

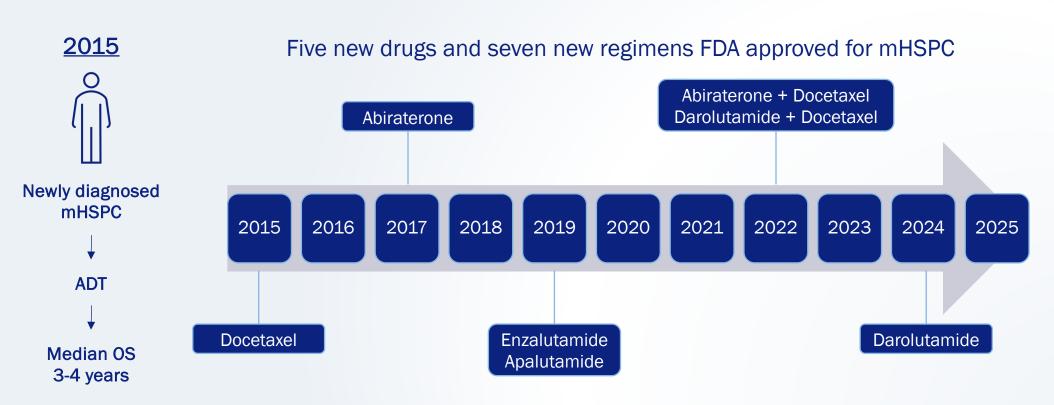
DEBATES AND DIDACTICS in Hematology and Oncology

JULY 24 - 27, 2025 · SEA ISLAND, GEORGIA

Advancing care in metastatic hormone-sensitive prostate cancer

Jacob Berchuck, MD

Assistant Professor, Emory University School of Medicine Medical Oncologist, Winship Cancer Institute


Disclosures

Consultant/Advisor/Speaker: Guardant Health, Precede Biosciences, Tracer Biotechnologies, Genome Medical

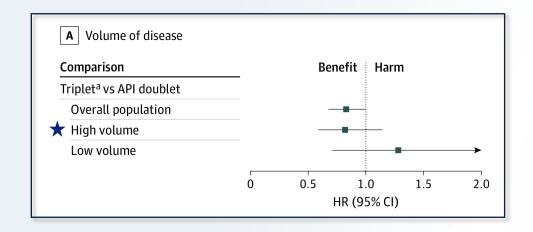
Researcher: Precede Biosciences

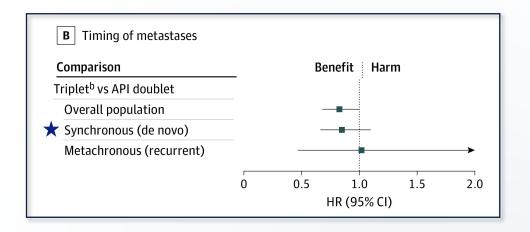
Royalties or Patent Beneficiary: Precede Biosciences

Remarkable progress in the last decade

How do we treat mHSPC in 2025?

All patients with mHSPC should get ADT plus an ARPI !!! (with a few exceptions)


Across studies all subgroups of patients benefit from addition of ARPI to ADT


Don't discriminate by age!

The biggest question in mHSPC today – who benefits from the addition of docetaxel to ADT + ARPI?

^{*} High volume defined by the CHAARTED criteria as presence of visceral disease or ≥ 4 bone lesions with ≥ 1 outside the pelvis or vertebrae on **conventional imaging** (CT and bone scan)

^{**} De novo (or synchronous) metastatic disease means metastatic disease is present at the time of prostate cancer diagnosis

The treatment-paradigm for mHSPC in July 2025

NCCN Guideline Recommendations **Triplet therapy** High volume or De novo ADT + ARPI Triplet therapy High volume or Recurrent ADT + ARPI Triplet therapy Low volume or ADT + ARPI De novo (preferred) Newly diagnosed Low volume ADT + ARPI **mHSPC** Recurrent

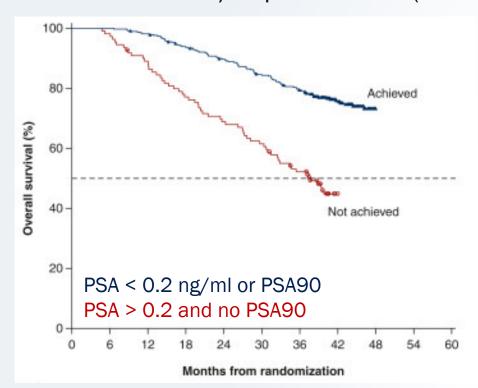
Additional Considerations

Favor triplet therapy if:

- Able to tolerate chemotherapy
- Younger patients
- Liver metastases
- Lytic bone metastases
- Symptomatic disease

Consider ADT alone if:

- Not able to tolerate ARPI (very small minority)
- Competing risks with life expectancy < 5 years

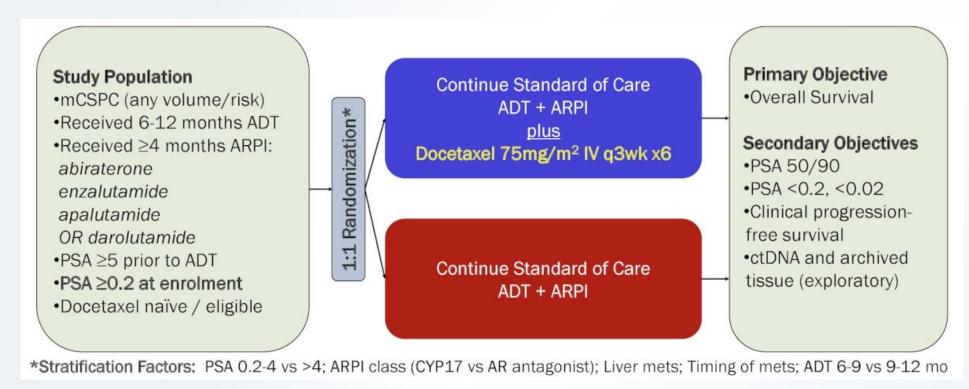


How can we improve outcomes for men with mHSPC?

- 1. Treatment intensification in poor responders
- 2. Treatment de-intensification in exceptional responders
- 3. Leveraging our understanding of tumor biology to develop more effective therapies
- 4. Developing better clinical biomarkers to personalize therapeutic decision-marking

PSA response strongly associates with long-term outcomes

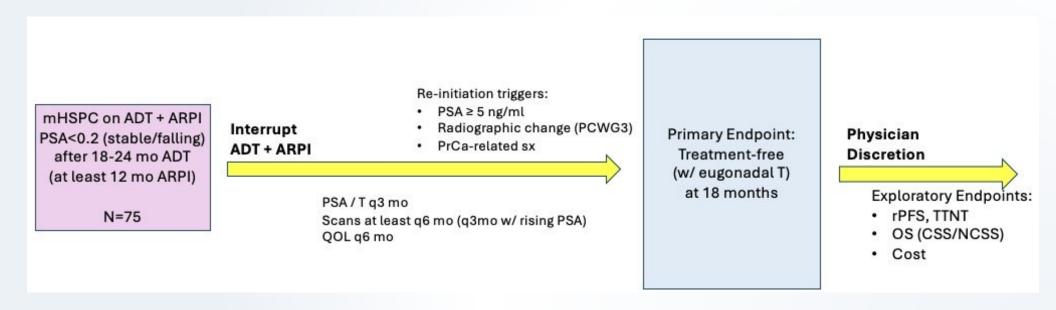
OS by PSA response at 3 months in patients treated with ADT +/- apalutamide (TITAN)



Can we use PSA response in patients treated with ADT plus ARPI to identify those who will benefit from treatment intensification or de-intensification?

Treatment intensification in patients with suboptimal PSA response to ADT plus ARPI

TRIPLE-SWITCH (SWOG/CCTG-PR26): A Randomized Phase III Clinical Trial for the Addition of Docetaxel to Androgen Receptor Pathway Inhibitors in Patients with mCSPC and Suboptimal PSA Response



Treatment <u>de-intensification</u> in patients with excellent long-term PSA response to ADT plus ARPI

A-DREAM (Alliance A032101): A Phase 2 Trial of ADT Interruption in Patients Responding Exceptionally to AR-Pathway Inhibitor in Metastatic Hormone-Sensitive Prostate Cancer

The current landscape of molecularly guided therapies for mCRPC in 2025

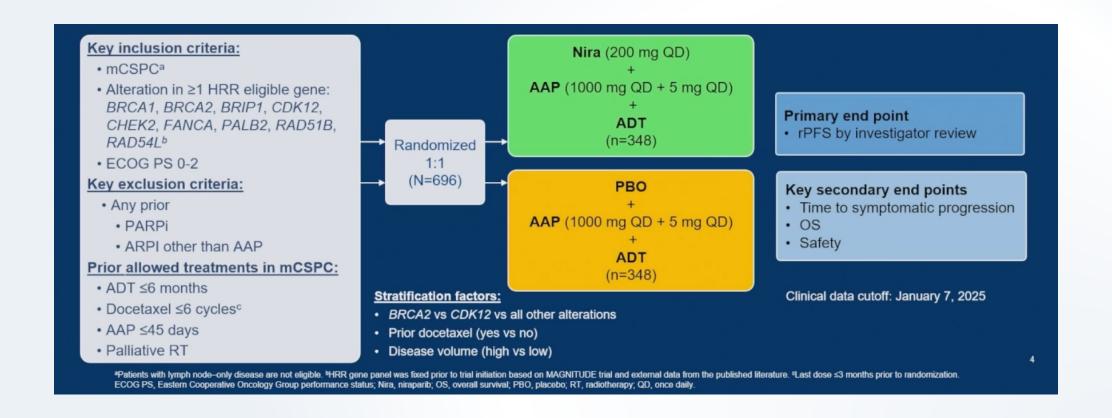
Germline and somatic testing recommended for all patients with metastatic prostate cancer

- Pembrolizumab approved for MMRd/MSI-high mCRPC (~3%)
- Several PARP inhibitor regimens approved for HRR-altered mCRPC (~20%)

	АТМ	ATR	BARD1	BRCA1	BRCA2	BRIP1	CDK12	CHEK1	CHEK2	FANCA	FANCL	MLH1	MRE11A	NBN	PALB2	RAD51B	RAD51C	RAD51D	RAD54L
Olaparib	Х		Х	Х	Х	Х	Х	Х	Х		Х				Х	Х	Х	Х	Х
Rucaparib				Х	Х														
Olaparib + Abiraterone				Х	Х														
Niraparib + Abiraterone				Х	Х														
Talazoparib + Enzalutamide	Х	Х		Х	Х		Х		Х	Х		Х	Х	Х	Х		Х		

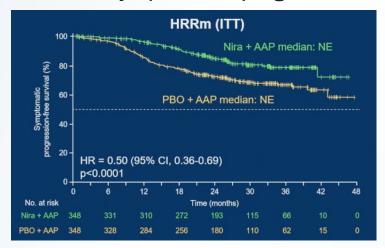
Unanswered questions for PARPi in metastatic prostate cancer

- Which gene alterations predict benefit from PARP inhibitors?
 - BRCA1/2 >>> other HRR >>> non-HRR
- Does combining PARPi with an ARPI improve upon PARPi monotherapy?
 - We don't know
 - TALENT trial is investigating PARPi +/- ARPI in mCRPC (NCT06844383)
- At what point in the disease course should we use a PARPi?
 - Currently first or second line mCRPC what about mHSPC???


What is the role of PARPi in HRR-altered mHSPC?

Ongoing trials evaluating PARPi in mHSPC

AMPLITUDE Trial: Niraparib and Abiraterone for mCSPC Patients with Alterations in HRR Genes



Addition of niraparib to abiraterone improves outcomes in HRR-altered mHSPC

rPFS (primary endpoint)

Time to symptomatic progression

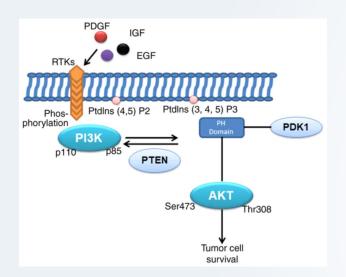
In patients with HRR-altered mHSPC, the addition of niraparib to abiraterone improved rPFS by 37% and time to symptomatic progression by 50%

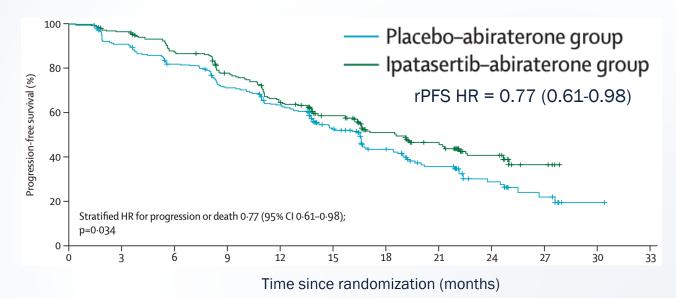
rPFS subgroup analysis by gene

End Point	Subgroup	HR (95% CI)		Events/N		
		The American	<u> </u>	Nira + AAP	PBO + AAP	
rPFS	BRCA1/2	0.52 (0.37-0.72)		57/191	93/196	
	CHEK2	0.65 (0.38-1.11)		24/72	32/76	
	CDK12	1.01 (0.43-2.39)	<u> </u>	13/28	10/28	
	FANCA	0.76 (0.20-2.82)		4/15	5/15	
	PALB2	2.41 (0.66-8.74)		6/9	4/13	
	Other	0.72 (0.20-2.66)		6/25	4/15	
Time to	BRCA1/2	0.44 (0.29-0.68)	!	31/191	66/196	
symptomatic	CHEK2	0.47 (0.21-1.05)		9/72	18/76	
progression	CDK12	0.68 (0.28-1.62)		9/28	12/28	
	FANCA	0.71 (0.12-4.27)		2/15	3/15	
	PALB2	NE (NE-NE)		1/9	2/13	
	Other	1.18 (0.12-11.36)		4/25	1/15	
os	BRCA1/2	0.75 (0.51-1.11)		44/191	61/196	
	CHEK2	0.85 (0.45-1.59)	-	18/72	21/76	
	CDK12	0.57 (0.25-1.31)		9/28	15/28	
	FANCA	0.92 (0.20-4.12)		3/15	4/15	
	PALB2	3.30 (0.52-21.21)		_ 3/9	2/13	
	Other	0.79 (0.18-3.36)		5/25	3/15	
		Favors Nira + AAP	_ 0.125 0.25 0.5 1 2 4 8 1	6 32 — Favo	rs PBO + AAP	

Benefit of adding niraparib greatest in patients with *BRCA1/2* alterations

The current state and future questions for PARPi in mHSPC


- AMPLIITUDe showed that the addition of niraparib to abiraterone improves rPFS and time to symptomatic progression in patients with HRR-altered mHSPC
- Lots of questions remain:
 - Does the addition of PARPi improve OS?
 - Trend towards yes, but data is immature.
 - Do patients with non-BRCA1/2 HRR alterations benefit?
 - Do we need to give it in the mHSPC setting for patients to receive benefit?
 - Only 36% of patients received subsequent PARPi without crossover we don't know whether benefit is specific to giving in mHSPC setting or patients would derive similar benefit if given in the mCRPC setting
- AMPLITUDE data will mature, and we'll get readout on other PARPi mHSPC trials in the next year

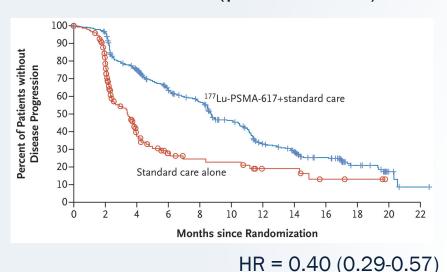

AKT inhibition in PTEN-deficient metastatic prostate cancer

Deleterious *PTEN* genomic alterations are present in ~40% of metastatic prostate tumors

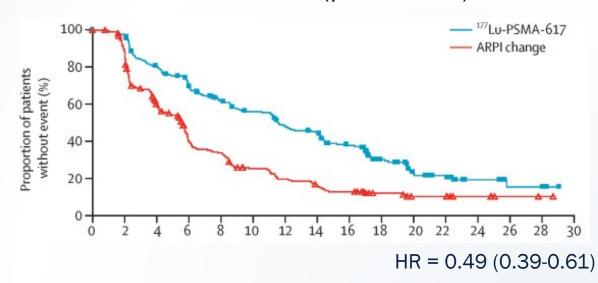
IPATential 150 evaluated the addition Ipatisertib (AKT inhibitor) to abiraterone in PTEN-deficient mCRPC

Subset with PTEN loss by IHC

CAPItello-281 (NCT04493853) is studying the AKT inhibitor Capivasertib in PTEN deficient mHSPC

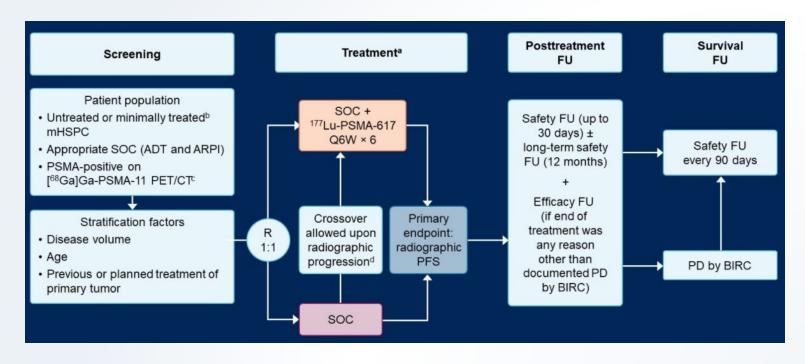


Press release from Nov 2024 that the addition of Capivasertib to ADT and abiraterone in PTEN-deficient mHSPC "demonstrated statistically significant and clinically meaningful improvement in rPFS."


Lutetium-PSMA is an FDA approved radioligand therapy for PSMA-positive mCRPC

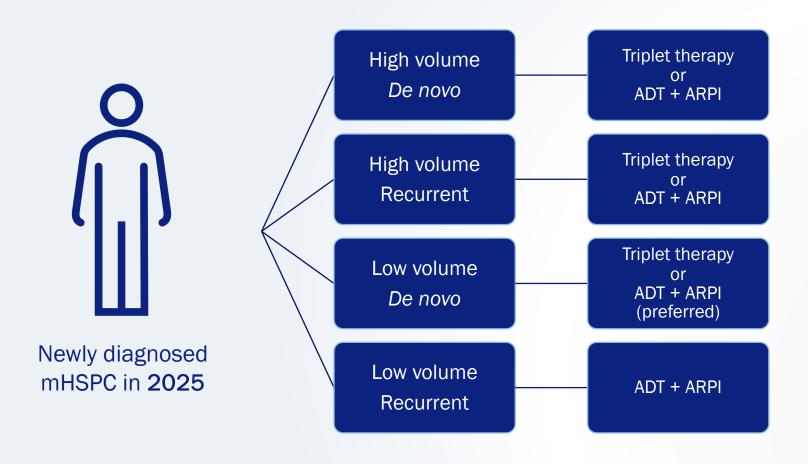
VISION trial (post-taxane)

FDA approved in 2021

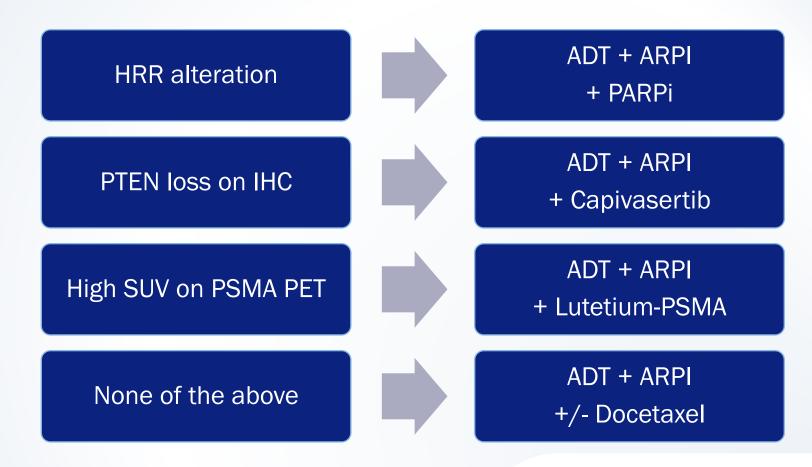

PSMAfore trial (pre-taxane)

FDA label expanded in March 2025

PSMAddition (NCTO4720157) is studying Lutetium-PSMA in PSMA PET-positive mHSPC

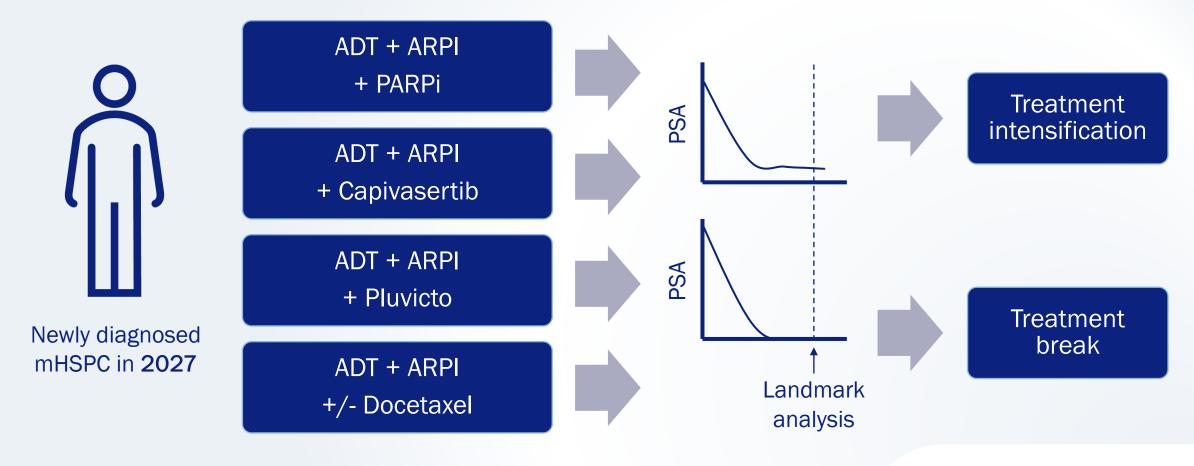


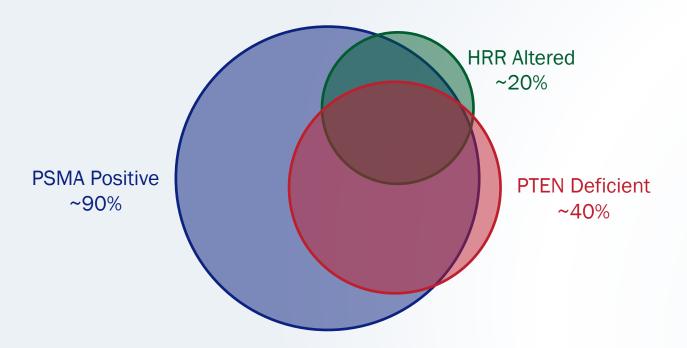
Press release from June 2025 that the addition of Lutetium-PSMA to SOC treatment "demonstrates significant and clinically meaningful rPFS benefit in patients with PSMA-positive mHSPC."


Evolution of the treatment paradigm for mHSPC in the coming years

Evolution of the treatment paradigm for mHSPC in the coming years

Biomarker testing Germline genetic testing and tumor genomic profiling Newly diagnosed mHSPC in 2027




PSMA PET scan

Evolution of the treatment paradigm for mHSPC in the coming years

Lots of progress ... and lots of questions left to solve

Group	PSMA	HRR	PTEN		
1	Positive	Altered	Deficient		
2	Positive	Altered	Proficient		
3	Positive	WT	Deficient		
4	Positive	WT	Proficient		
5	Negative	Altered	Deficient		
6	Negative	Altered	Proficient		
7	Negative	WT	Deficient		
8	Negative	WT	Proficient		

Summary

- ADT + ARPI is the standard of care for (almost) all patients with mHSPC with some patients (high volume) benefiting from the addition of docetaxel
- Strategies to intensify or de-intensify treatment based on PSA response may help optimize both long-term cancer outcomes and patient QOL
- Targeted treatments in molecular subgroups (HRR altered, PTEN deficient, PSMA positive) are coming to mHSPC
- We're going to need better biomarkers to determine which treatment strategy to choose for which patient to optimize outcomes in mHSPC

