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Objectives

• Why is molecular testing for patients with leukemias so important?

• What testing is appropriate?

• Where is this field heading?
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Why is molecular testing important?

• Understanding causation

• Providing prognostic information

• Predicting response to specific therapies

• Monitoring response to therapy

• Defining new therapeutic approaches
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What molecular testing is necessary?

• Morphology
• Microscopy of blood and bone marrow

• Immunophenotyping
• Flow cytometry

• Cytogenetics
• Karyotype
• FISH

• Next generation sequencing (NGS)
• Quantitative studies of specific mutations (such as NPM1)

Recommendations by the College of American Pathologists and ASH(CAP/ASH), endorsed by ASCO
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Morphology

AML ALL

Still the best way to rapidly assess “atypical cells”…

ASH Image Bank
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Morphology
…and to assess for promyelocytes (APL)

ASH Image Bank

“Don’t miss diagnosis”
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Multiparameter flow cytometry

Provides qualitative and 
quantitative information about 
cellular differentiation states

Has largely replaced cytochemical staining, 
such as for myeloperoxidase
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Karyotype

Provides comprehensive information about large scale chromosome structure…

8;21 translocation

…but requires the need (and time) to generate metaphases and expert analysis
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Karyotype

Complex karyotype

• Associated with prior exposure to mutagens (radiation, cytotoxic chemotherapy)
• Associated with defects in DNA repair (including heritable syndromes)
• Associated with poor prognosis
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FISH

Rapid and highly sensitive…

Fluorescence in situ hybridization 
(8;21 translocation)

…but only generates data on specific translocations being interrogated
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NGS: Next Generation Sequencing

Actionable gene panel is continuing to expand

• TP53
• Myelodysplasia-related gene mutations

• ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, ZRSR2
• Targetable mutations

• FLT3, IDH1, IDH2
• Mutations that can be analyzed with high sensitivity for disease monitoring (NPM1)
• Copy number variations (CNVs)
• Therapeutic dependencies
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Diagnosis and management of AML in adults:
2022 recommendations from an international expert panel

on behalf of the ELN (European LeukemiaNet)

Blood, 2022, 140:1345-1377
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What is the future of molecular testing?

• Defining targetable dependencies
• Using machine learning to derive novel molecular information
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What are “Dependencies”?

• Molecular changes in a cancer cell that render that cell susceptible to 
targeting a different pathway

• A form of “synthetic lethality”
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A targetable dependency in AML:
Menin inhibitors with KMT2A rearrangements or NPM1 mutations

https://syndax.com/treatment/revumenib-sndx-5613/



17Winship Cancer Institute | Emory University

A targetable dependency in AML:
Multiple pathways lead to activation of the transcription factor STAT3
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Immunostaining can detect activated STATs in AML

Scott Rodig, Brigham and Women’s Hospital

Anti-P-STAT3 
immunohistochemistry
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Novel approaches to targeting activated STATs in AML

• Antisense oligonucleotides

• Targeted degraders of STATs

• Small molecule STAT inhibitors (Winship trials in development)
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Histologic stains of bone marrow and blood contain a huge 
amount of information content

LaboratoryTests.org
LaboratoryIntern.com

Wright Stain: Developed by James Homer Wright in 1902
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Back to the Future:
Machine learning and AML prediction

Predicting risk of relapse post-transplant:

Anant Madabhushi, et al.
JCO Clin Cancer Informatics, 2022; 6:e2100156 
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FIG 1. Overview of the approach used in this article. First, the data set was randomly divided into training (St, n = 52) and validation (Sv, n = 40) sets.
Six random 512 × 512 micron tiles were then selected from every Wright-Giemsa–stained aspirate slide image. Myeloblasts were segmented on all tiles,
and features associated with the myeloblast shape and chromatic pattern were extracted. A subset of two features (continued on following page)

Relapse Prediction Using Image Biomarkers in Leukemia

JCO Clinical Cancer Informatics 3
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FIG 1. Overview of the approach used in this article. First, the data set was randomly divided into training (St, n = 52) and validation (Sv, n = 40) sets.
Six random 512 × 512 micron tiles were then selected from every Wright-Giemsa–stained aspirate slide image. Myeloblasts were segmented on all tiles,
and features associated with the myeloblast shape and chromatic pattern were extracted. A subset of two features (continued on following page)

Relapse Prediction Using Image Biomarkers in Leukemia

JCO Clinical Cancer Informatics 3

Training set: 40 patients, half of whom relapsed
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Machine learning and AML prediction
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FIG 1. Overview of the approach used in this article. First, the data set was randomly divided into training (St, n = 52) and validation (Sv, n = 40) sets.
Six random 512 × 512 micron tiles were then selected from every Wright-Giemsa–stained aspirate slide image. Myeloblasts were segmented on all tiles,
and features associated with the myeloblast shape and chromatic pattern were extracted. A subset of two features (continued on following page)

Relapse Prediction Using Image Biomarkers in Leukemia
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Identifying
Early myeloid cells

Anant Madabhushi, et al.
JCO Clin Cancer Informatics, 2022; 6:e2100156 
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Machine learning and AML prediction

JCO Clin Cancer Informatics, 2022; 6:e2100156 

Four types of features quantitated:
• Early myeloid cell statistics

• Percentage and area ratio
• Haralick texture

• 52 features related to chromatin pattern
• Fractal dimension

• 64 features related to complexity and irregularity of structures
• Shape features

• 96 measurements related to shape irregularity and distortion
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Machine learning and AML prediction

JCO Clin Cancer Informatics, 2022; 6:e2100156 
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FIG 1. Overview of the approach used in this article. First, the data set was randomly divided into training (St, n = 52) and validation (Sv, n = 40) sets.
Six random 512 × 512 micron tiles were then selected from every Wright-Giemsa–stained aspirate slide image. Myeloblasts were segmented on all tiles,
and features associated with the myeloblast shape and chromatic pattern were extracted. A subset of two features (continued on following page)

Relapse Prediction Using Image Biomarkers in Leukemia

JCO Clinical Cancer Informatics 3

Generation of a pathologic risk score (PRS)
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Machine learning and AML prediction

JCO Clin Cancer Informatics, 2022; 6:e2100156 
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FIG 1. Overview of the approach used in this article. First, the data set was randomly divided into training (St, n = 52) and validation (Sv, n = 40) sets.
Six random 512 × 512 micron tiles were then selected from every Wright-Giemsa–stained aspirate slide image. Myeloblasts were segmented on all tiles,
and features associated with the myeloblast shape and chromatic pattern were extracted. A subset of two features (continued on following page)
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Generation of a pathologic risk score (PRS)
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Conclusions

What molecular tests does every patient need:

• Morphology of blood and bone marrow
• Flow cytometry
• Cytogenetics

• Karyotype
• FISH

• Next generation sequencing (NGS)
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Future Directions

• New molecular targets are being identified

• Targetable molecular dependencies will continue 
to be identified

• Machine learning is likely to have a major impact 
on diagnosis and therapeutic selection


