

Cardio-Oncology: A Path Towards Bigger and Bolder Cancer Care

Anant Mandawat, MD FACC Director, Cardio-Oncology Center of Excellence Winship Cancer Institute Heart & Vascular Center Emory University School of Medicine

Debates and Didactics in Hematology and Oncology Sea Island, GA July 26, 2024

> *Winship Cardio-Oncology: To lead in collaborative cardiac care for patients with cancer*

Disclosures

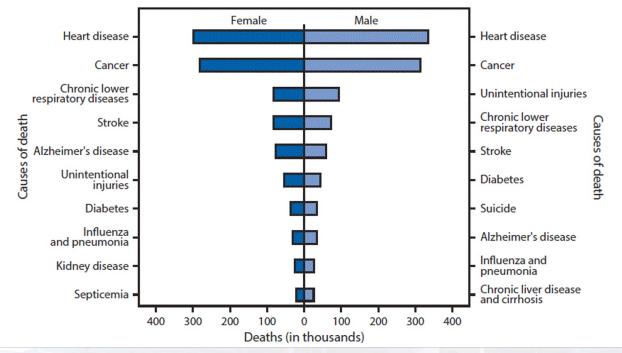
Grants/Research Support:

- Pfizer
- Myovent
- Prostate Cancer Foundation
- National Comprehensive Cancer Network
- Morningside Center for Innovation

Objectives

• Describe the epidemiology of cardiac disease and cancer

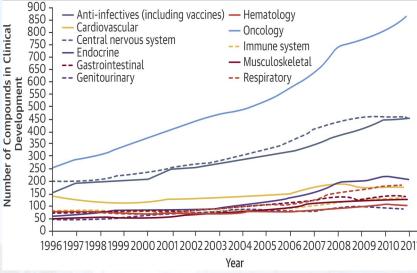
• Develop a clinical framework to approach Cardio-Oncology


 Understand risk stratification in Cardio-Oncology Ex. Anthracyclines

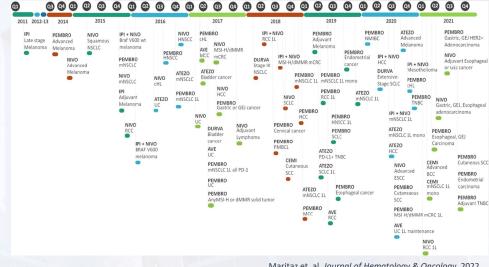
- Clinical tools
- Strain imaging

The Epidemiology of Cancer & Cardiac Disease

Top 10 Causes of Death in the US



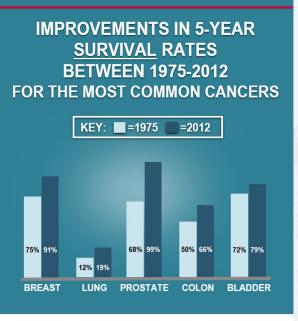
QuickStats: Number of Deaths from 10 Leading Causes, by Sex — National Vital Statistics System, United States, 2015. MMWR Morb Mortal Wkly Rep 2017;66:413. DOI: http://dx.doi.org/10.15585/mmwr.mm6615a8External

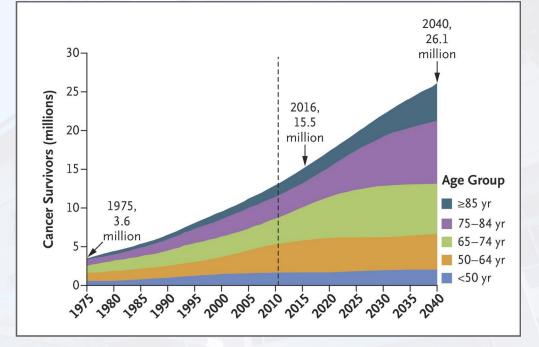


Increase in cancer therapies over time

Innovative phase I-III compounds

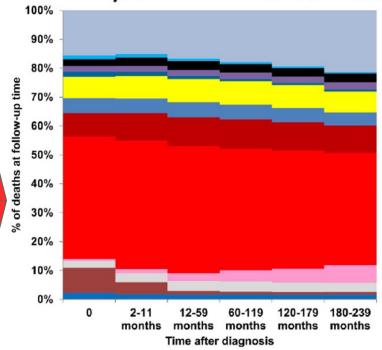
Expansion of immunotherapy indications




N Fordyce et. al, JACC 2015

Maritaz et. al, Journal of Hematology & Oncology, 2022

Improvement in Cancer Outcomes


CL Shapiro. N Engl J Med 2018;379:2438-2450.

seer.cancer.gov

Top Non-Cancer Causes of Death in Cancer Patients

Objective III: Non-cancer deaths vs. follow-up time

Suicide and self-inflicted injury	1
- • • • • • • • • • • • • • • • • • • •	

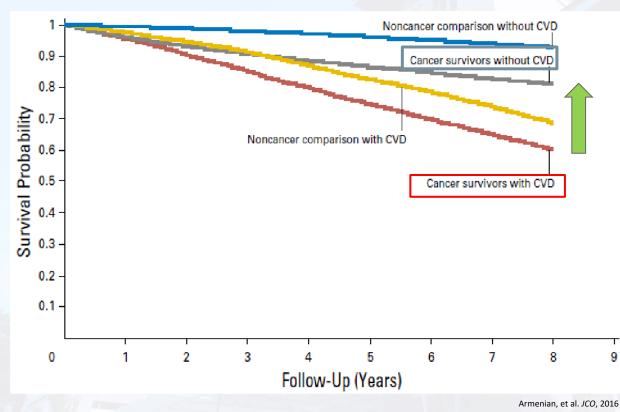
Accidents and adverse events

 Nephritis, nephrotic syndrome, nephrosis
Chronic liver disease

COPD

Other

- Pneumonia and Influenza
- Cerebrovascular Diseases
- Diseases of Heart
- Alzheimer's
- Diabetes Mellitus

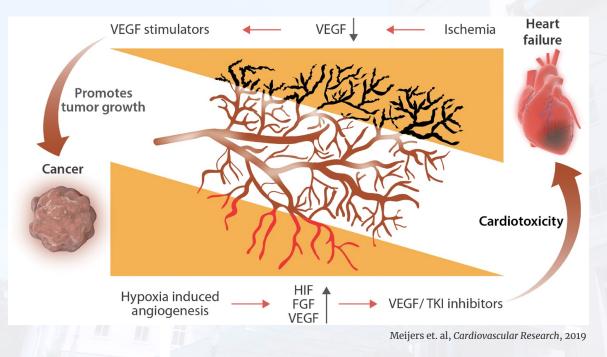

 Other Infectious and Parasitic Diseases including HIV
Septicemia

Zaorsky et al. Ann Oncol 2017

EMORY WINSHIP CANCER INSTITUTE

Survival of Patients with Cancer & CVD

All Cancer Survivors



- >36k cancer survivors Kaiser Permanente-SEER
- Cancer survivors with CVD have worst survival out of any group
- Goal is to move them up the curve to improve outcomes

Framework to Approach Cardio-Oncology


Competing Therapeutic Dynamic of Cancer and CVD

- In cancer treatment, the goal is to starve/target/destroy malignant cells
- In heart disease, the goal is to heal/nourish/protect cardiac myocytes
- Ex. VEGF inhibitor

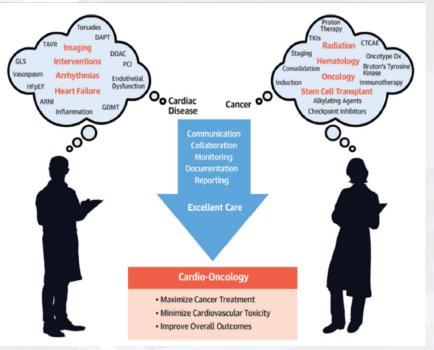
Overview of Cardiotoxicity

Broad Spectrum

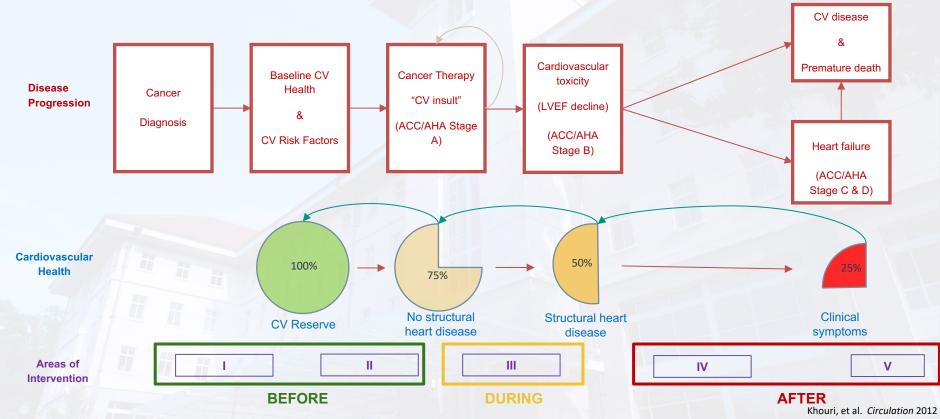
Acute & chronic

Team-based approach

Figure 1. An overview of the cardiovascular side effects of chemotherapy and radiation.

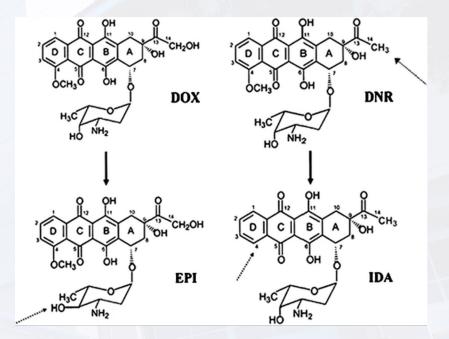

Implications of Cardiac Toxicity in Cancer Patients

- Interruption, or discontinuation of cancer therapy
- Physical morbidity & mortality of CVD
- Psychological impact of an additional severe comorbidity
- Disqualification from oncology clinical trials


Cardio-Oncology: A Path Towards Bigger & Bolder Cancer Care

- Many cancer therapeutics are associated with cardiovascular complications
- Cardiovascular disease can be a rate-limiting step that excludes patients from optimal treatment and clinical trials
- Collaboration between cardiologists and oncologists can result in bigger and bolder treatment options

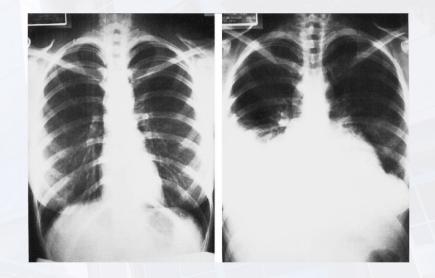
Integrated Approach of CVD & Cancer


Risk Stratification in Cardio-Oncology

Case Example: Anthracyclines

Anthracycline Experience

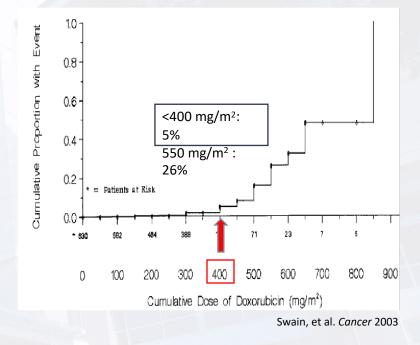
- Doxorubicin discovered from the fungi *Streptomyces peucetius*
- Functions by inhibition of topoisomerase I and II
- Used in clinical oncology starting in 1960s
- Effective in treating a variety of cancers
 - World Health Organization's list of essential medicines


McGowan et. al, Cardiovascular Drugs and Therapy, 2017 Dhingra et. al, Cardio-Oncology: Principles, Prevention, Management, 2017

A CLINICOPATHOLOGIC ANALYSIS OF ADRIAMYCIN CARDIOTOXICITY

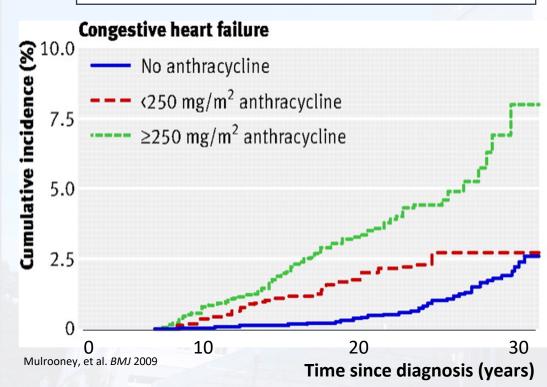
Edward A. Lefrak, MD,* Jan Pitha, MD, PhD,[†] Sidney Rosenheim, MD[‡] and Jeffrey A. Gottlieb, MD[§]

- Reviewed 399 patients at Baylor & MD Anderson treated with Adriamycin
- Found 11 cases of Adriamycin-induced cardiotoxicity
- Only 1 case of toxicity when dose <550 mg/m2. Recommendation to limit dose to 550 mg/m2



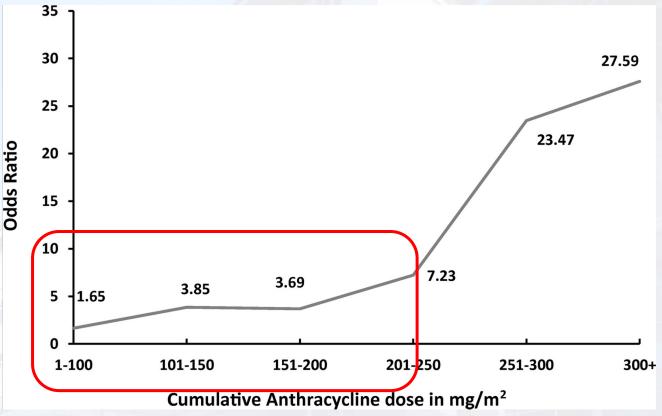
Lefrak et al., Cancer, 1973

Anthracycline Cardiotoxicity: Threshold Lowered


- TTE was not widely available in 1970s, 550 mg/m2 cutoff based on clinical symptoms
- Swain in 2003 studied the rate of heart failure using TTEs in 630 patients with breast and lung cancer who received doxorubicin
- Doxorubicin related HF occured at a lower dose of 400mg/m2 and with greater frequency than previously thought from the 1970s

Even lower threshold for cardiac toxicity

Childhood Cancer Experience


14k survivors of childhood cancer

 With longer follow up, the threshold for cardiac toxicity was even lower at 250 mg/m2

 Solidified a theme for anthracyclines that cumulative dose, even at small doses, can cause cardiac damage

Anthracycline Cardiotoxicity Risk

Armenian & Bhatia, ASCO edbook, 2018

JOURNAL OF CLINICAL ONCOLOGY

ASCO SPECIAL ARTICLE

EMORY WINSHIP CANCER INSTITUTE Notoral Cancer Intilute Designates

Increased Risk for Developing Cardiotoxicity

Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline

Saro H. Armenian, Christina Lacchetti, Ana Barac, Joseph Carver, Louis S. Constine, Neelima Denduluri, Susan Dent, Pamela S. Dougda, Jaun-Bernard Durand, Michael Ewer, Carol Fabian, Meissa Hudon, Mariell Jesup, Lee W. Jones, Bonnie Ky, Erica L. Mayer, Javid Modelni, Kevin Orffinger, Katharine Ray, Kathryn Ruddy, and Daniel Lenihan

- High dose anthracyclines (>=250mg/m2 doxorubicin; >=600mg/m2 epirubicin)
- High dose (>30 Gy) radiotherapy (RT) with heart in treatment field
- Lower dose anthracyclines (eg. <250 mg/m2 doxorubicin) with lower dose RT (<30 Gy) and heart in treatment field
- Treatment with lower dose anthracyclines (eg <250mg/m2 doxorubicin) with trastuzumab sequentially
- Lower dose anthracycline (eg. <250mg/m2 doxorubicin) or trastuzumab alone, and any of the following:
 - Multiple (>=2) CV risk factors: smoking, HTN, diabetes, dyslipidemia, obesity
 - Older age (>=60 y) age
 - Compromised CV function (e.g. borderline low LVEF (50-55%), history of MI, moderate valvular disease

Risk level

HFA-ICOS Cardio-Oncology Risk Calculator

Table 2 Baseline cardiovascular risk stratification proforma for anthracycline chemotherapy

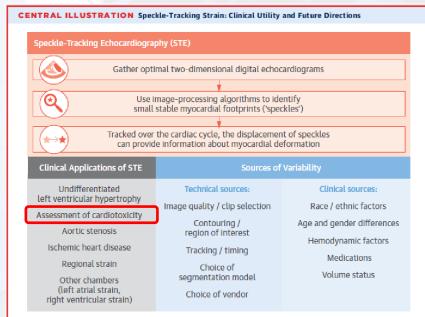
Risk factor Level of Score evidence Previous cardiovascular disease Heart failure or cardiomyopathy В Very high Severe valvular heart disease High C Myocardial infarction or previous coronary revascularisation (PCI or CABG) High С Stable angina High C Baseline LVEF < 50% High B Borderline IVEE 50-54% Medium² С Cardiac biomarkers (where available) Elevated baseline troponin^a Medium¹ С Elevated baseline BNP or NT-proBNP^a Medium¹ С Demographic and cardiovascular risk factors B Age \geq 80 years High Age 65-79 years Medium² В Hypertension^b Medium¹ R Diabetes mellitus^c Medium¹ С Chronic kidney disease^d Medium¹ C Previous cardiotoxic cancer treatment B Previous anthracycline exposure High Prior radiotherapy to left chest or mediastinum С High Previous non-anthracycline-based chemotherapy Medium¹ C Lifestyle risk factors Current smoker or significant smoking history Medium¹ С Obesity (BMI > 30 kg/m²) Medium¹ С

ESC European Society European Heart Journal - Candovascular Imaging (2022) 23, e333-e465 of Candiology https://doi.org/10.1093/shjc/jeac106

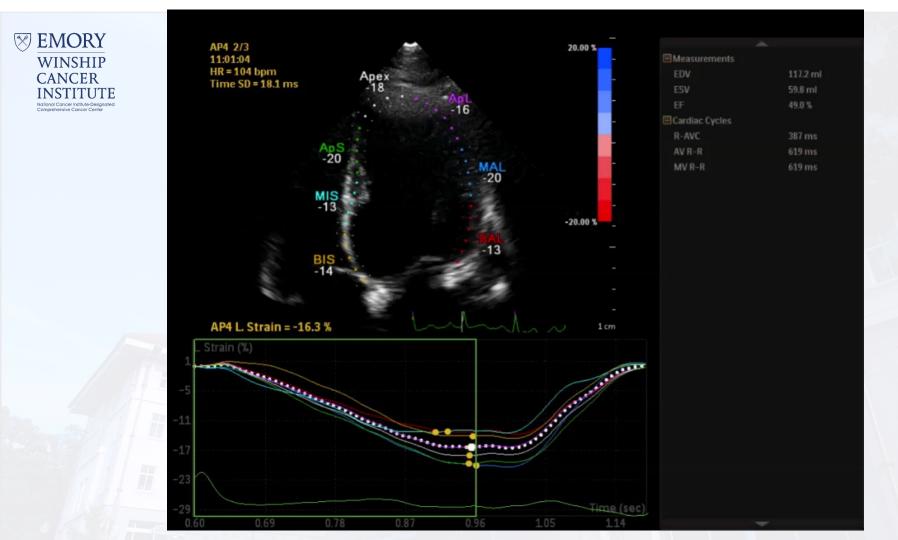
2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)

ESC GUIDELINES

HFA-ICOS Cardio-Oncology cardiovascular risk assessment tool


Overall risk level:						

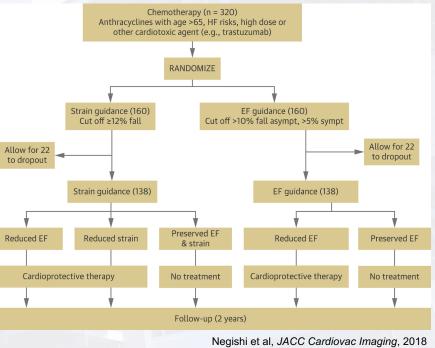
https://www.cancercalc.com/hfa-icos_cardio_oncology_risk_assessment.php


Myocardial Strain Imaging

- Early warning system for detecting cardiotoxicity that is more sensitive than ejection fraction
- Myocardial segments are tracked throughout the cardiac cycle for a change in size or deformation. The deformation values are averaged to generate the global longitudinal strain or GLS
- The higher the absolute number of GLS, the better the LV function i.e. -18% > -12%

Collier, P. et al. J Am Coll Cardiol. 2017;69(8):1043-56.

Speckle-tracking strain is an increasingly used echocardiographic technology that can provide additional (if net potentially incremental) dinical utility. Interpretation of speckle-tracking strain must take into consideration both technical and clinical sources of variability. This technology is a focus of much current research, with the prospect of exciting future developments that are eagerly awaited. 3D = 3-dimensional.



SUCCOUR Trial

(Strain sUrveillance of Chemotherapy for improving Cardiovascular Outcomes)

- **Question:** Is GLS-guided initiation of cardioprotective medications better than LVEF-guided initiation?
- **Design:** International multicenter prospective randomized trial of 331 anthracycline treated patients . Median follow up 1 year
- In the GLS arm, less patients had cancer therapy related cardiac dysfunction (CTCRD) compared to LVEF arm, (6% vs. 14%, p=0.02);
- Among those with cardiotoxicity, GLS arm had a higher LVEF at follow up compared to the LVEF arm (9% vs. 3%, p=0.03)

Thavendiranathan et al, JACC, 2021

Conclusions

- Cardiovascular disease is a leading cause of morbidity & mortality in cancer patients
- There is a competing therpeutic dynamic between cancer treatment and cardiac health, highlighting the need for collaboration to deliver bigger and bolder cancer care and improve outcomes
- Risk stratification, using clinical tools and strain imaging, can identify high-risk patients who would benefit from cardiooncology care

	Arrhythmia	Cardio-	Arterial vascular	Venous thrombo-	Pulmonary	Systemic	Pericardial	Valvular
Conventional chemotherapies	Arriyunnia	myopathy	disease	embolism	hypertension	hypertension	disease	heart disease
Anthracyclines (doxorubicin, epirubicin)		✓						
Alkylating agents (cyclophosphamide, melphalan)	1	1	1					
Antimetabolites (5-fluorouracil, capecitabine, cytarabine)		1	\checkmark				Cytarabine	
Microtubule-binding agents (paclitaxel)	\checkmark		\checkmark					
Platinum-based therapy (cisplatin)			1	1		1		
Antibiotic (bleomycin)			\checkmark		\checkmark			
Immunomodulatory drugs (thalidomide)	\checkmark			\checkmark				
Targeted agents								
Proteasome inhibitors (bortezomib, carfilzomib)		\checkmark	\checkmark			1		
HDAC inhibitors (vorinostat)	1							
CDK4/CDK6 inhibitors (ribociclib)	1							
mTOR inhibitors (everolimus)	\checkmark	\checkmark	1	1		\checkmark		
HER2 inhibitors (pertuzumab, trastuzumab)		1						
VEGF inhibitors (bevacizumab, sunitinib)		\checkmark	\checkmark	1		\checkmark		
BCR-ABL1 inhibitors (dasatinib, nilotinib, ponatinib)	1		1	1	Jasatinib			
BTK inhibitors (ibrutinib)	\checkmark							
ALK inhibitors (alectinib, ceritinib, crizotinib)	1				\checkmark			
BRAF inhibitors (dabrafenib)	\checkmark	\checkmark						
MEK inhibitors (binimetinib, cobimetinib, trametinib)	1	1			1			
Immunotherapies								
Immune checkpoint inhibitors	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		1	
CAR T cell therapy	1	\checkmark	1	1	1		1	
Other therapies								
Radiation therapy	1	1	1		\checkmark		1	\checkmark