseline					——	
Present	10/25	15/22	31.8 (18.5, NC)	9.5 (5.6, 13.3)	⊢	0.30 (0.12, 0.68)
Not present	108/358	157/365	40.7 (36.5, NC)	27.6 (22.6, NC)		0.58 (0.45, 0.74)
Prior exposure to anti-HER2 therapies					——	
Yes	39/115	51/112	38.0 (26.9, NC)	,	⊢	0.55 (0.36, 0.83)
No	79/268	121/275	40.7 (36.5, NC)	27.6 (22.5, NC)		0.56 (0.42, 0.74)
Prior exposure to pertuzumab						
Yes	5/31	12/26	40.8 (25.4, NC)		<u> </u>	NC
No	113/352	160/361	40.7 (36.0, NC)	27.4 (22.4, NC)		0.61 (0.48, 0.77)
Size of circle is proportional to the number of events BICR, blinded independent central review; CL confidence interval: HEP2, human poidormal					Favors T-DXd + P Favors TH	P

BICR, blinded independent central review; CI, confidence interval; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; NC, not calculable; P, pertuzumab; (m)PFS, (median) progression-free survival; T-DXd, trastuzumab deruxtecan; THP, taxane + trastuzumab + pertuzumab

PFS benefit with T-DXd + P vs THP was consistently observed across prespecified subgroups, including stratification factors



DB09 ORR and DOR (BICR)

Confirmed ORR*

	T-DXd + P (n=383)	THP (n=387)
Median DOR, mo (95% CI)	39.2 (35.1, NC)	26.4 (22.3, NC)
Remaining in response at 24 mo (%)	73.3	54.9
Stable disease, n (%)	38 (9.9)	56 (14.5)

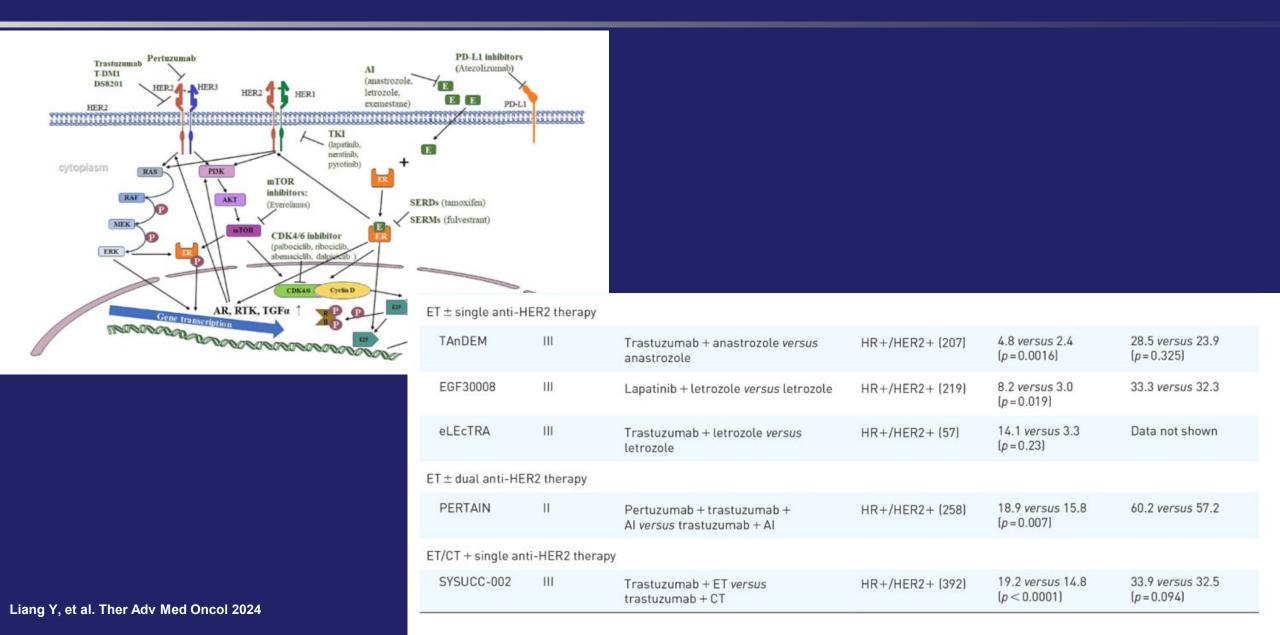
Response rates were greater with T-DXd + P vs THP and were durable

*Based on RECIST v1.1; response required confirmation after 4 weeks

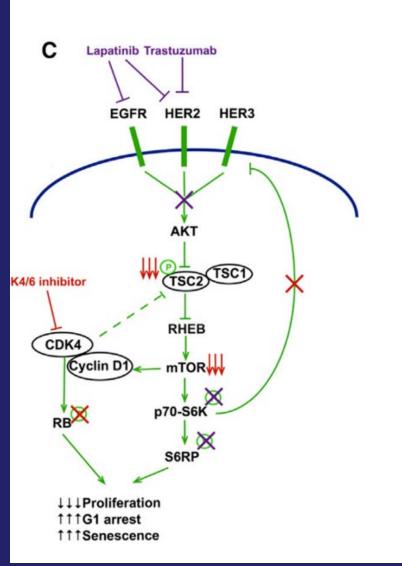
BICR, blinded independent central review; CI, confidence interval; CR, complete response; DOR, duration of response; mo, months; NC, not calculable; ORR, objective response rate; P, pertuzumab; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumours; T-DXd, trastuzumab deruxtecan; THP, taxane + trastuzumab + pertuzumab

DB09: T-DXd + Pertuzumab

- Median Progression Free Survival of 40.7 mos is historic!
 - THP in CLEOPATRA median PFS only 18.6 mos
 - THP in this study notably longer at 26 mos (endocrine therapy used during maintenance phase)
 - Likely will receive approval
 - But....



Is Frontline T-DXd/Pertuzumab necessary for everyone?


- Overall survival benefit not yet seen
- Unclear whether pertuzumab is adding anything to the T-DXd
- Very few patients crossed over so do not know if harming patients by waiting for 2nd line for T-DXd
- 16% of patients on CLEOPATRA were progression free at 8 years. Can we prospectively select those pts and treat them with THP—HP maintenance?
- Studies ongoing (DEMETHER) to evaluate induction T-DXd with maintenance HP strategy (Cortés J, et al. SABCS 2024; P5-03-11)

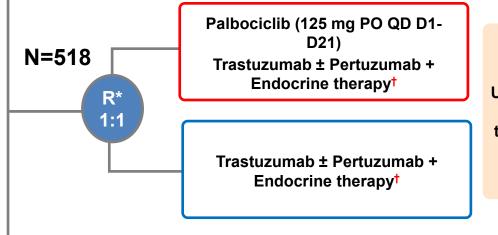
Focus on HER2+ HR+ Metastatic Disease

Crosstalk between HER2 and ER pathways

Co-treating cells with a CDK4/6i and anti-HER2 therapy is synergistic

Inhibiting both CDK4/6 and HER2 maximizes suppression of TSC2 phosphorylation, leading to a more complete shutdown of S6RP phosphorylation and inhibition of Rb, reducing cellular proliferation.

AFT-38 PATINA Study Design



Pre-Study

- Histologically confirmed HR+HER2+ MBC
- No prior treatment in the advanced setting beyond induction treatment
- 6-8 cycles of treatment, including trastuzumab ± pertuzumab and taxane

Key eligibility criteria

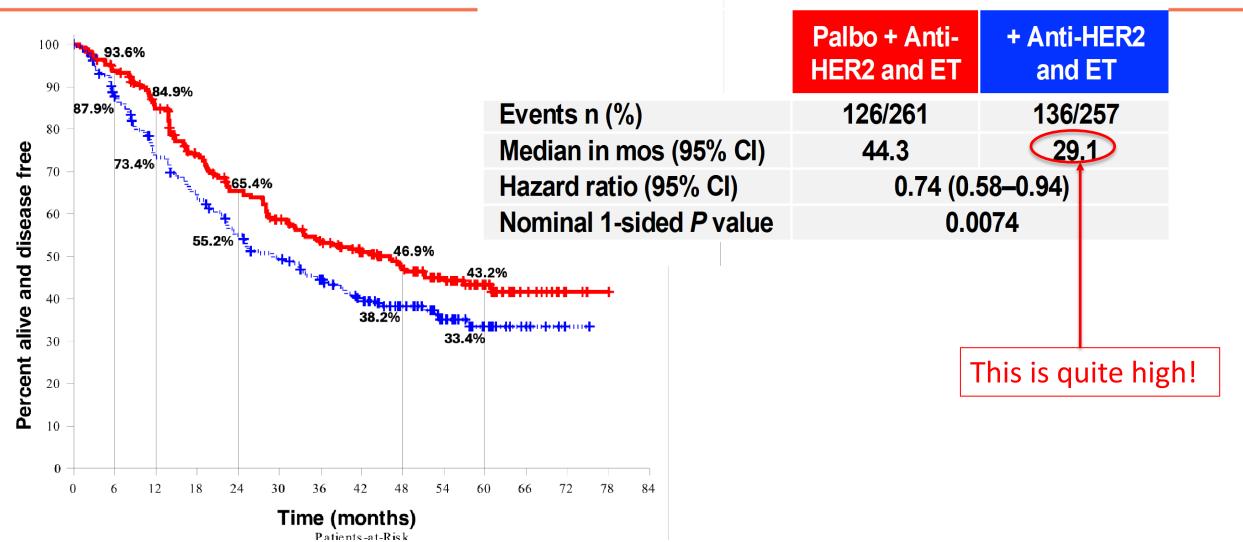
 Completion of induction chemotherapy and no evidence of disease progression (i.e., CR, PR, or SD)

Until PD or toxicity SURVIVAL FOLLOW-UP

Stratification Factors

- Pertuzumab Use (Yes vs. No)
 - The non-pertuzumab option is limited to up to 20% of the population
- Prior anti-HER2 therapy in the (neo)adjuvant setting (Yes vs. No, including denovo)*
- Response to induction therapy (CR or PR vs. SD) by investigator assessment*
- Type of endocrine therapy (Fulvestrant vs. AI)

97% used pertuzumab


Prior trastuzumab 71%

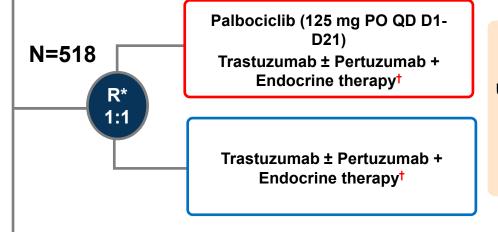
ORR 69%

Metzger O et al. SABCS 2024

PATINA Investigator-Assessed PFS

Metzger O et al. SABCS 2024

AFT-38 PATINA



Pre-Study

- Histologically confirmed HR+HER2+ MBC
- No prior treatment in the advanced setting beyond induction treatment
- 6-8 cycles of treatment, including trastuzumab ± pertuzumab and taxane

Key eligibility criteria

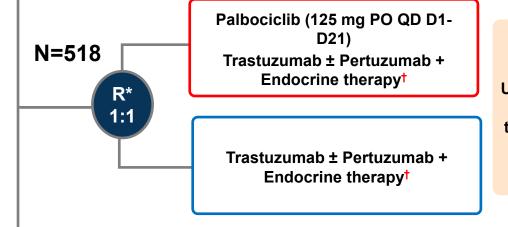
Completion of induction chemotherapy and no evidence of disease progression (i.e., CR, PR, or SD)

Until PD or toxicity

SURVIVAL FOLLOW-LI

Start of Study AFTER Induction
Patients who experienced disease progression
during induction or screening were not included
in study. Patients with *de novo* resistance were
eliminated

AFT-38 PATINA

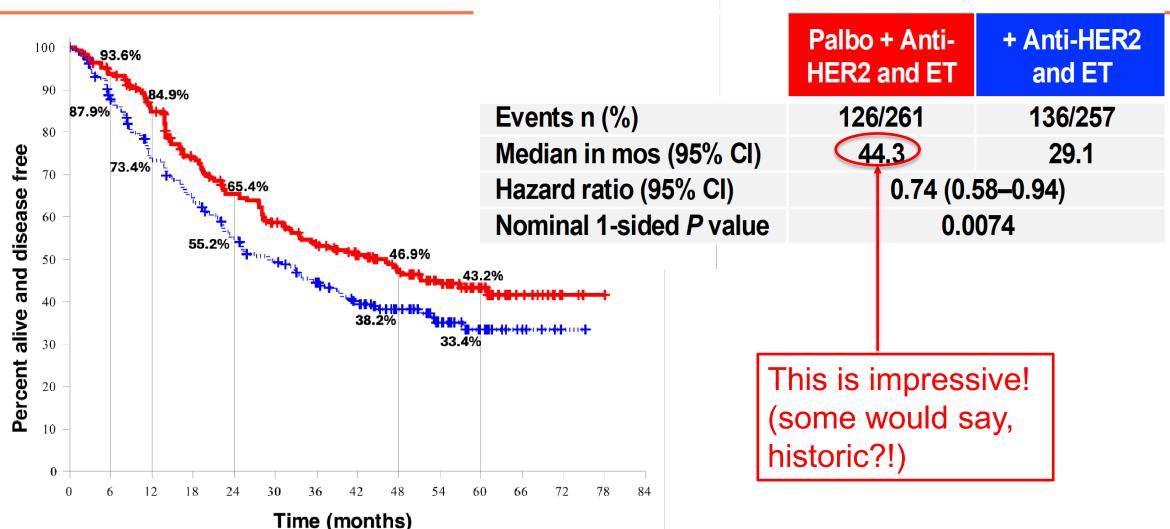


Pre-Study

- Histologically confirmed HR+HER2+ MBC
- No prior treatment in the advanced setting beyond induction treatment
- 6-8 cycles of treatment, including trastuzumab ± pertuzumab and taxane

Key eligibility criteria

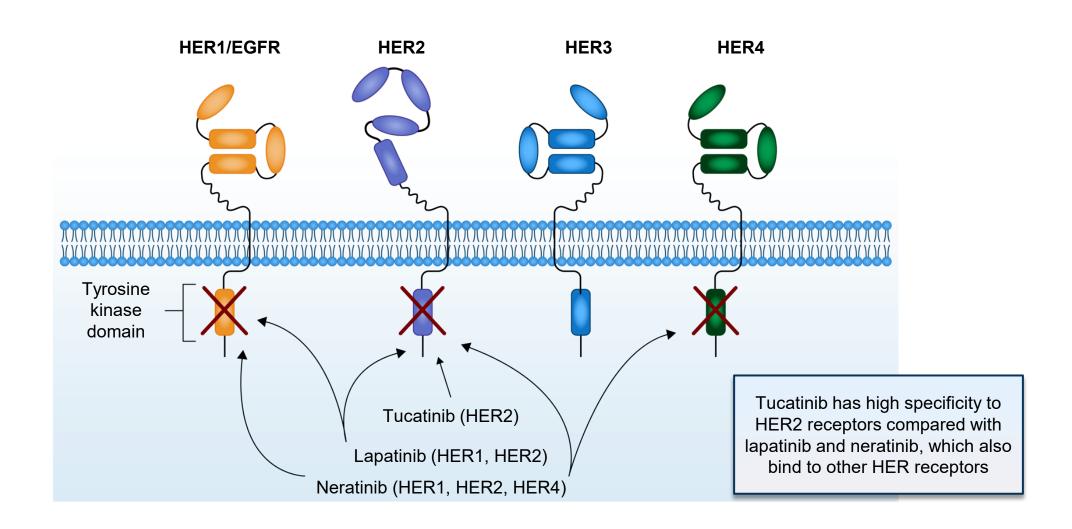
■ Completion of induction chemotherapy and no evidence of disease progression (i.e., CR, PR, or SD)


Until PD or toxicity SURVIVAL FOLLOW-UP

By eliminating the 25% of patients with resistant disease, likely enriching the enrolled patients with luminal subtype

Metzger O et al. SABCS 2024

Investigator-Assessed PFS

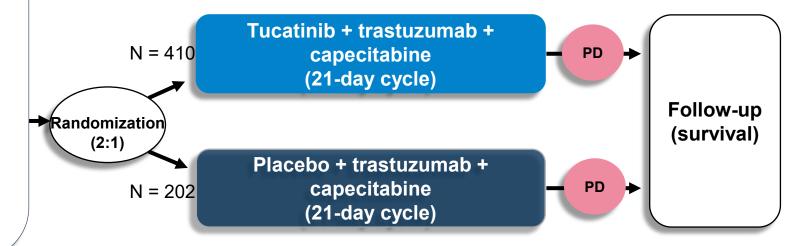


Metzger O et al. SABCS 2024

Patients-at-Risk

HER2-Targeted Tyrosine Kinase Inhibitors^{1,2}

HER2CLIMB


Tucatinib + Trastuzumab + Capecitabine vs Placebo + Trastuzumab + Capecitabine

Inclusion criteria

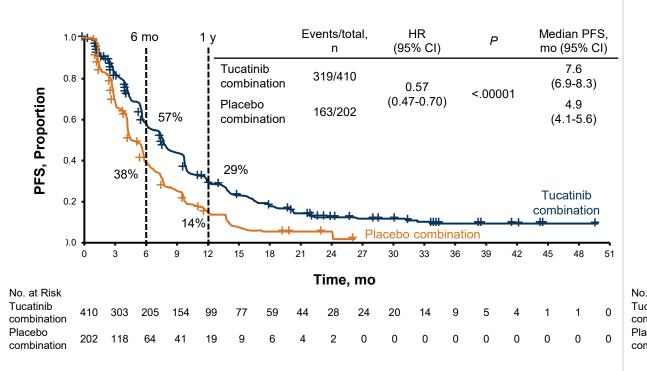
- HER2+ metastatic breast cancer
- Prior treatment with trastuzumab, pertuzumab, and T-DM1
- ECOG 0, 1
- Brain MRI at baseline
 - No evidence of brain metastases, or
 - Untreated, previously treated stable, or previously treated progressing, brain metastases not needing immediate local therapy

Stratification variables

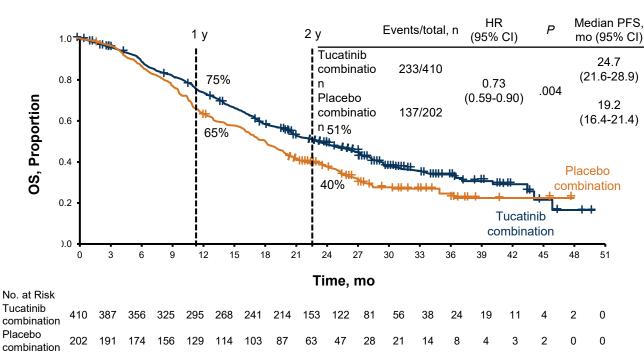
- Presence of brain metastases (yes/no)
- ECOG status (0 or 1)
- Region of the world (US or Canada or rest of world)

Endpoints

- Primary: PFS (first 480 patients randomized)
- Secondary: OS (total population), PFS among patients with brain metastases, ORR


Notable baseline characteristic: 48% of patients had CNS metastases

Abbreviations: CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; HER2, human epidermal growth factor receptor 2; MRI, magnetic resonance imaging; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival.


Murthy R, et al. N Engl J Med. 2020;382:597-609.

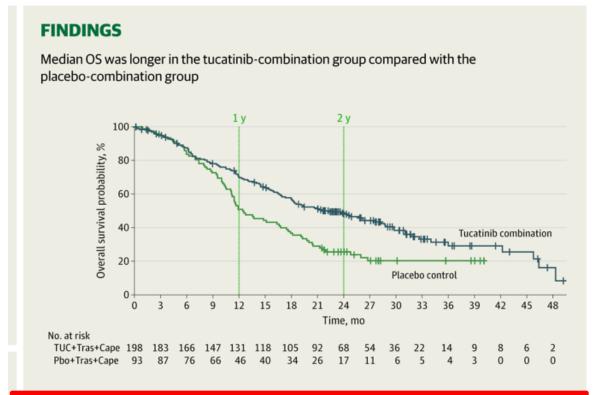
HER2CLIMB: PFS and OS¹ with tucatinib/capecitabine/trastuzumab

OS

^{1.} Curigliano G et al. Ann Oncol. 2022;33:321-329.

HER2+ Brain Metastases

Discussion: Should We Screen Asymptomatic Patients With HER2+ MBC for BMs?



"There are insufficient data to recommend for or against performing routine magnetic resonance imaging to screen for brain metastases; clinicians should have a low threshold for MRI of the brain because of the high incidence of brain metastases among patients with HER2+ advanced breast cancer."

"Screening at diagnosis is potentially justified in HER2+ and TN MBC (EANO: IV, n/a; ESMO IV, B). This approach will result in a higher rate of detection of asymptomatic BM."

Outcomes in HER2CLIMB in patients with CNS metastases

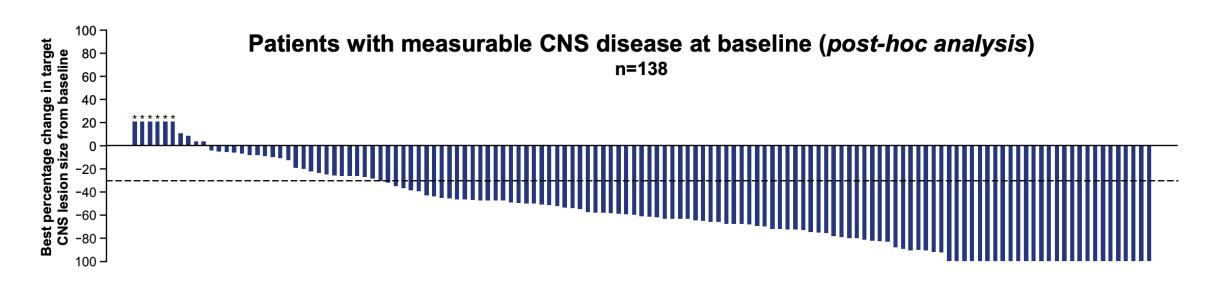
Median OS:

21.6 mo (95% CI, 18.1-28.5 mo) in tucatinib-combination group **12.5 mo** (95% CI, 11.2-16.9 mo) in placebo-combination group

Table. Confirmed Intracranial Responses in Patients With Active Brain Metastases and Measurable Intracranial Lesions at Baseline

Intracranial response	Tucatinib combination (n = 55) ^a	Placebo combination (n = 20) ^b
Patients with objective response of confirmed complete response or partial response, No.	26	4
Confirmed ORR-IC, % (95% CI)	47.3 (33.7-61.2)	20.0 (5.7-43.7)
DOR-IC, median (95% CI), mo ^c	8.6 (5.5-10.3)	3.0 (3.0-10.3)

Abbreviations: DOR-IC, duration of intracranial response; ORR-IC, intracranial objective response rate.


Lin, et al. JAMA Oncol. 2023;9(2):197-205. doi:10.1001/jamaoncol.2022.5610

^a Tucatinib, trastuzumab, and capecitabine.

^b Placebo, trastuzumab, and capecitabine.

^c Calculated with the complementary log-log transformation method.

DESTINY-Breast12: T-DXd in Patients with CNS metastases Baseline BMs: CNS ORR¹

				Active BM subgroups	
Measurable CNS disease at baseline	All patients (n=138)	Stable BMs (n=77)	Active BMs (n=61)	Untreated (n=23) Post-hoc analysis	Previously treated / progressing (n=38) Post-hoc analysis
Confirmed CNS ORR, % (95% CI)	71.7 (64.2, 79.3)	79.2 (70.2, 88.3)	62.3 (50.1, 74.5)	82.6 (67.1, 98.1)	50.0 (34.1, 65.9)

T-DXd showed substantial CNS responses in the overall BMs population, including patients with stable and active BMs

Dashed line indicates a 30% decrease in target tumor size (PR). *Imputed values: a value of +20% was imputed if best percentage change could not be calculated because of missing data if: a patient had a new lesion or progression of non-target lesions or target lesions, or had withdrawn because of PD and had no evaluable target lesion data before or at PD.

1. Lin N et al. ESMO 2024. Abstract LBA18.

Summary: Standard for HER2+ MBC

HR-Positive or -Negative and HER2-Positive ^m				
See BINV-Q (1) for Considerations for systemic HER2-targeted therapy.				
Setting	Regimen			
First Line ⁿ	Pertuzumab + trastuzumab + docetaxel (category 1, preferred)			
	Pertuzumab + trastuzumab + paclitaxel (preferred)			
Second Line ^o	Fam-trastuzumab deruxtecan-nxki ⁿ (category 1, preferred)			
Third Line	Tucatinib + trastuzumab + capecitabine ^o (category 1, preferred)			
Tillia Lille	Ado-trastuzumab emtansine (T-DM1) ^p			
Fourth Line	Trastuzumab + docetaxel or vinorelbine			
	Trastuzumab + paclitaxel ± carboplatin			
	Capecitabine + trastuzumab or lapatinib			
and Beyond	Trastuzumab + lapatinib (without cytotoxic therapy)			
(optimal	Trastuzumab + other chemotherapy agents ^{r,s}			
sequence is	Neratinib + capecitabine			
not known) ^q	Margetuximab-cmkb + chemotherapy (capecitabine, eribulin, gemcitabine, or vinorelbine)			
	Abemaciclib in combination with fulvestrant and trastuzumab (for HR+ only) (category 2B)			
	Targeted Therapy and emerging biomarker Options BINV-Q (7) and BINV-Q (8)			

HER2+ Brain Metastases: NCCN Guidelines v2.2025

- HER2 positive
 - Preferred
 - Tucatinib + trastuzumab + capecitabine (category 1) if previously treated with ≥1 regimen⁶
 - Fam-trastuzumab deruxtecan-nxki if previously treated with ≥1 regimen^{7,8}
 - Other Recommended
 - Ado-trastuzumab emtansine (T-DM1)⁹
 Neratinib and T-DM1¹⁰

 - Capecitabine + lapatinib^{11,12}
 Capecitabine + neratinib^{13,14}

 - Pertuzumab and high-dose trastuzumab^{d,15}
 Paclitaxel + neratinib (category 2B)¹⁶

Summary: Standard for HER2+ MBC

First Line

Trastuzumab + pertuzumab + taxane

CLEOPATRA

- Continue HP after induction
- HR+: Consider addition of palbociclib and endocrine therapy to HP (PATINA trial)

Second Line

Trastuzumab deruxtecan (T-DXd)

DB03

or

Tucatinib + trastuzumab + capecitabine

HER2CLIMB

Factors include extracranial disease burden, intracranial disease burden, comorbidities, patient preference

Third Line

Tucatinib + trastuzumab + capecitabine

HER2CLIMB

or

Trastuzumab deruxtecan

DB02/03

or

Trastuzumab emtansine (T-DM1)

EMILIA, TH3RESA

Late Line Options for HER2+ MBC: "Dealer's Choice"

Fourth Line +

Trastuzumab emtansine (T-DM1)

TH3RESA

Margetuximab + chemo

SOPHIA

Neratinib + capecitabine

NALA

Trastuzumab + chemo

Trastuzumab + lapatinib

EGF104900

Many possible agents, including

- Vinorelbine
- Eribulin
- Gemcitabine
- Doxil
- Carboplatin

Special consideration in HR+/HER2+:

fulvestrant/abema/trastuzumab

Or tucatinib/capecitabine/trastuzumab, or T-DXd if not already received

Discussion