Endorsed by

ATLANTA LUNG CANCER SYMPOSIUM

Locally Advanced NSCLC: Radiotherapy Considerations

Sibo Tian, MD

Assistant Professor

Department of Radiation Oncology

Winship Cancer Institute, Emory University

Disclosures

Company Name	Honoraria/ Expenses	Consulting/ Advisory Board	Funded Research	Royalties/ Patent	Stock Options	Ownership / Equity Position	Employee	Other (please specify)
Varian/Siemens Healthineers			x					
Genentech		Х						
Merck (RTOG Foundation)	Х	X						
Emory University							Х	
Castle Biosciences		X						
BioAscend	Х							

NCT01993810

Bio Ascend[®]

PACIFIC: STUDY DESIGN

Phase 3, randomized, double-blind, placebo-controlled, multicenter, international study

[†]Defined as the time from randomization until the date of objective disease progression or death by any cause in the absence of progression. BICR, blinded independent central review; cCRT, concurrent CRT; PFS2, time to second progression;

RECIST, Response Evaluation Criteria in Solid Tumors; TTDM, time to death or distant metastasis.

Antonia et al. NEJM 2017 & 2018

PACIFIC-2

PACIFIC-2 (NCT03519971) is a phase 3, randomized, double-blind, placebo-controlled, multicenter, global study of durvalumab + CRT followed by durvalumab versus placebo + CRT followed by placebo

Patients were recruited from **29 March 2018** through **24 June 2019** across 106 sites in Asia, Eastern Europe, and the Americas, including: Brazil, Czech Republic, Hungary, India, Japan, Mexico, Peru, Philippines, Poland, Republic of Korea, Russia, Turkey, Thailand, and Vietnam.

ATLANTA

UNG CANCER SYMPOSIUM

BICR, blinded independent central review; CR, complete response; CRT, chemoradiotherapy; DCR, disease control rate; DoR, duration of response; ECOG, Eastern Cooperative Oncology Group; Gy, gray; IV, intravenous; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; OS24, overall survival at 24 months; PFS, progression-free survival; PFS2, time from randomization to second progression; PK, pharmacokinetics; PR, partial response; Q4W, once every 4 weeks; QoL, quality of life; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease; SoC, standard of care; TDDM, time to death or distant metastasis; WHO, World Health Organization.

Slide courtesy: Jeffrey Bradley

*Platinum-based chemotherapy regimens include: cisplatin/etoposide, carboplatin/paclitaxel, pemetrexed/cisplatin (non-squamous only), or pemetrexed/carboplatin (non-squamous only), alongside radiation therapy (5 fractions/week for ~6 weeks [±3 days; total 60 Gy]). [†]Investigator assessed per RECIST v1.1. [‡]Following a protocol amendment, ORR was moved from a primary endpoint to a key secondary endpoint. [§]Will be reviewed by an independent data monitoring committee in an unblinded manner.

PFS by **BICR** (**ITT** population)

ATLANTA

LUNG CANCER SYMPOSIUM

BICR, blinded independent central review; CI, confidence interval; HR, hazard ratio; ITT, intention-to-treat; mPFS, median PFS; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors.

Slide courtesy: Jeffrey Bradley

Per RECIST v1.1. Tick marks on the curves indicate censored observations. *Based on the Lan and DeMets approach that approximates the O'Brien Fleming spending functions; the 2-sided p-value boundary for declaring statistical significance is 0.0416 for an overall 5% alpha.

Summary of Adverse Events (Safety Population)

AE category, n (%)	Durvalumab + CRT (n=219)	Placebo + CRT (n=108)
Any AE	216 (98.6)	108 (100)
Maximum grade 3 or 4 [*]	117 (53.4)	64 (59.3)
Outcome of death	30 (13.7)	11 (10.2)
SAE	103 (47.0)	56 (51.9)
Any AE leading to discontinuation of durvalumab/placebo [†]	56 (25.6)	13 (12.0)
0 to ≤4 months from start of treatment (approximates the duration of IO+CRT and ends at the first post-baseline scan)	31 (14.2)	6 (5.6)
>4 to ≤16 months from start of treatment (approximates the duration of consolidation IO in the SoC PACIFIC regimen)	12 (5.5)	6 (5.6)
>16 months from start of treatment (approximates treatment beyond the duration of consolidation IO in the SoC PACIFIC regimen)	13 (5.9)	1 (0.9)

- The most common treatment-emergent AEs with **durvalumab** + SoC CRT were:
 - Anemia (42.0%), pneumonitis or radiation pneumonitis (28.8%), neutropenia (27.4%), and nausea (25.6%)
- The most common treatment-emergent AEs with **placebo** + SoC CRT were:

ATLANTA NG CANCER SYMPOSIUM

- Anemia (38.0%), constipation (28.7%), pneumonitis or radiation pneumonitis (28.7%), and neutropenia (25.9%)
- Combined rates of pneumonitis or radiation pneumonitis were similar in the durvalumab arm (28.8%) and placebo arm (28.7%)

Slide courtesy: Jeffrey Bradley

- Grade \geq 3 pneumonitis or radiation pneumonitis occurred in 1) patients (4.6%) in the durvalumab arm and 6 (5.6%) in the placebo arm

AE, adverse event; CRT, chemoradiotherapy; CTCAE, Common Terminology Criteria for Adverse Events; IO, immunotherapy; SAE, serious adverse event; SoC, standard of care. Per CTCAE v5.0. *Excludes any patients who experienced any AE of maximum CTCAE grade 5. †At any time, regardless of discontinuation of CRT.

EA5181

Randomized Phase III Trial of MEDI4736 (durvalumab) as Concurrent and Consolidative Therapy or Consolidative Therapy Alone for Unresectable Stage 3 NSCLC

Bio Ascend[®]

Estimated Dose to Immune Cells (EDIC)

Higher Radiation Dose to the Immune Cells Correlates with Worse Tumor Control and Overall Survival in Patients with Stage III NSCLC: A Secondary Analysis of RTOG0617

- N= 456 (from 544 enrolled) in RTOG 0617
- Motivated by finding that high dose (74 Gy) arm did not have significantly higher rate of lung and heart toxicity despite worse OS
- OS MVA: EDIC HR 1.12 (p = 0.005)

SYMPOSIUM

- MVA for PFS (HR 1.05) and LRFS (HR 1.09)
- MLD, MHD, ITD were NS in MV model without EDIC
- Also explored in esophageal, early-stage NSCLC, LS-SCLC, breast cancer

$$EDIC = 12\% * MLD + 8\% * MHD + \left[45\% + 35\% * 0.85 * \left(\frac{n}{45}\right)^{\frac{1}{2}}\right] * ITDV / (61.8 * 10^{3})$$

Jin et al. Cancers (Basel). 2021;13(24):6193.

Impact of EDIC in PACIFIC era

Impact of radiation dose to the immune cells in unresectable or stage III non-small cell lung cancer in the durvalumab era

Neal S. McCall^{a,*}, Hamilton S. McGinnis^a, James R. Janopaul-Naylor^a, Aparna H. Kesarwala^a, Sibo Tian^a, William A. Stokes^a, Joseph W. Shelton^a, Conor E. Steuer^b, Jennifer W. Carlisle^b, Ticiana Leal^b, Suresh S. Ramalingam^b, Jeffrey D. Bradley^a, Kristin A. Higgins^a

- N = 100 locally-advanced, unresectable stage II/III NSCLC
- Treated with definitive chemoRT -> durvalumab
- OS MVA: EDIC (continuous) HR 1.35, p < 0.001
- OS MVA: EDIC > 6 Gy HR 4.15, p < 0.01
- EDIC was also independent predictor of PFS and LRC, time to BM

McCall et al. Radiother Oncol. 2022;174:133-140.

Photons (VMAT)

Impact of RT Modality on EDIC

- N=12 patients with treatment-approved IMRT and IMPT plans
- Mean EDIC 4.99 -> 3.04 Gy (IMRT vs IMPT)
 - Mean heart dose 11.4 -> 3.2 Gy
 - Mean lung 15 -> 9.9 Gy
 - Integral dose 203 -> 142.3 Gy·L
- Median 2-yr OS advantage 8% (63% vs 71%, P = 0.03; range 0-32%

Immune System Dose With Proton Versus Photon Radiotherapy for Treatment of Locally Advanced NSCLC

Jimmy S. Patel (MD, PhD)¹, Neal S. McCall (MD)², Matthew Thomas (MS)¹, Jun Zhou (PhD)¹, Kristin A. Higgins (MD)¹, Jeffrey D. Bradley (MD)³, Sibo Tian (MD)¹, Mark W. McDonald (MD)¹, Aparna H. Kesarwala (MD, PhD)^{1,*}, William A. Stokes (MD)^{1,*}

Comparison of EDIC between IMRT and IMPT

Patel et al. Int J Part Ther. 2024;12:100016.

Clinically Delivered Plan

/ 18.000

Non-coplanar Oblique Re-plan

N=35, stage III NSCLC treated with CRT

Clinical delivered plans were re-optimized with non-coplanar technique

Mean heart dose 13.5 -> 7.2 Gy

Integral dose 253 -> 215 (Gy·L)

EDIC 5.5 -> 4.9 Gy (p<0.001) HR 1.21, 2-yr OS benefit ~7%

Hopkins et al. IASLC WCLC. 2024

NRG RTOG 1308

Phase III Randomized Trial Comparing Overall Survival After Photon vs Proton Chemoradiotherapy for Inoperable Stage II-IIIB NSCLC

S T R A T I F Y	Stage 1.II 2.IIIA 3.IIIB Histology 1.Squamous 2.Non-Squamous Concurrent Chemotherapy Doublet Type 1.Carboplatin/paclitaxel 2.Cisplatin/etoposide 3. carboplatin/ pemetrexed	R A N D O M I Z E	Arm 1: Photon dose—70 Gy*, at 2 Gy (RBE) once daily plus platinum-based doublet chemotherapy** Arm 2: Proton dose—70 Gy (RBE), at 2 Gy once daily plus platinum-based doublet chemotherapy**	Both Arms: Durvalumab or Consolidation chemotherapy x 2 cycles required for patients who receive concurrent carboplatin and paclitaxel***	Co-Primary: OS, Cardiac AE + lymphocyte reduction 2/3/14 Activated 9/26/23 Closed to accrual
--------------------------------------	--	---	---	--	--

PI Zhongxing Liao

*The highest total prescribed dose will be 70 Gy (Relative Biological Effectiveness (RBE)) **without exceeding tolerance dose-volume limits of all critical normal structures**. The dose range can be 60-70Gy provided the dose constraints of OARs are met.

NCT01993810

Bio Ascend

RAD5621-22

Proton Beam Radiation Therapy for Resected N2 Non-Small Cell Lung Cancer

PIs: Stokes/Kesarwala/Buchwald; Funding: Winship Invest\$

NCT06008730

😹 Bio Ascend

NRG RTOG 1106/EA6697

Randomized Phase II Trial of Individualized Adaptive (chemo) Radiotherapy Using Midtreatment 18F-FDG PET/CT in Stage III NSCLC

Kong et al. J Clin Oncol 2024 PMID 39365957

No improvement in FFLRP or PFS

2-yr FFLRP 54.6 vs 59.5% (Adaptive vs Std) No significant dosimetric differences

 \triangle SUV_{peak} and \triangle MTV not associated with FFLP 56% reduction in MTV, 33.2% reduction in GTV

Kong et al. J Clin Oncol 2024 PMID 39365957

NARLAL 2

Novel Approach to Radiotherapy for LA-NSCLC - phase III randomized trial on dose escalation

N = 350 randomized

Primary: Locoregional control

Modern radiotherapy

- 4D-CT
- **Daily CBCT**
- Adaptive RT •

Dose-escalated RT

- Target dose •
 - 95 Gy to GTV-p
 - 74 Gy to GTV-n
- 2 plans with equal lung dose created before randomization

NCT02354274

🕉 Bio Ascend"

Standard RT plan

ATLANTA LUNG CANCER SYMPOSIUM

Inclusion criteria

- Age>18 years
- NSCLC st. IIB-IIIB •
- PS 0-1 •

Uncontrolled systemic disease

Exclusion criteria

Other active cancer

TRIAL DESIGN

Dose Escalation Improves Locoregional Control

No G4+ acute AEs Three G5 events in each arm (1.7%)

OS immature

20% received

G3 esophagitis

9 vs 5.8%

G3 pneumonitis

3.4 vs 6.4%

durvalumab

Schytte et al. Abstract 3531 ESTRO 2024

RTEP7-IFCT-1402

Phase II Adaptive Dose Escalation Trial

N=158, stage III NSCLC, PS 0-1, EGFR/ALK negative Stratification: IMRT vs 3D-CRT, center

UNG CANCER SYMPOSIUM

Primary: 15-month local control

2015 to 2021 - Amended for durvalumab (48% rcvd)

Vera et al. Lancet Oncol 2024;25(9):1176-1187

15-month LC 77.6 vs 71.2% (Boost vs Std dose)

- No durvalumab subgroup: 71.4 vs 61.1%
- Durvalumab subgroup: 82.1 vs 81.1%

Med PFS 22.3 vs 12.3mo

Acute G3+ AEs: 45 vs 29% Acute SAEs: 14 vs 7% Late G3+ AEs: 7 vs 5%

Vera et al. Lancet Oncol 2024;25(9):1176-1187

NRG-LU008

Phase III Prospective Randomized Trial of Primary Lung Tumor Stereotactic Body Radiation Therapy Followed by Concurrent Mediastinal Chemoradiation for Locally-Advanced NSCLC

- Control arm: chemoradiation to the primary and mediastinal disease (60 Gy/2 Gy) \rightarrow immunotherapy maintenance x 12 months ٠
- Experimental arm: SBRT to the primary (standard BED \geq 100 Gy dose regimen) \rightarrow chemoradiation .
 - G_{V} \rightarrow immunotherapy maintenance x 12 months
 - SBRT to primary tumor:
 - 3 fractions to 54 Gy (BED10 of 151.2 Gy) [peripheral]
 - 4 fractions to 50 Gy (BED10 of 112.5 Gy) [peripheral]
 - 5 fractions to 50 Gy (BED10 of 100 Gy) [peripheral or central]
 - Radiation to involved hilar/mediastinal lymph nodes: 2 Gy x 30 fx to 60 Gy, IMRT or proton therapy

Concurrent chemotherapy: carboplatin + paclitaxel, cisplatin + etoposide, cisplatin + pemetrexed, or carboplatin + pemetrexed Maintenance immunotherapy: durvalumab x 12 months [if durvalumab is NOT given, carbo/paclitaxel pts receive 2 cycles of consolidation]

NCT05624996

Co-primary: OS and PFS

N = 97 of 474 planned

Activated 5/10/23

NRG-LU008 Representative Case

Total volume of lung receiving 40 Gy= 332 cc (compared to 590 cc, 44% reduction) Total volume of lung receiving 20 Gy=922 cc (compared to1300 cc, 29% reduction) Total volume of lung receiving 10 Gy=2168 cc (compared to 2360, 8% reduction)

NCT05624996

🛞 Bio Ascend

Takeaway Points

- PACIFIC regimen remains standard of care for locally advanced unresectable NSCLC without driver mutations
- Addition of concurrent immunotherapy to CRT does not appear to confer additional benefit
- Care should be taken to minimize impact of RT on lymphopenia, which may be mitigated by advanced modalities or planning methods
- Dose escalation warrants re-evaluation with modern radiotherapy techniques
- Support ongoing randomized trials in stage III unresectable population

