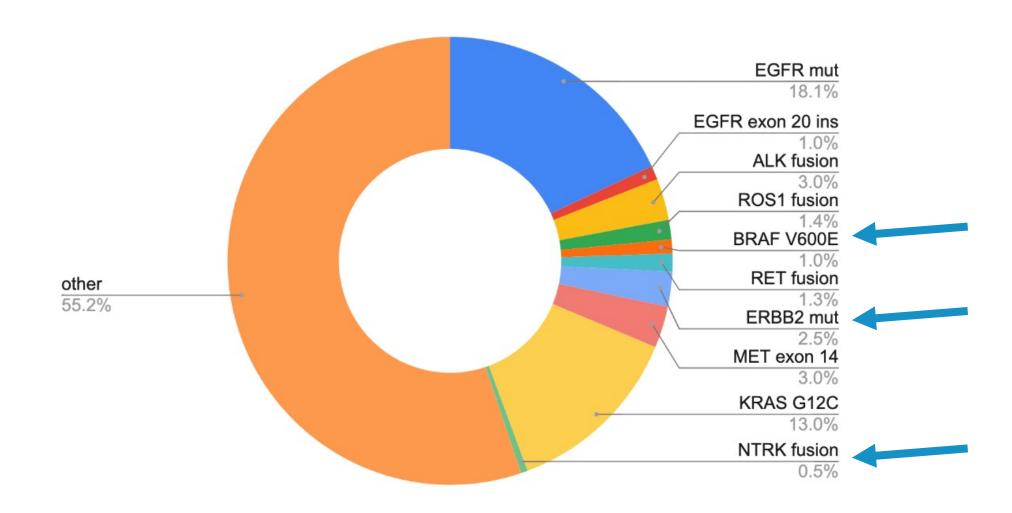


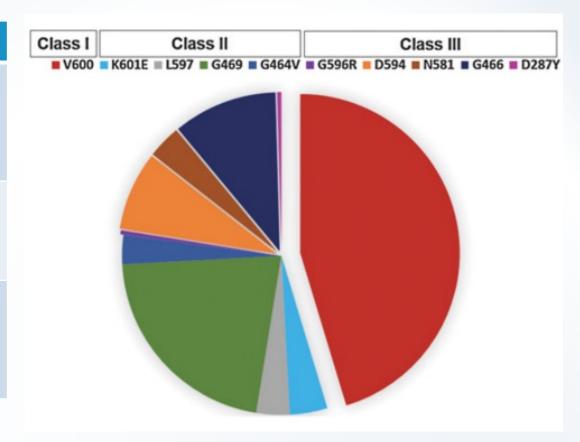
Systemic Therapy for HER-2, BRAF and NTRK

Gregory J. Riely @RielyMD

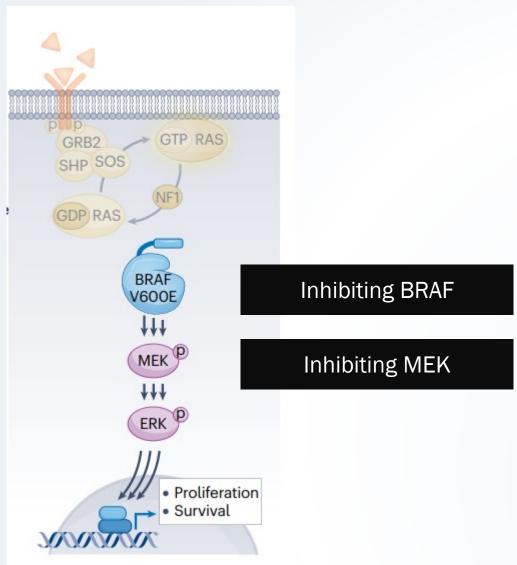
Disclosures


MSKCC receives or has received research funding for my work from:

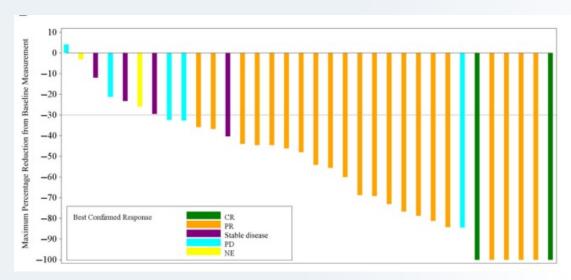
- Mirati
- Lilly
- Takeda
- Merck
- Roche
- Pfizer
- Novartis
- Amgen


Lung cancer molecular subtypes with FDA-approved agents

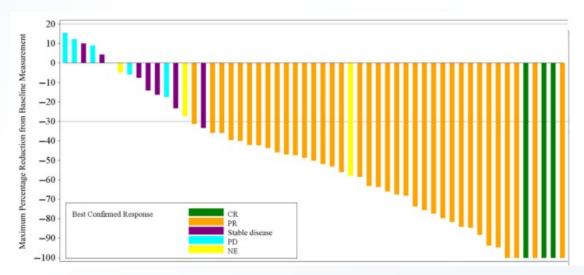
AACR GENIE BPC lung, Data available at https://genie.cbioportal.org/


There are many types of BRAF mutations

	Category	examples
Class 1	Ras independent, signal as active monomers	V600
Class 2	Ras independent, constitutively active dimers	K601, L597, G469, G464, fusions
Class 3	Ras dependent, impaired/dead kinase activity	D287, V459, G466, S467, D594


Yao et al, Nature 2017, Dagogo-Jack et al, CCR 2019

Targeting BRAF mutations in patients


Dabrafenib (BRAF inhibitor) + Trametinib (MEK inhibitor) efficacy in patients with metastatic BRAF V600E NSCLC

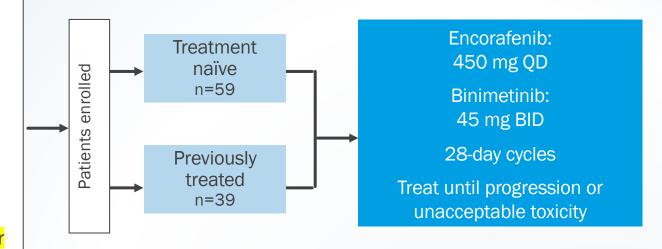
Treatment naïve

Response Rate 68%

Previously treated

Response Rate 64%

Dabrafenib (BRAF inhibitor) + Trametinib (MEK inhibitor) Toxicity


	Grade 1-2	Grade 3	Grade 4	Grade 5
Total	10 (28%)	23 (64%)	2 (6%)	1 (3%)
Pyrexia	19 (53%)	4 (11%)	0	0
Nausea	20 (56%)	0	0	0
Diarrhoea	12 (33%)	1 (3%)	0	0
Fatigue	13 (36%)	0	0	0
Peripheral oedema	13 (36%)	0	0	0
Vomiting	9 (25%)	3 (8%)	0	0
Dry skin	12 (33%)	0	0	0
Decreased appetite	12 (33%)	0	0	0
Chills	9 (25%)	0	0	0
Headache	9 (25%)	0	0	0
Rash	7 (19%)	1 (3%)	0	0
Dizziness	8 (22%)	0	0	0
Cough	8 (22%)	0	0	0
Alanine aminotransferase increase	2 (6%)	4 (11%)	0	0
Dyspnoea	4 (11%)	2 (6%)	0	0

Modified from Planchard et al, Lancet Onc 2017

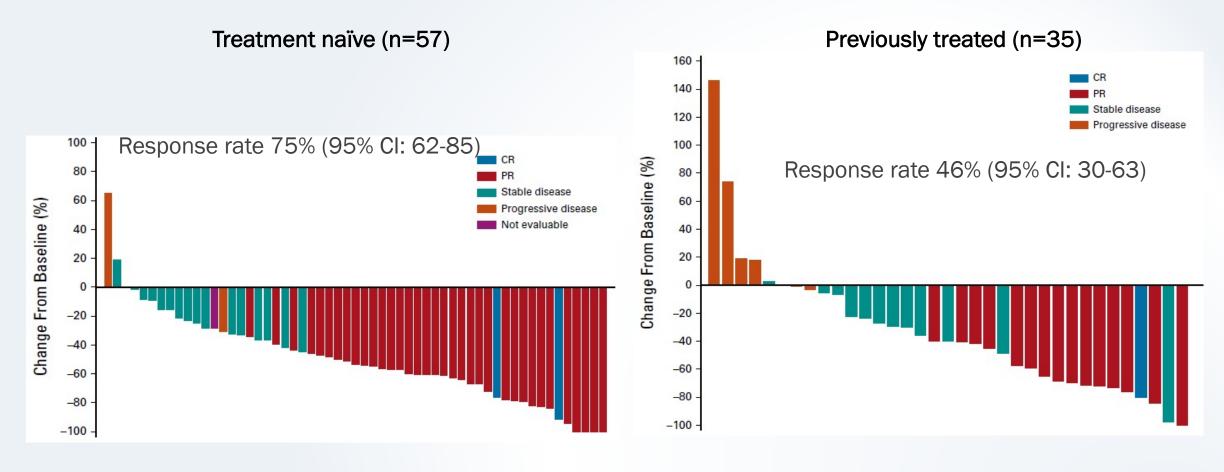
Encorafenib + Binimetinib in BRAF V600E-mutant metastatic NSCLC: A single-arm, open-label, multicenter, phase 2 study

Key eligibility criteria

- BRAF V600E-mutant metastatic NSCLC
- ECOG performance status 0 or 1
- No EGFR mutation, ALK fusion, or ROS1 rearrangement
- No more than 1 prior line of treatment in the advanced setting
- No prior treatment with BRAF or MEK inhibitor
- No symptomatic brain metastases

Primary endpoint

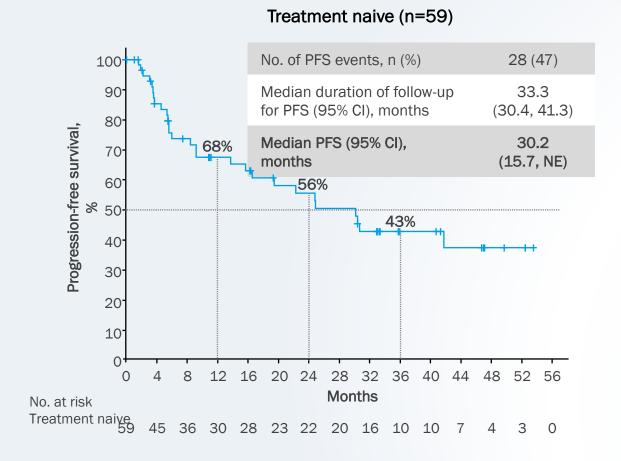
ORR by IRR

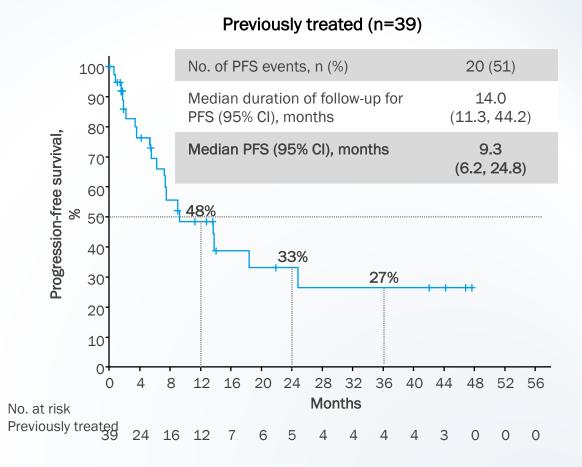

Secondary endpoints

- · ORR by investigator
- DOR, DCR, PFS, and TTR (all by IRR and investigator)
- OS
- Safety

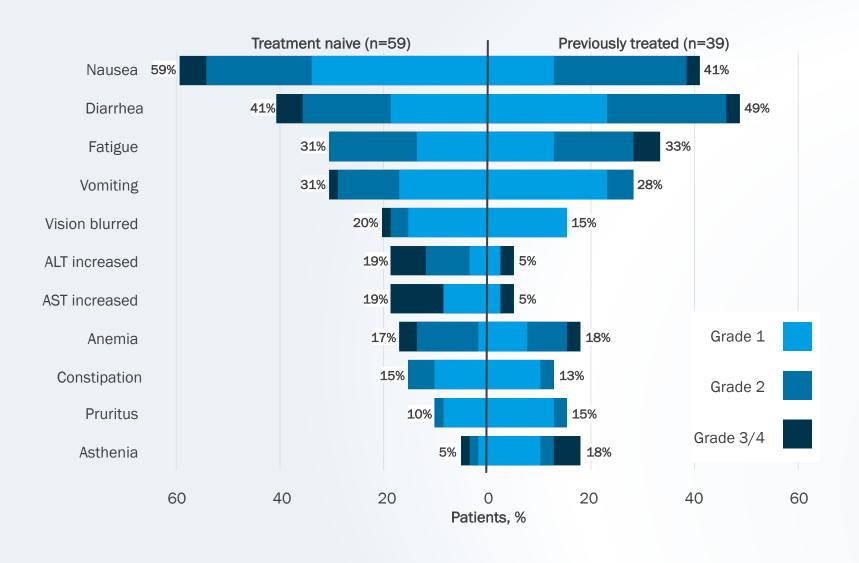
Exploratory endpoints

Biomarker and pharmacokinetic analyses


Encorafenib plus binimetinib in BRAF V600E-mutant metastatic NSCLC



Median Duration of Response 40 months

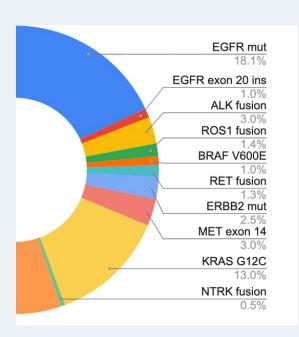

Median Duration of Response17 months

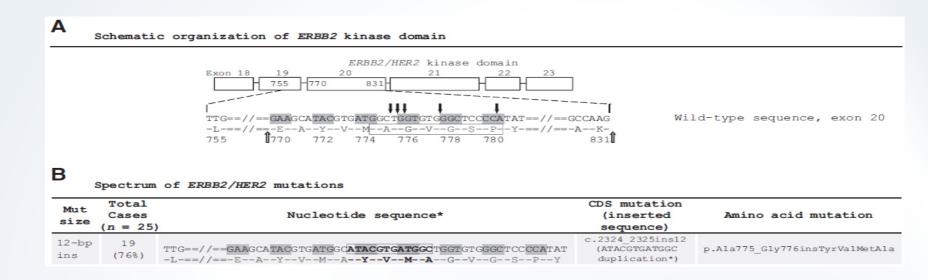
Encorafenib + Binimetinib Updated Progression-free survival

Encorafenib + Binimetinib most common TRAEs (≥15%) by treatment line

All treatment-related events of pyrexia were grade 1 or 2

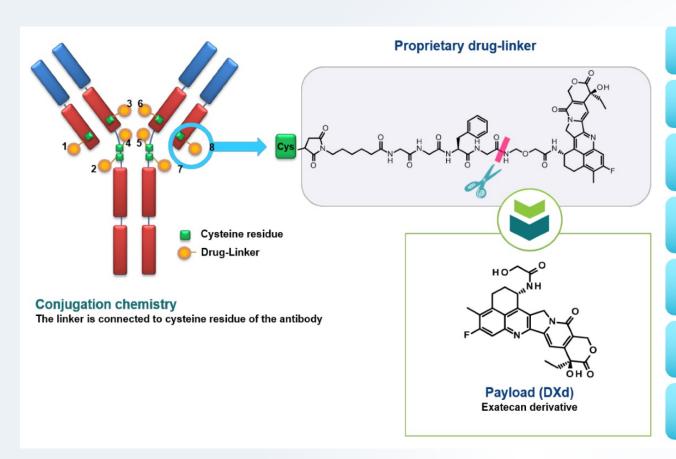
	Grade 1	Grade 2
Treatment naive	10%	2%
Previously treated	3%	0%


For patients with metastatic BRAF V600E:


Standard initial therapy is with combination of BRAF and MEK

Note: no randomized data comparing with chemotherapy or chemotherapy/immunotherapy

HER2 activating mutations in lung cancers



Most common *HER2* mutation is insertion of YVMA in Exon 20

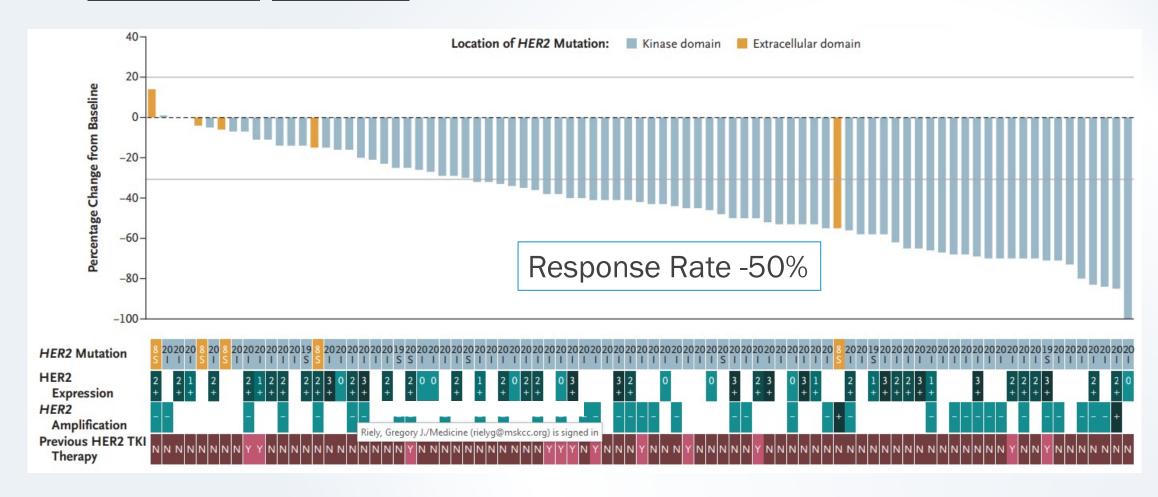
Arcila et al. Clin Cancer Res. 2012

Fam-Trastuzumab Deruxtecan-nxki

Payload with a different mechanism of action

High potency of payload

Payload with short systemic half-life


Bystander effect

Stable linker-payload

Tumor-selective cleavable linker

High drug-to-antibody ratio (7–8)

Trastuzumab Deruxtecan in Patients with Her2 Mutated NSCLC

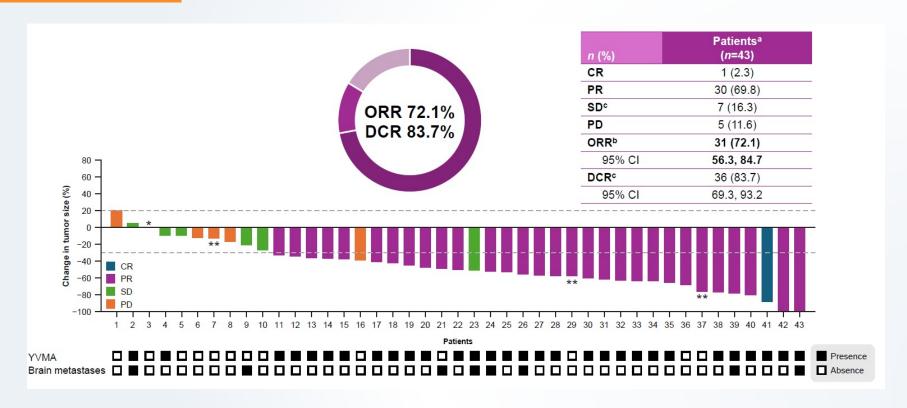
HER2 targeting tyrosine kinase inhibitors (in trials)

Zongertinib – covalent inhibitor of both wild type and mutated HER2

BAY 2927088 – reversible inhibitor of mutated HER2

Zongertinib (BI 1810631)

HER2 mutations
Previously treated
NO prior TDXD


Confirmed Best Overall Response by Central Review, n (%)	120 mg n = 58	240 mg n = 55	60 - 40 -	120 mg n = 58	60 - (%)	240 mg n = 55
ORR	42 (72.4)	43 (78.2)	%) 20-		⊗ □ 20	
CR	1 (1.7)	2 (3.6)	SL	<u> </u>	SL o	
PR	41 (70.7)	41 (74.5)	-20 -		.⊑ -20-	THE RESERVE
DCR	55 (94.8)	55 (100.0)	chang		change -40 •	
SD	13 (22.4)	12 (21.8)	st cl		ts -60	
PD	3 (5.2)	0	-80 -	1	8 0 -80 -	7
NE	0	0	-100	1	-100	•

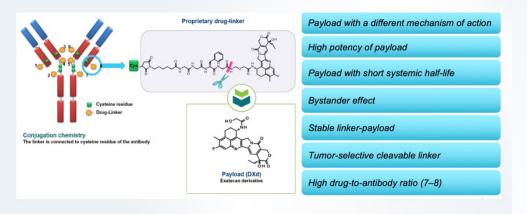
Confirmed BOR (RANO-BM) by BICR	120 mg n = 27	240 mg n = 25	
ORR, n (%)	9 (33)	10 (40)	
95% CI	19–52	23-59	

BAY 2927088

HER2 mutations
Previously treated
NO prior "targeted therapy"

BAY 2927088 20 mg twice daily

What about HER2 overexpression?

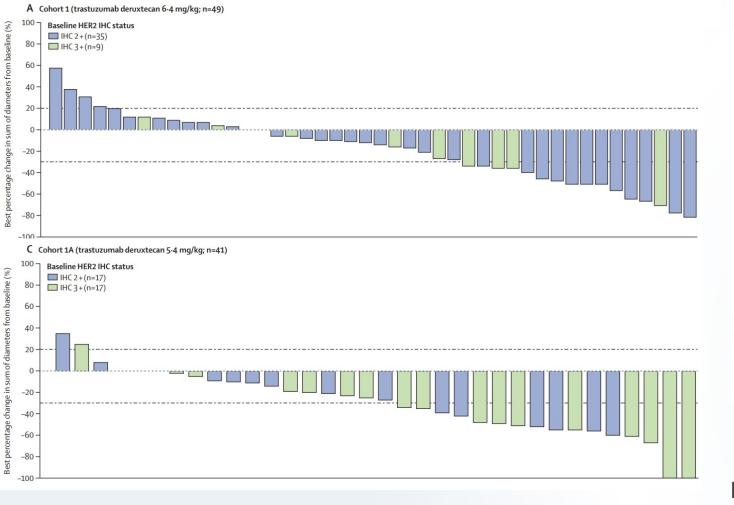

HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers

Li et al, JTO 2015, Hirsch et al, Molecular and Cellular Pathology 2002

Same tool...different target

Fam-Trastuzumab Deruxtecan-nxki

Tsurutani et al, WCLC 2018


FDA approval for trastuzumab deruxtecan:

- adult patients with unresectable or metastatic non-small cell lung cancer (NSCLC) whose tumors have activating HER2 (ERBB2) mutations, as detected by an FDA approved test, and who have received a prior systemic therapy.*

 (1.3)
- adult patients with unresectable or metastatic HER2-positive (IHC 3+) solid tumors who have received prior systemic treatment and have no satisfactory alternative treatment options.* (1.5)

Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial Smit et al, Lancet Onc 2024

Egbert F Smit, Enriqueta Felip, Dipesh Uprety, Misako Nagasaka, Kazuhiko Nakagawa, Luis Paz-Ares Rodríguez, Jose M Pacheco, Bob T Li, David Planchard, Christina Baik, Yasushi Goto, Haruyasu Murakami, Andreas Saltos, Kaline Pereira, Ayumi Taguchi, Yingkai Cheng, Qi Yan,

DESTINY-Luna01

DESTINY-Lung01 (NCT03505710) was a multicenter, open-label, 2-cohort trial that included 17 patients with previously treated, unresectable, or metastatic, centrally confirmed HER2-positive (IHC 3+) NSCLC. Patients must have relapsed from or be refractory to standard treatment or have no available standard treatment.

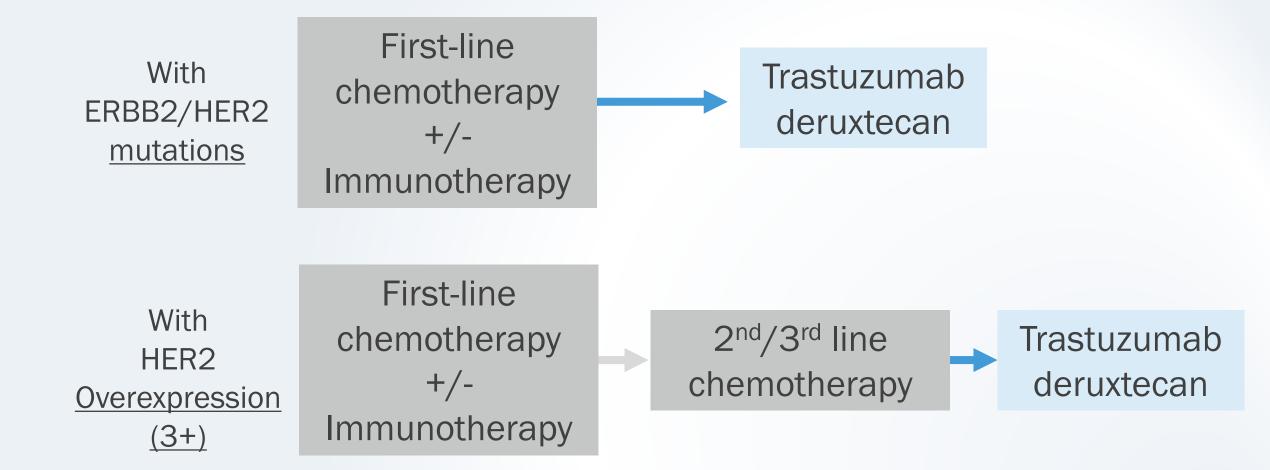
The median age was 59 years (range 31 to 74); 59% were male; 65% were White, 18% were Asian, and 12% were Black or African American. Patients had an ECOG performance status of either 0 (12%) or 1 (88%) at baseline. The median number of prior regimens in any treatment setting was 3.

Table 23: Efficacy Results in HER2-Positive (IHC 3+) Patients in DESTINY-PanTumor02, DESTINY-Lung01, and DESTINY-CRC02

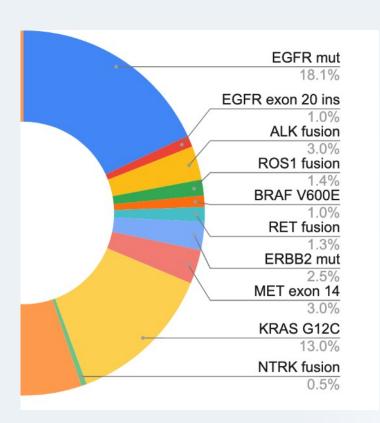
Efficacy Parameter	DESTINY-PanTumor02	DESTINY-Lung01	DESTINY-CRC02
	N=111	N=17	N=64
Confirmed ORR	51.4%	52.9%	46.9%
(95% CI)†‡	(41.7, 61.0)	(27.8, 77.0)	(34.3, 59.8)
Complete Response Rate	2.7%	5.9%	0%
Partial Response Rate	48.6%	47.1%	46.9%
Duration of Respons	se†		
Median§, months	19.4	6.9	5.5
(range)	(1.3, 27.9+)	(4.0, 11.7+)	(1.3+, 9.7+)

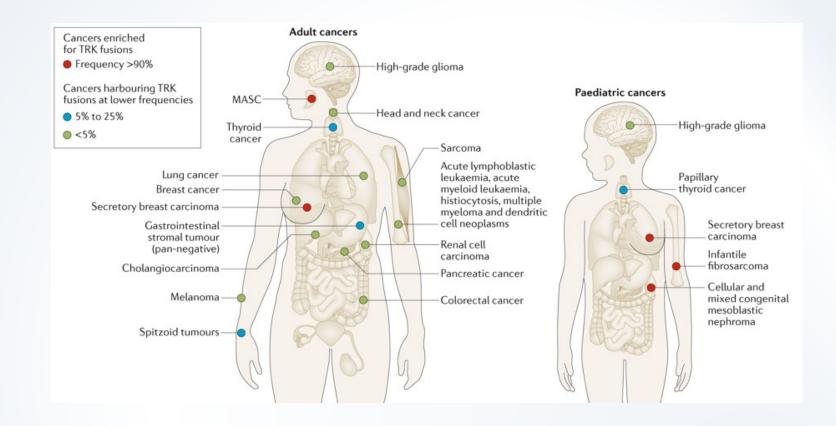
CI=Confidence interval

†Assessed by independent central review


‡CI is derived based on the Clopper-Pearson method

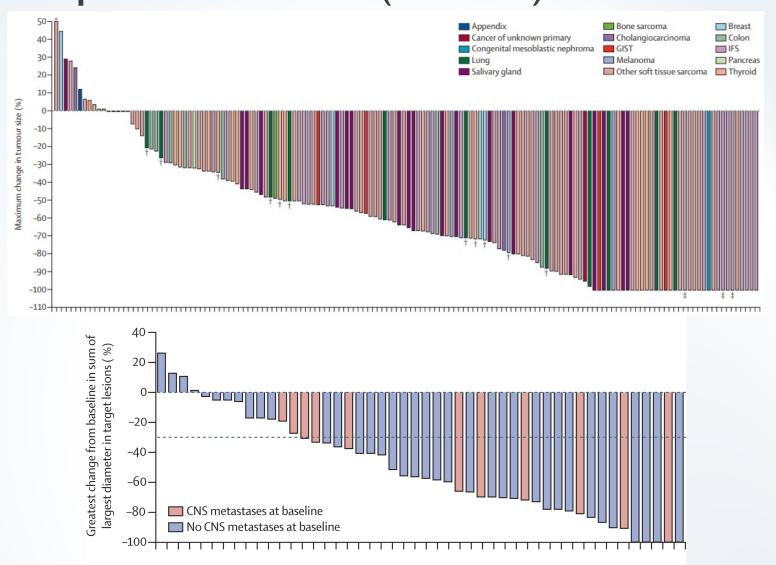
§Calculated using the Kaplan-Meier technique


+ Denotes ongoing response


Fam-trastuzumab-deruxtecan, prescribing information

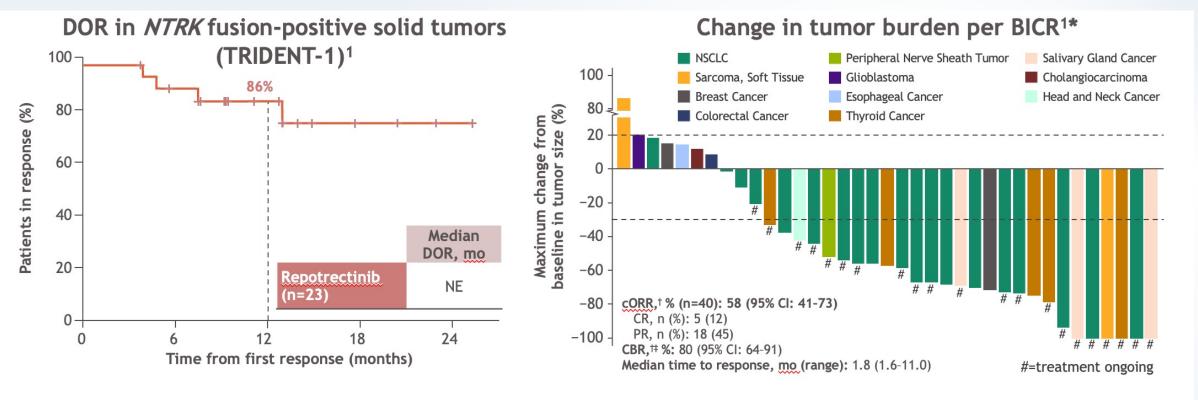
For patients with metastatic lung cancer:

NTRK fusions are found across diverse adult and pediatric cancers


TRK inhibitors in TRK fusion positive cancers (all sites)

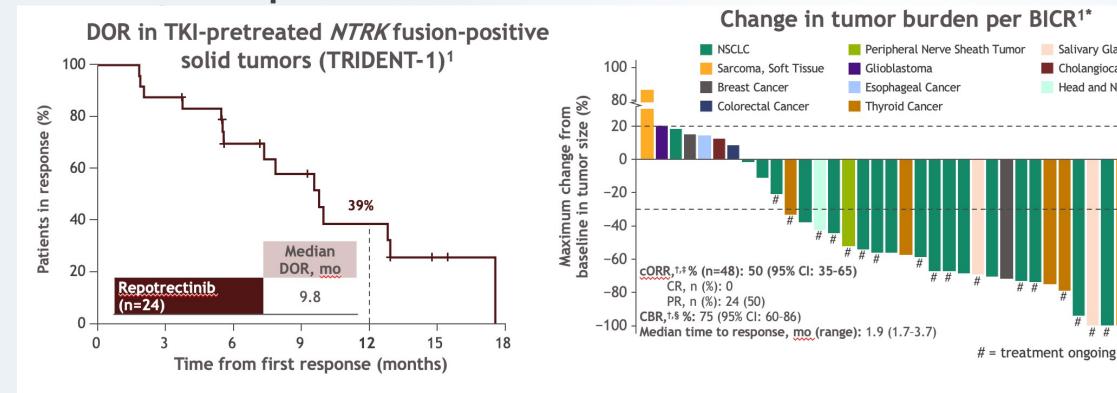
Larotrectinib

Response rate 63% (Lung RR 75%) mDOR 35.2 months mPFS 28.3 months


Entrectinib

Response rate 50% (Lung RR 70%) mDOR 10.4 months mPFS 11 months

Doebele et al, Lancet Onc 2020; Hong et al Lancet Onc 20

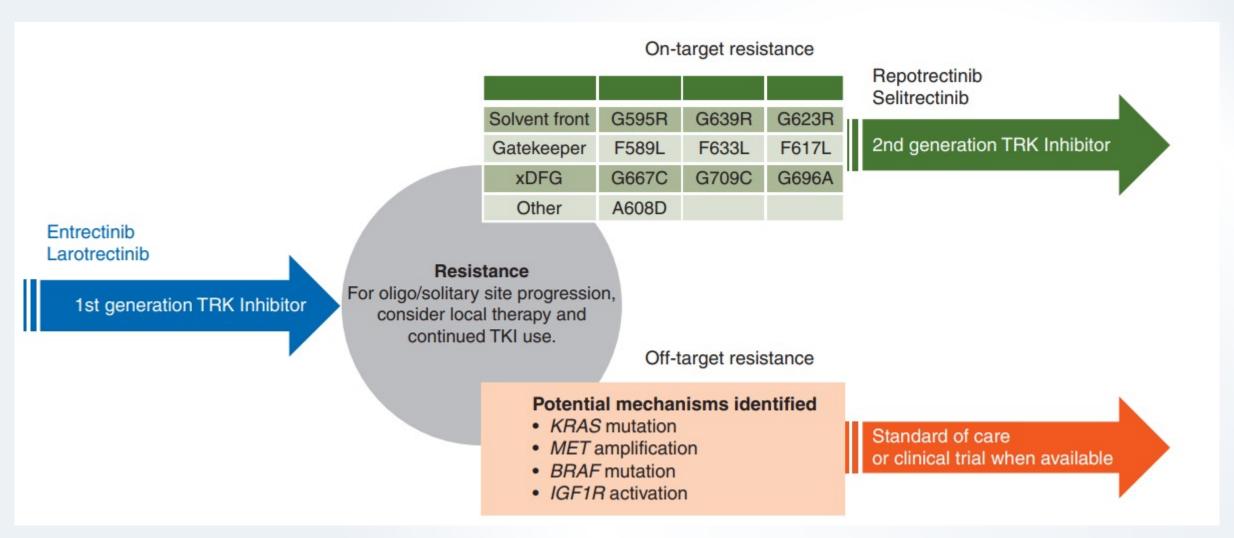

Repotrectinib in patients with TKI-naïve NTRK fusion positive solid tumors

- Median PFS was NE (95% CI: 5.5-NE)¹
- ORR in patients with NTRK fusion-positive NSCLC was 62% (95% CI: 38-82) with 12-month DOR of 92% (95% CI: 76-100)¹
- All patients with measurable brain metastases responded to repotrectinib (2 PRs in TKI-naïve patients)¹
- In the CARE trial, repotrectinib demonstrated clinical anti-tumor activity in pediatric patients with NTRK fusion-positive tumors²

Median follow-up for TKI-naïve patients: 17.8 months¹; median follow-up for TKI-pretreated patients: 20.1 months.¹ Data cutoff date for pediatric patients: August 2, 2021.²
Repotrectinib is approved in the US for the treatment of patients with ROS1+ metastatic NSCLC and patients with NTRK+ solid tumors⁵ who have progressed following treatment or have no satisfactory alternative therapy.³
*Two patients with NSCLC and 1 patient with soft tissue sarcoma had no post-baseline scan. ¹By RECIST v1.1. ‡CBR was defined as CR + PR + SD; 22% (n=9) and 12% (n=5) of patients, respectively, had SD or PD. ⁵Accelerated approval.³
1. Solomon B et al. Poster presentation at ESMO 2023. Abstract 1372P. 2. Dubois S et al. Oral presentation at SIOP 2021. Abstract 00113. 3. AUGTYRO [package insert]. Princeton, NJ: Bristol-Myers Squibb Company.

Repotrectinib in patients with TKI-pre-treated NTRK fusion positive solid tumors

- All patients with measurable brain metastases responded intracranially to repotrectinib (3 PRs in TKI-pretreated patients)¹
- In the CARE trial, repotrectinib demonstrated clinical anti-tumor activity in pediatric patients with NTRK fusion-positive tumors²


Median follow-up for TKI-naïve patients: 17.8 months¹; median follow-up for TKI-pretreated patients: 20.1 months.¹ Data cutoff date for pediatric patients: August 2, 2021.² Repotrectinib is approved in the US for the treatment of patients with ROS1+ metastatic NSCLC and patients with NTRK+ solid tumors who have progressed following treatment or have no satisfactory alternative therapy. *One patient did not have post baseline tumor size measurement.¹ †By RECIST v1.1.¹ †CORR for patients with prior larotrectinib (n=23), 44% (95% CI: 23-66); CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (95% CI: 33-74). CORR for patients with prior entrectinib (n=24), 54% (n=24), 54%

Salivary Gland Cancer

Head and Neck Cancer

Cholangiocarcinoma

For patients with NTRK positive cancers

