

EARLY TRANSPLANTATION FOR MYELOFIBROSIS

Amelia Langston, MD Professor of Hematology and Medical Oncology Emory University School of Medicine

alangst@emory.edu

DISCLOSURES

- I am a transplanter...
- My only other disclosure relevant to this presentation is prior research support from Incyte (Ruxolitinib, etc)

FACTS

- Allogeneic stem cell transplantation is the <u>only</u> potentially curative therapy for primary or secondary myelofibrosis
- Advances in molecular diagnostics allow us to better risk-stratify patients
- Advances in transplant medicine have made allogeneic transplantation less risky
 - Better GVHD prophylaxis and treatment, such as PTCy and/or inclusion of Ruxolitinib into GVHD prophylaxis
 - Use of reduced intensity conditioning regimens
 - Better supportive care—particularly important for MF given variable engraftment kinetics

WHO IS AN ALLOGENEIC TRANSPLANT CANDIDATE?

- Age
 - Up to ~75 y
- Comorbidities
- Frailty
- Nutritional status
- Support system
- Health literacy
- Benefit of the doubt...

MYELOID NEOPLASIA

Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for myelofibrosis

Juan Carlos Hernández-Boluda,^{1,*} Adrián Mosquera-Orgueira,^{2,*} Luuk Gras,³ Linda Koster,³ Joe Tuffnell,³ Nicolaus Kröger,⁴ Massimiliano Gambella,⁵ Thomas Schroeder,⁶ Marie Robin,⁷ Katja Sockel,⁸ Jakob Passweg,⁹ Igor Wolfgang Blau,¹⁰ Ibrahim Yakoub-Agha,¹¹ Ruben Van Dijck,¹² Mattias Stelljes,¹³ Henrik Sengeloev,¹⁴ Jan Vydra,¹⁵ Uwe Platzbecker,¹⁶ Moniek de Witte,¹⁷ Frédéric Baron,¹⁸ Kristina Carlson,¹⁹ Javier Rojas,² Carlos Pérez Míguez,² Davide Crucitti,² Kavita Raj,²⁰ Joanna Drozd-Sokolowska,²¹ Giorgia Battipaglia,²² Nicola Polverelli,²³ Tomasz Czerw,²⁴ and Donal P. McLornan,²⁰ on behalf of the Chronic Malignancies Working Party of the EBMT

Blood[®] 26 JUNE 2025 | VOLUME 145, NUMBER 26 3139

PROGNOSTIC MODELS FOR MF – WHAT MATTERS?

- Clinical
 - Age
 - WBC, Hgb, plts
 - Circulating blasts
 - Spleen size
 - Constitutional symptoms
- Cytogenetics
- Molecular
 - Driver mutations—Non-CALR1 mutations = bad
 - ASXL1, EZH2, SRSF2, IDH1/2 +/- U2AF1Q157 = bad (and the more of them the worse the outcome)
- Disease trajectory also must be considered

HOW DO WE THINK ABOUT WHAT TO DO AND WHEN?

- No prospective trials to address this question...
 - We do have randomized data for intermediate and higher risk MDS, and early transplant won (BMT CTN 1102; Nakamura et al. JCO, 2021)
- Retrospective studies generally suggest a long-term survival advantage in favor of allogeneic HSCT for higher risk patients (Kroger, N et al. Blood, 2015; K Gowin et al. Blood Advances, 2020)
- Once the disease progresses toward AML or becomes resistant to JAK inhibition, transplant is more difficult and outcomes are less favorable
- There is no substitute for clinical judgment and close followup...

MARKOV MODEL TO SIMULATE DISEASE TRAJECTORY AND SURVIVAL BASED ON TIMING OF HSCT

- Utilized the 4 DIPSS risk categories
- Risks and survival assumptions based on data from the literature for transplant and medical therapy for each risk cohort

Cipkar C, et al. Transplantation and Cellular Therapy, 2022; 28:189-194.

SIMULATION OF LIFE EXPECTANCY GAINED FAVORS EARLIER TRANSPLANTATION FOR HIGHER RISK PTS (INT2/HIGH +/-INT1 RISK)

- All patients eventually derived benefit from transplantation
- Greatest incremental benefit seen in the lower risk groups, <u>but most</u> <u>benefit was realized when</u> <u>HSCT done sooner for</u> <u>the intermediate and</u> <u>higher risk pts</u>

PRE-TRANSPLANT RUXOLITINIB HAS IMPROVED TRANSPLANT OUTCOMES

Macherndl-Spindle S, et al. Cancers, 2024; 16(19):3257.

PHASE 2 STUDY OF RUXOLITINIB ADDED TO TAC/MTX FOR GVHD PROPHYLAXIS

Hobbs GS, et al. Blood, 2023; 142(supp.1):2103.

CONCLUSIONS

- MF patients who are potentially transplant eligible should be evaluated early
 - Donor identification
 - Timing—requires close followup and collaboration with the transplant team
- Molecular analysis of MF patients is essential for decision making
- JAK inhibitor therapy for at least 2-3 months prior to transplant seems to help with reduction of transplant toxicities and risk
 - Ruxolitinib can be continued post-transplant and <u>may</u> improve NRM and outcomes without compromising engraftment
- Early transplantation should be considered for:
 - Higher risk disease by clinical and molecular parameters
 - Aggressive disease trajectory
 - Young patients

QUESTION: WHO WILL YOU TRUST?

alangst@emory.edu