THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

DERN

DERM

PATH

Making Cancer History[®]

TELG

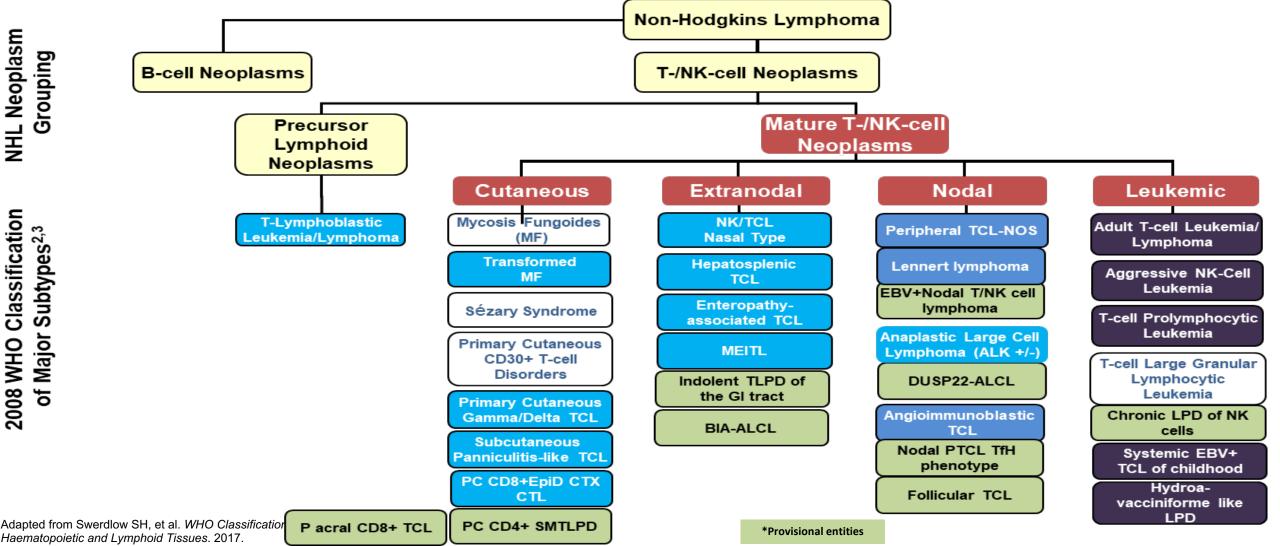
HEM

HEM-L

SCT

RAD-ON

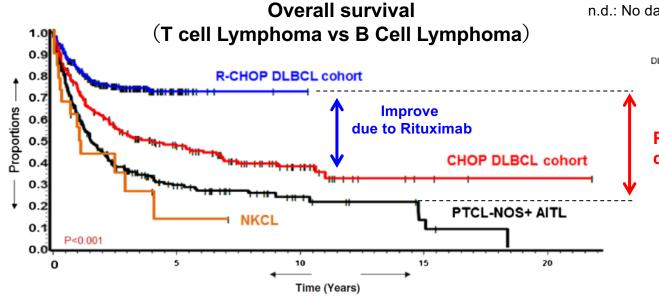
Studies in TCL and regulatory lessons **Dr.Swami lyer Professor of Lymphoma/Myeloma**


Classification of Peripheral T-cell Lymphoma (PTCL)

Making Cancer History®

PTCL is a heterogeneous group of aggressive mature T-/NK-cell lymphomas

PTCL does not refer to anatomic sites, but rather to the involvement of more mature (post-thymic) T cells vs pre-thymic or immature T cells¹



PTCL Prognostic Characteristics

Making Cancer History®

Major subtype of T-cell Lymphoma ¹⁾	Number			
(WHO classification 2008)	US	EU	Japan	5yr OS ^{4) 5)} (%)
 PTCL (Peripheral T-cell lymphoma) PTCL-NOS (PTCL not otherwise specified) AITL (Angioimmunoblastic T-cell lymphoma) ALK (+) ALCL (Anaplastic large-cell lymphoma) ALK (-) ALCL 	3,683	3,033	2,340	32 32 70 49
CTCL (Cutaneous T-cell lymphoma) MF (Mycosis fungoides) SS (Sezary syndrome)	3,466	1,798	278 ³⁾	18 ~ 37*

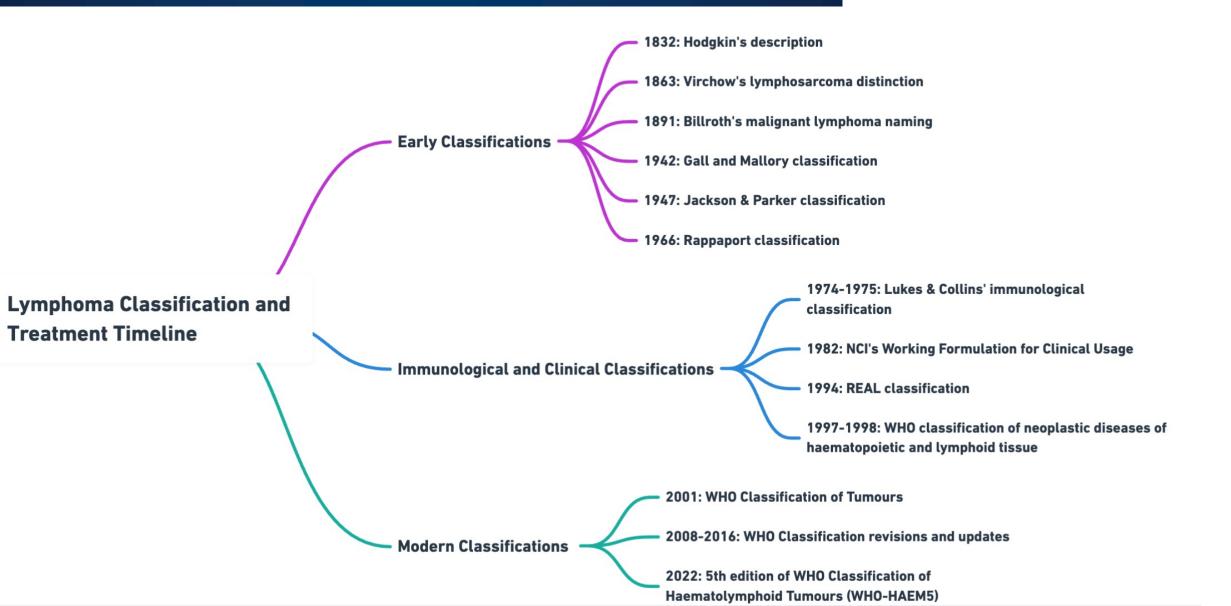
n.d.: No data * Advance stage

Poor survival due to no standard therapy

WHO classification of haematopoietic and Lymphoid Tissues. 2008.
 CancerMPact, Oct, 3, 2019.

3) Hamada TA, et al, Nationwide survey on cutaneous lymphomas. 2008

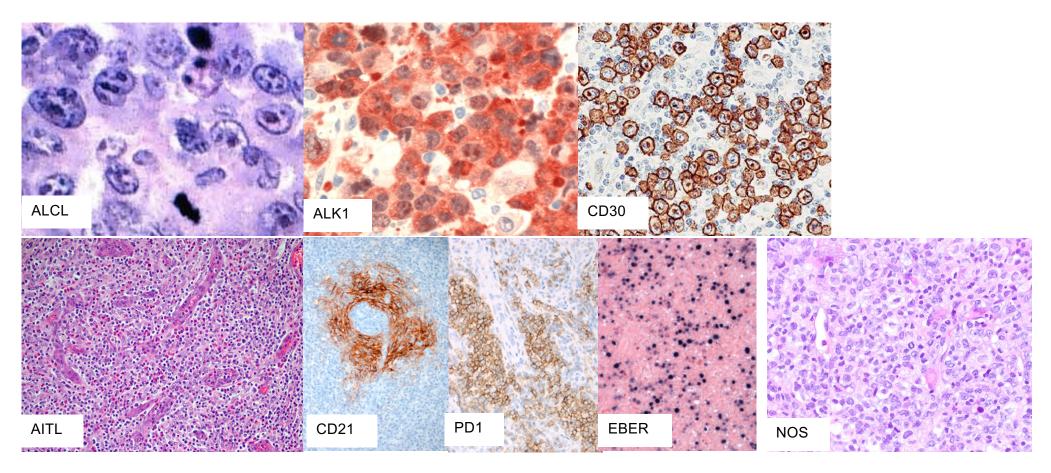
4) International T-cell Lymphoma project, J Clin Oncol.2008.


5) Agar NS, et al, J Clin Oncol. 2010.

6) Lone W, et al, Current Hematologic Malignancy Reports. 2018.

Advances in Lymphoma Biology

Making Cancer History®



Subtype, subtype, subtype: Pathology as basis for diagnosis, prognosis in PTCL

Making Cancer History®

- Approximately 30-50% of PTCL cases are incorrectly diagnosed with conventional diagnostic techniques¹
- Immunophenotypic analysis in conjunction with cellular morphology, analysis of lymph node architecture, and molecular genetic assays

- 1. Armitage J, et al. *J Clin Oncol*. 2008;26:4124–4130.
- . Warnke RA, et al. Am J Clin Pathol. 2007;127:511–527
- 3. Swerdlow SH, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 2008
- Kocjan G. J Clin Pathol. 2005;58:561–567.

Advance

Treatment Adva

T-Cell Lymphoma Subtypes Based on Utility of CHOP Treatment

Always

 Anaplastic large-cell, ALK-1 positive

CHOP variations

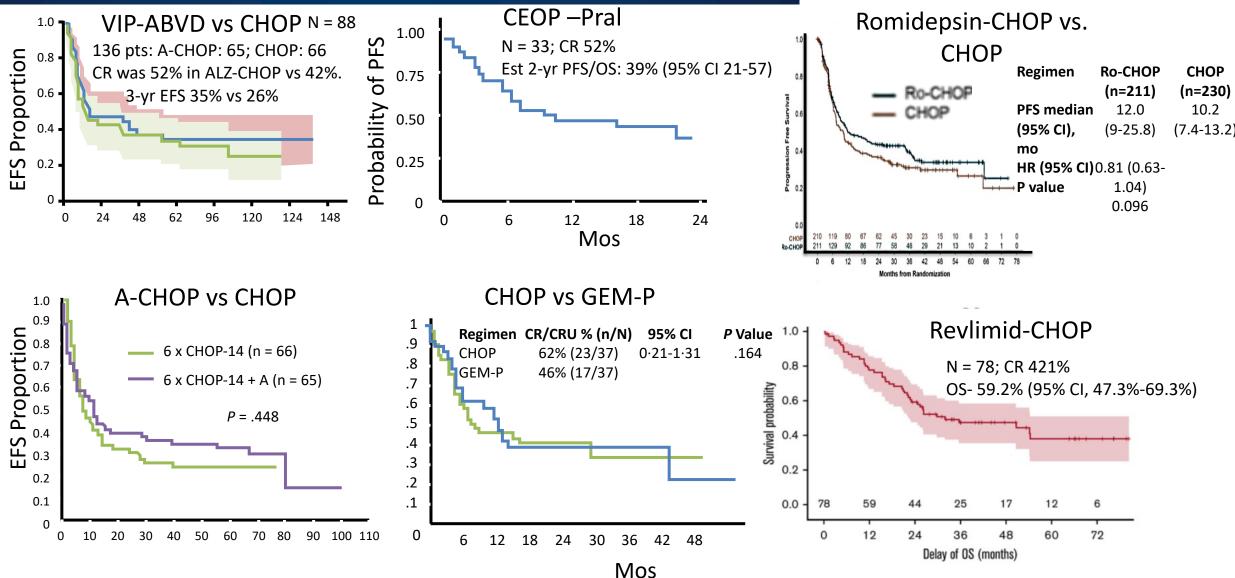
- Peripheral T-cell lymphoma, NOS
- Angioimmunoblastic T-cell lymphoma
- Anaplastic large-cell, ALK-1 negative
- Enteropathy-type intestinal lymphoma
- Subcutaneous panniculitis-like T cell
- Hepatosplenic T-cell lymphoma
- Adult T-cell leukemia/lymphoma

Never

- Mycosis fungoides
- Sézary syndrome
- Primary cutaneous CD30+ disorders
 - Anaplastic large-cell lymphoma
 - Lymphomatoid papulosis
 - T-cell large granular lymphocytic
 - Extranodal NK/T-cell lymphoma, nasal
- NK/T-cell leukemia/lymphoma
- T-cell prolymphocytic leukemia

Making Cancer History®

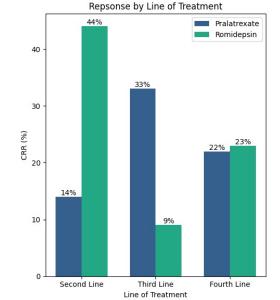
- Is there an R-CHOP?
 - Romidepsin
 - Lenalidomide
 - Alemtuzumab
 - Brentuximab
 - Etoposide
 - Azacitidine
 - PI3K $\gamma\delta$ inhibitors


What is the goal? Increased efficacy with Increased toxicity? Induction prior to consolidation (SCT): CR/safety Increased cure rates: PFS/OS

Gallamini A, et al. Blood. 2007;110:2316-2323. Foss F, et al. 2008 ICML. Abstract.

Selected Attempts To Improve Upon CHOP for PTCL

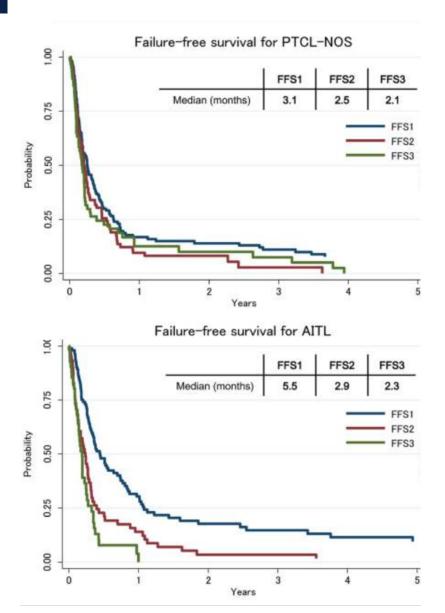
Making Cancer History®


Simon. Br J Haem. 2010. d'Amore. ASH 2018. Advani. Br J Haem. 2016;172:636. Gleeson. Lancet Haem. 2018;5:E190; Bachy et al. Lancet Haem. 2021, Lemmonier et al. Blood Adv, 2021

MDACC Outcomes for PTCL

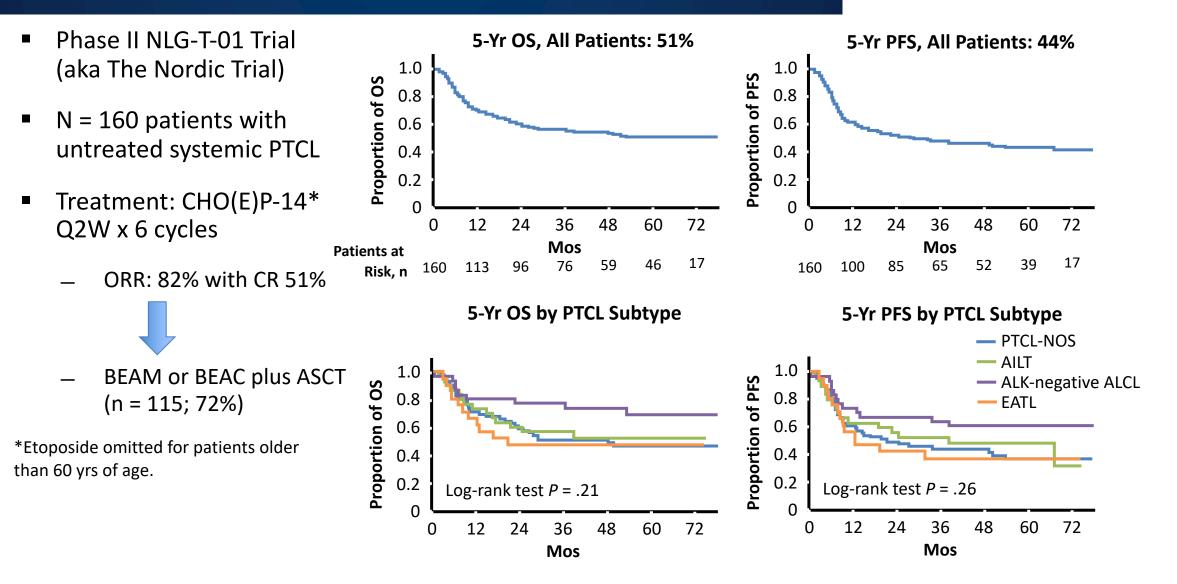
PTCL-NOS, AITL: 321 pts (180 PTCL-NOS, 141 AITL) PFS1: PFS to front-line therapy PFS2: PFS to 1st salvage PFS3: PFS to 2nd salvage

Med OS1, OS2 and OS3 were 47.7, 15.1 and 8.1 mo.


Pralatrexate or Romidepsin at 1st or 2nd salvage TX were not associated with longer PFS2 or PFS3.

	PFS1	PFS2	PFS3
All	10.3	4.1	2.5
PTCL	8.4	3.1	2.5
AITL	13.1	10.9	2.4
	Res	ults: Med	Мо

Making Cancer History®



Chihara D, et al. Br J Haematol. 2017

Intensification — ASCT in PTCL


Making Cancer History®

CD30-Targeted mAbs: In memorium **Dr.Ekhard Podack**

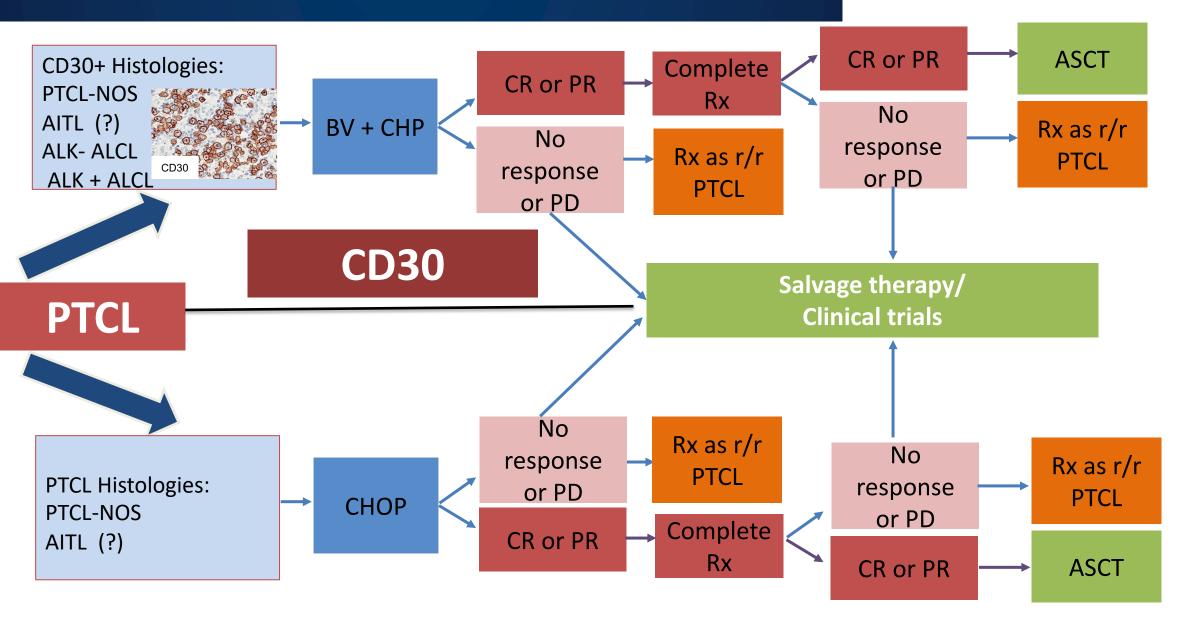
Making Cancer History®

Antibody	KA (M^-1)	KD (nM)	Attributes	8D10F10 mAb	AC10 mAb
10C2	1.65 x 10^9	0.607	Location	Epitope is located in a distinct region of the CD30	Epitope is located in a different region of the
12B1	5.02 x 10^9	0.199		protein	CD30 protein
13H1	6.7 x 10^9	0.149	Cluster	Binds to cluster A of CD30 epitopes	Binds to cluster C
					Recognizes epitopes
15B8	1.02 x 10^9	0.978		Recognizes epitopes with	with motifs YWKIKGLVQPTR,
AC10	6.77 x 10^9	0.148	Epitope Motifs	motifs EEKYEE, DFMLYD, and	LYERDEGDKWRNK, TQQCPQRPTDCR,
8D10	16.9 x 10^9	0.0592		CEPDYYLDE	GTRLAQEAASK, and FKKRIEAIPQIDKYL

Unconjugated Antibody	Antibody Type	Therapeutic Activity in cHL	Therapeutic Activity in sALCL
SGN-30 (cAC10)	Chimerized IgG1 (IgG1)	Minimal activity	17/41 responses
MDX-060	Fully Human	6% ORR in patients with cHL	29% ORR in patients with ALCL

> J Immunol. 1993 Dec 1;151(11):5896-906.

Functional effects of CD30 on a large granular lymphoma cell line, YT. Inhibition of cytotoxicity, regulation of CD28 and IL-2R, and induction of homotypic aggregation


~

M A Bowen¹, K J Olsen, L Cheng, D Avila, E R Podack

CD30 as the predictive marker in TCL

Making Cancer History®

ECHELON-2: Brentuximab Vedotin + CHP vs CHOP in Previously Untreated CD30+ PTCL

Making Cancer History®

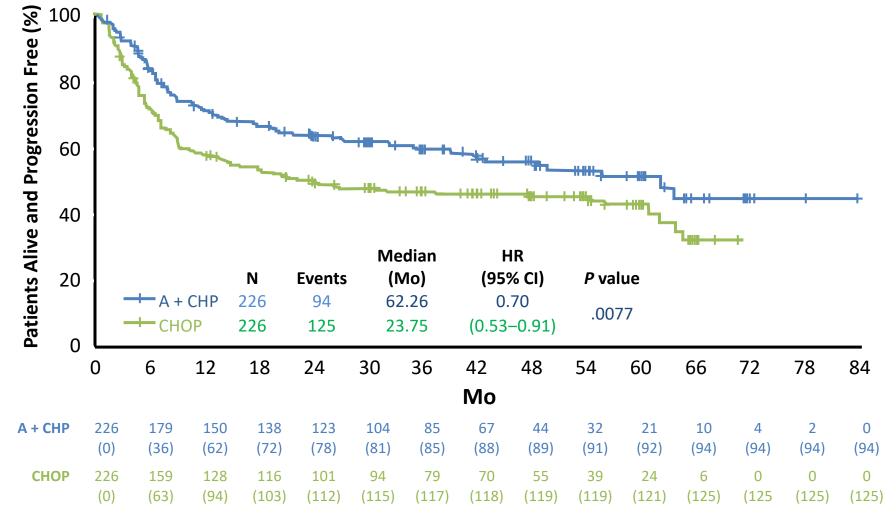
• Multicenter, randomized, double-blind, double-dummy, active-controlled phase III trial

Stratification for IPI score (0-1 vs 2-3 vs 4-5), histologic subtype (ALK+ sALCL vs other subtypes)	BV + CHP Brentuximab Vedotin ⁺ +		A+CHP N=226	CHOP N=226
mistologic subtype (ALK+ SALCE vs other subtypes)	CHP [‡] Q3W for 6-8 cycles +	Disease diagnosis, n (%)		
	Placebo for Vincristine	sALCL	162 (72)	154 (68)
Adult patients with	(n = 226)	ALK+	49 (22)	49 (22)
previously untreated CD30+ (≥10% expression) PTCL*	Interim PET4	ALK-	113 (50)	105 (46)
(210% expression) + 100 (N = 452)	CHOP [‡]	PTCL-NOS	29 (13)	43 (19)
(N – 432)	Q3W for 6-8 cycles +	AITL	30 (13)	24 (11)
	Placebo for Brentuximab Vedotin	ATLL	4 (2)	3 (1)
	(n = 226)	EATL	1 (0)	2 (1)

*PTCL includes sALCL (including ALK+ sALCL with IPI ≥2 and ALK- sALCL), PTCL-NOS, AITL, ATLL, EATL, HSTCL. Study targeted 75% (± 5%) ALCL in line with European regulatory commitment. [†]Brentuximab vedotin 1.8 mg/kg. [‡]Cyclophosphamide 750 mg/m², doxorubicin 50 mg/m², vincristine 1.4 mg/m² (CHOP only), prednisone 100 mg on Days 1-5. G-CSF primary prophylaxis, consolidative RT, SCT per investigator discretion.

- Primary endpoint: PFS per BICR (SCT or RT consolidation not considered events)
- Secondary endpoints: OS, PFS per BICR in sALCL patients, CR, ORR, safety

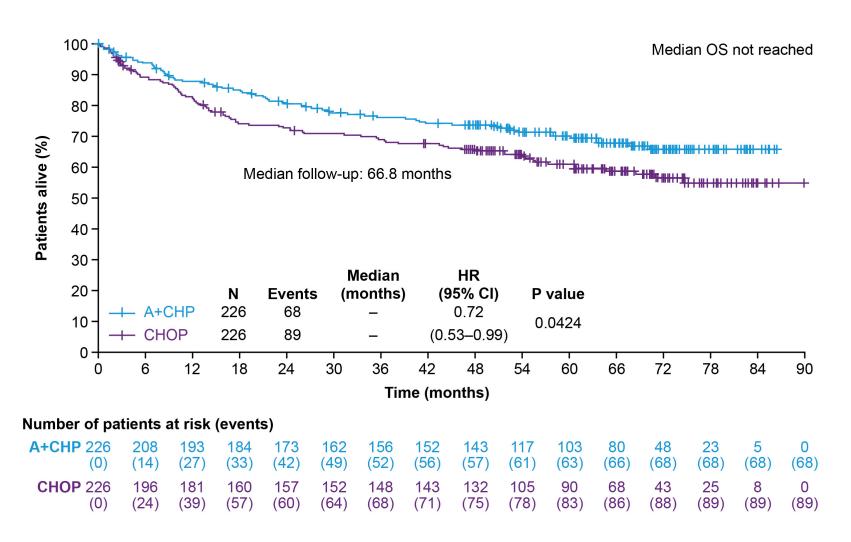
Horwitz. Lancet. 2019;393:229.


ECHELON-2 Exploratory Analysis: PFS at 5 Yr

Making Cancer History®

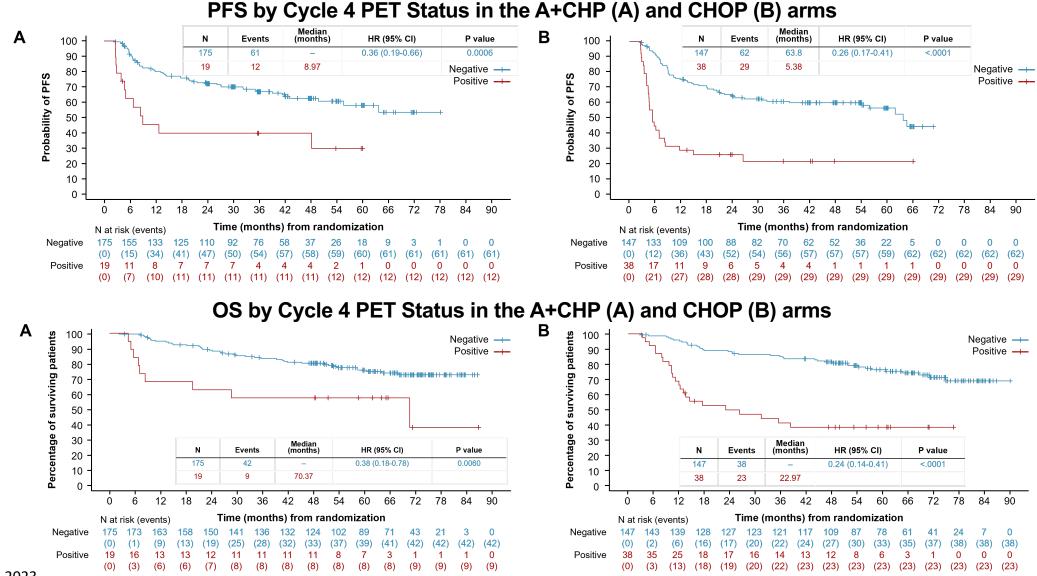
PFS: A+CHP-48.2 months [95% CI = 35.2-not estimable] vs CHOP-20.8 months [12.7-47.6]; hazard ratio [HR] = 0.70 [0.53-0.92])

BV+CHP reduced risk of progression, death, or subsequent anticancer therapy by 30% vs CHOP (investigator assessment)



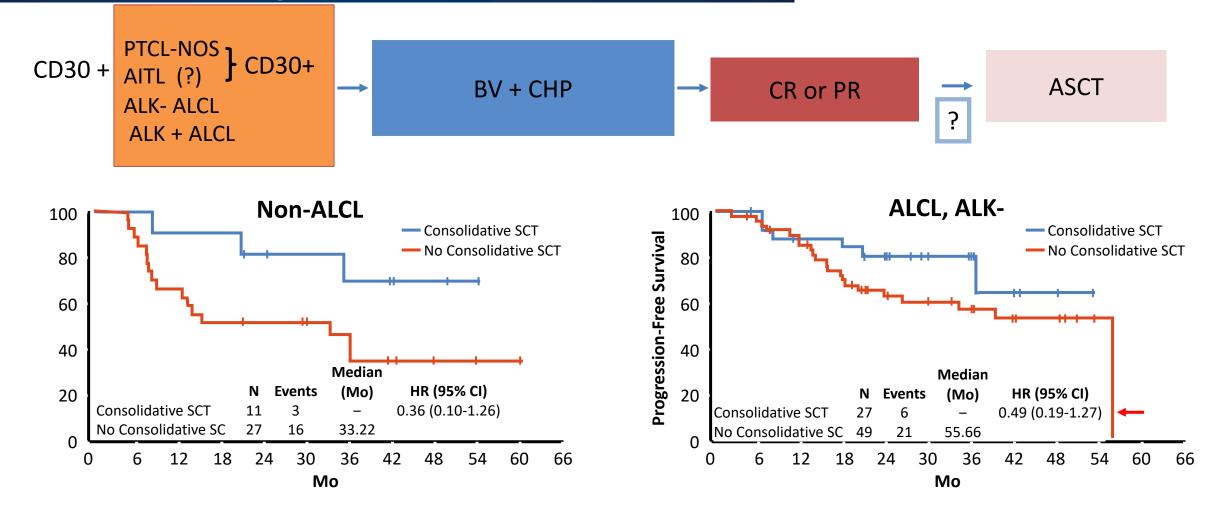
ECHELON-2 Secondary Endpoint: OS

Making Cancer History®


A+CHP reduced the risk of death by 28% compared with CHOP

PET4negative Patients Show Improved PFS and OS in the Overall Population

Making Cancer History®



Iyer S, et al. ASH 2023.

ECHELON-2 Exploratory Analysis: PFS by SCT After CR

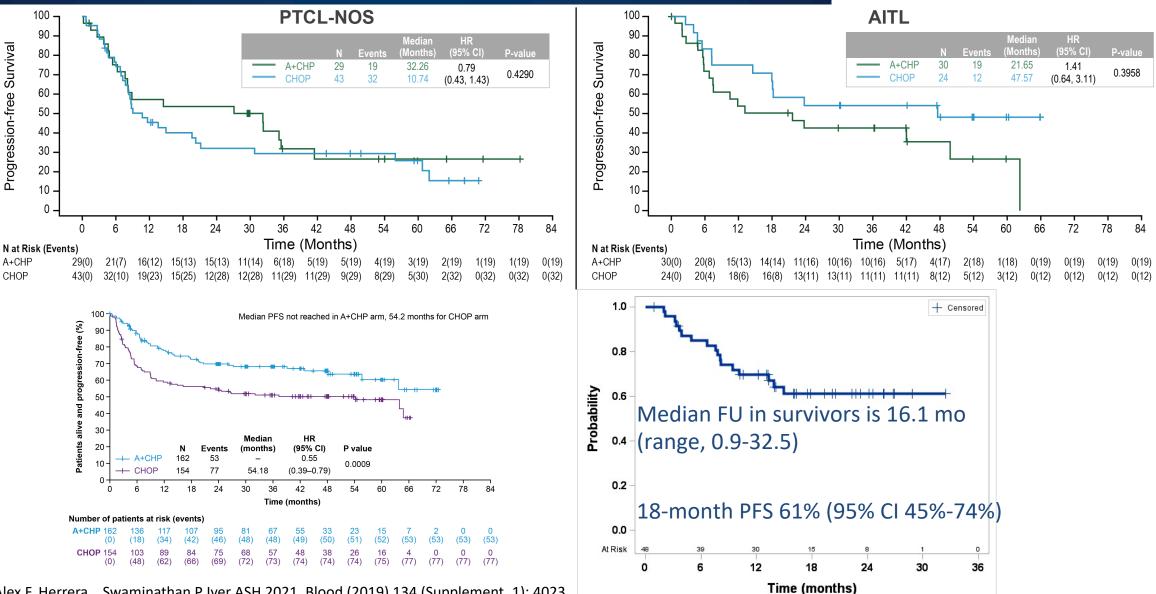
Making Cancer History®

Savage K.....lyer S. Blood Adv. 2022, Apr 25

Response to CHEP-BV

Making Cancer History®

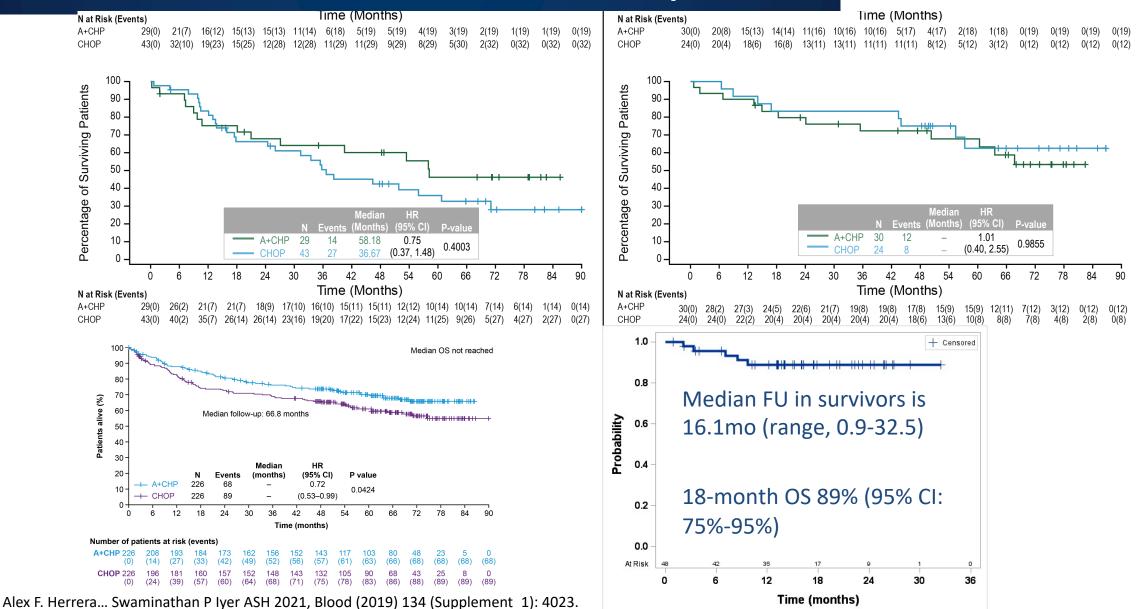
	All Patients (n=46)		
Response	Interim	End of CHEP-BV	
Overall response (ORR)	44 (96%)	42 (91%)	
Complete response (CR)	27 (59%)	37 (80%)	
Partial response (PR)	17	5	
Stable disease (SD)	1	0	
Progressive disease (PD)	1	4	


Response	ALCL (n=16)	Non-ALCL (n=30)	AITL (n=17)	PTCL NOS (n=11)	PTCL TFH (n=2)
Overall response (ORR)	15 (94%)	27 (90%)	16 (94%)	9 (82%)	2 (100%)
Complete response (CR)	15 (94%)	22 (73%)	14 (82%)	6 (55%)	2 (100%)
Partial response (PR)	0	5	2	3	0
Stable disease (SD)	0	0	0	0	0
Progressive disease (PD)	1	3	1	2	0

Alex F. Herrera... Swaminathan P Iyer ASH 2021, Blood (2019) 134 (Supplement_1): 4023.

Summary of PFS CHP-BV (PTCL-NOS, AITL, sALCL vs. CHEP-BV)

Making Cancer History®



Alex F. Herrera... Swaminathan P Iver ASH 2021, Blood (2019) 134 (Supplement 1): 4023.

Summary of OS CHP-BV (PTCL-NOS, AITL, sALCL vs. CHEP-BV)

Making Cancer History®

CHP-BV (CD30 <1 and <10)

Response rate by Investigators

	CD30 <1% (n = 19)	CD30 1% to <1((n = 27)	J/0 /N	otal = 46)
Best overall response ^{a,b} , n (%)				
CR	11 (58)	16 (59)	27 (59)	
PR	5 (26)	4 (15)	9 (20)	
SD	1 (5)	3 (11)	4 (9)	
PD	1 (5)	3 (11)	4 (9)	
NE	1 (5	5) 1 (4) 2	2 (4)
CR rate ^{a,b}	11 (5	58) 16 (5	i9) 21	7 (59)
95% CI ^c for CR rate	(33.5, 79.7) (38.8, 77.6)	(43.2, 73	3.0)
ORR (CR+PR), n (%)	16 (84)	20 (74)	36 (78)
95% Cl ^c for ORR	(60.4, 96.6)	(53.7, 88.9)	(63.6, 89	9.1)

ORR per INV was 76% (61.2, 87.4) overall with 79% (54.4, 93.9) and 74% (53.7, 88.9) for CD30 <1%, CD30 1 to <10%, respectively.

MDAnderson Cancer Center

Making Cancer History®

Safety

Treatment-related TEAEs (>10% of total patients)	CD30 <1% (n = 23)	CD30 1% to <10% (n = 32)	Total (N = 55)
Patients with any event, n (%)	17 (74)	26 (81)	43 (78)
Diarrhea	7 (30)	9 (28)	16 (29)
Nausea	5 (22)	8 (25)	13 (24)
Peripheral sensory neuropathy	5 (22)	7 (22)	12 (22)
Anemia	5 (22)	6(19)	11 (20)
Febrile neutropenia	4 (17)	7 (22)	11 (20)
Lymphopenia	1 (4)	5 (16)	6 (11)
Stomatitis	1 (4)	5 (16)	6 (11)

• No new safety signals were observed

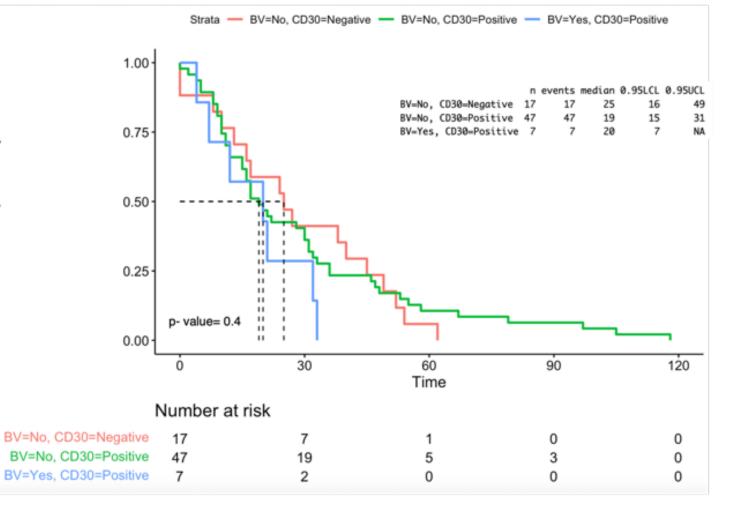
• Three patients (5%) discontinued study treatment due to TEAE

• Sixteen patients (29%) had BV-related TE SAEs

• One patient (2%) had a treatment-related fatal event of general physical health deterioration

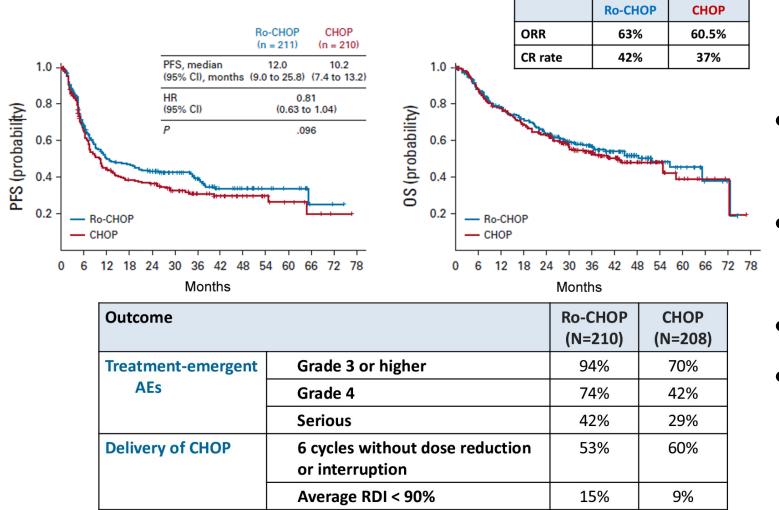
Treatment-emergent SAEs (>5% of total patients)	CD30 <1% (n = 23)	CD30 1% to <10% (n = 32)	Total (N = 55)
Patients with any SAE, n (%)	8 (35)	12 (38)	20 (36)
Febrile neutropenia	4 (17)	7 (22)	11 (20)
Diarrhea	2 (9)	2 (6)	4 (7)

Grade ≥3 TEAEs (>10% of total patients)	CD30 <1% (n = 23)	CD30 1% to <10% (n = 32)	Total (N = 55)
Patients with any event, n (%)	13 (57)	16 (50)	29 (53)
Febrile neutropenia	4 (17)	6 (19)	10 (18)
Neutropenia	2 (9)	7 (22)	9 (16)
Anemia	1 (4)	6 (19)	9 (13)


CD30 Expression in AITL

Survival probability

Making Cancer History®


		CI	D 30 Expressi	on	
Demographics	N	All, N= 2371	No, N= 55 ¹	Yes, N= 182 ¹	p ²
Gender	237				0.3
Female		113 (48%)	23 (42%)	90 (49%)	
Male		124 (52%)	32 (58%)	92 (51%)	
Race	196			· · · ·	0.7
Asian		9 (4.6%)	2 (4.2%)	7 (4.7)	
Black or African American		8 (4.1%)	3 (6.3%)	5 (3.4%)	
Declined to Answer		2 (1.0%)	0 (0%)	2 (1.4%)	
Other		5 (2.6%)	2 (4.2%)	3 (2%)	
White of Caucasian		172 (88%)	41 (85%)	131 (89%)	
Unknown		41	7	34	
Stage	165	1		2	<0.001
L .		3 (1.8%)	1 (2.3%)	2 (1.6%)	
1		9 (5.5%)	5 (12%)	4 (3.3%)	
		71 (43%)	7 (16%)	64 (52%)	
IV		82 (50%)	30 (70%)	52 (43%)	
Unknown		72	12	60	
BM Involvement	179	72 (40%)	20 (48%)	52 (38%)	0.3
Unknown		58	13	45	
BV First Line	171	32 (19%)	3 (7%)	29 (23%)	0.023
Unknown		66	12	54	
Transplant	155	68 (44%)	19 (48%)	49 (43%)	0.6
Unknown		82	15	67	1010000

Ro-CHOP vs. CHOP in Untreated PTCL

Making Cancer History®


Potentially compromised delivery of CHOP backbone Bachy E, et al. J Clin Oncol. 2022

- PFS primary endpoint was not met
- Similar OS and response rates,
- Greater toxicity with
- Ro-CHOP

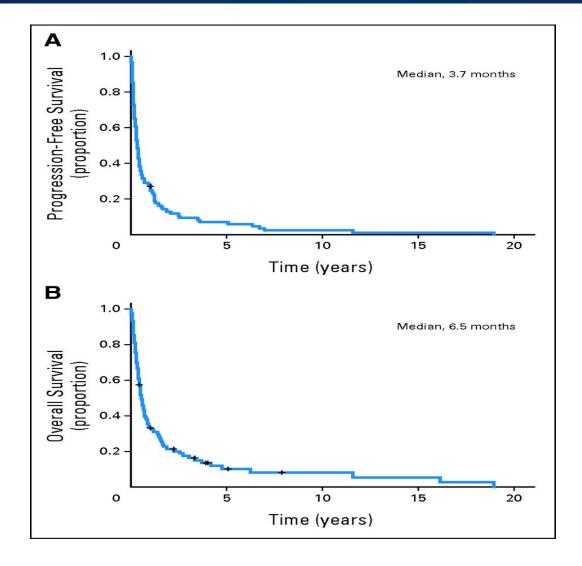
Ro-CHOP Trial: 5-year update

Making Cancer History®

Camus V, et al. J Clin Oncol. 2024 Feb 16

Summary of Frontline studies in TCL:

Making Cancer History®


- CD30 targeted therapy has improved survival- at 5 years, frontline treatment with A+CHP continues to provide clinically meaningful improvement in PFS and OS versus CHOP
- Bv CHP has not demonstrated any OS benefit for non-ALCL patient eg, AITL)
- Addition of etoposide in CHEP-BV was tolerable and led to high CR rate
 - PFS in ALCL > non-ALCL subgroup
 - CHEP-BV + ASCT + BV consolidation associated with excellent PFS
- Impact of % CD30 expression: Initial findings show that A+CHP is effective for patients with non-ALCL PTCL regardless of CD30 expression by local testing supporting the proposed, multi-faceted mechanism of action of BV in combination with CHP

Overwhelming number of patients relapse – where chemotherapy is even less effective

Patients With Relapsed or Refractory Disease Have an Especially Poor Prognosis

Making Cancer History®

2nd PFS (median, 3.7 months) of patients treated with chemotherapy (n = 89) with R/R PTCL

2nd PFS = 3.7 months

OS (median, 6.5 months) after first relapse or progression of PTCL.

Overall Survival from 2nd Relapse = 6.5 months

Pralatrexate and Belinostat: Primary Efficacy Data Supporting Accelerated Approval

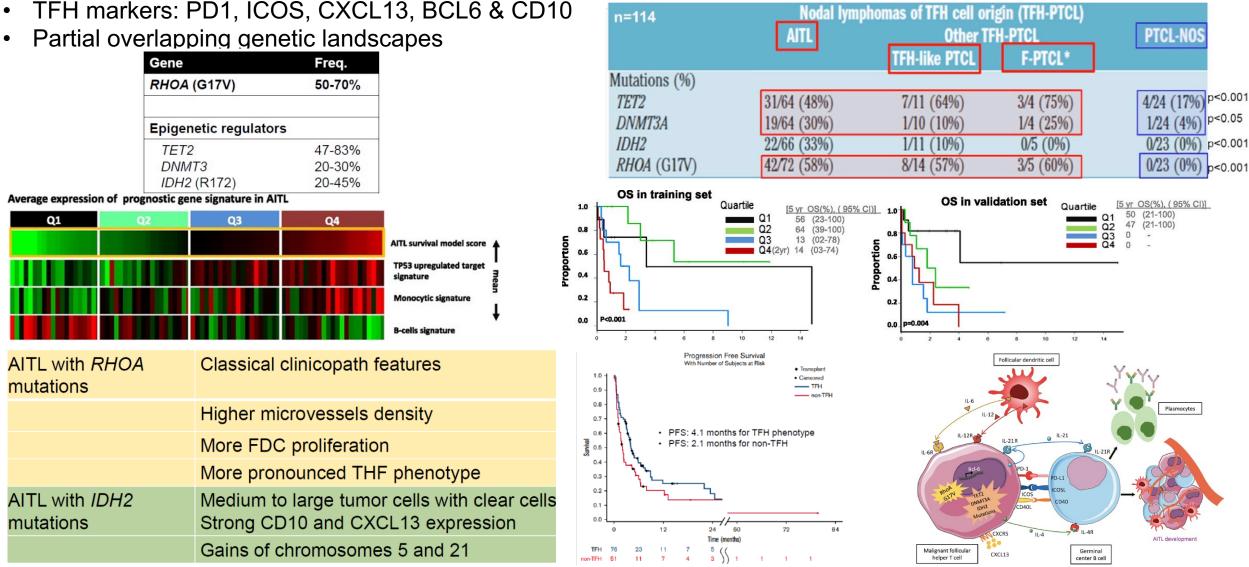
Making Cancer History®

PROPEL Study	BELIEF Study		
	Belinostat ²		
N = 109 32 (29%)	N = 120 31 (26%)		
11 (10%)	13 (11%)		
1 (1%)	-		
20 (18%)	18 (15%)		
10.1 months (3.4–NE)	13.6 months (4.5–29.4)		
3.5 months (1.7–4.8)	1.6 (1.4–2.7)		
14.5 months (10.6–22.5)	7.9 (6.1–13.9)		
-	Pralatrexate ¹ N = 109 32 (29%) 11 (10%) 1 (1%) 20 (18%) 10.1 months (3.4–NE) 3.5 months (1.7–4.8)		

1. O'Connor, 2011; 2. O'Connor, 2015

*CRu is a category between CR and PR (ie, does not strictly match either CR or PR); a CRu does not indicate a short-lasting CR

Making Cancer History®


• HOW CAN WE HARNESS THE ADVANCES IN BIOLOGY?

Nodal T-cell lymphomas with TfH phenotype AITL, PTCL with TfH & Follicular TCL

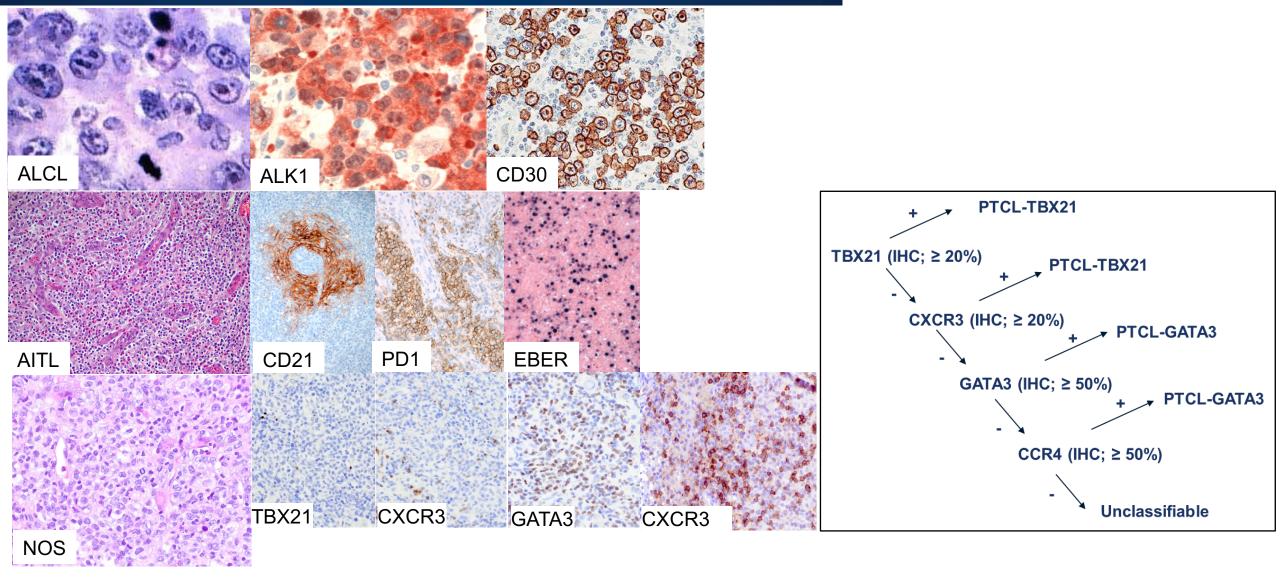
Making Cancer History®

Iqbal et al. Blood 2014; 123;2915-23, Ondrejkaet al. Am J SurgPathol2016: 40:335-41; Nagao R et al. Am J SurgPathol2016; 40:1041-50; Steinhilberet al. Mod Pathol2019; 32:1123-34

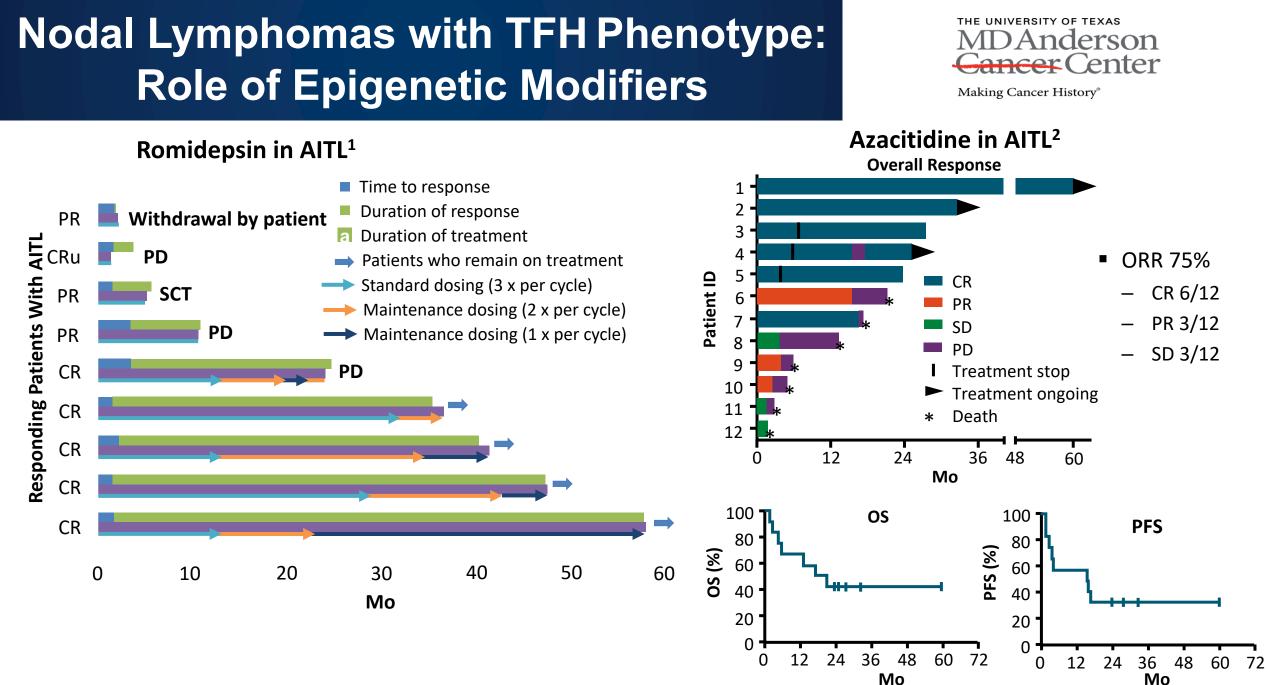
Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma

Making Cancer History®

Contemporation of the second s

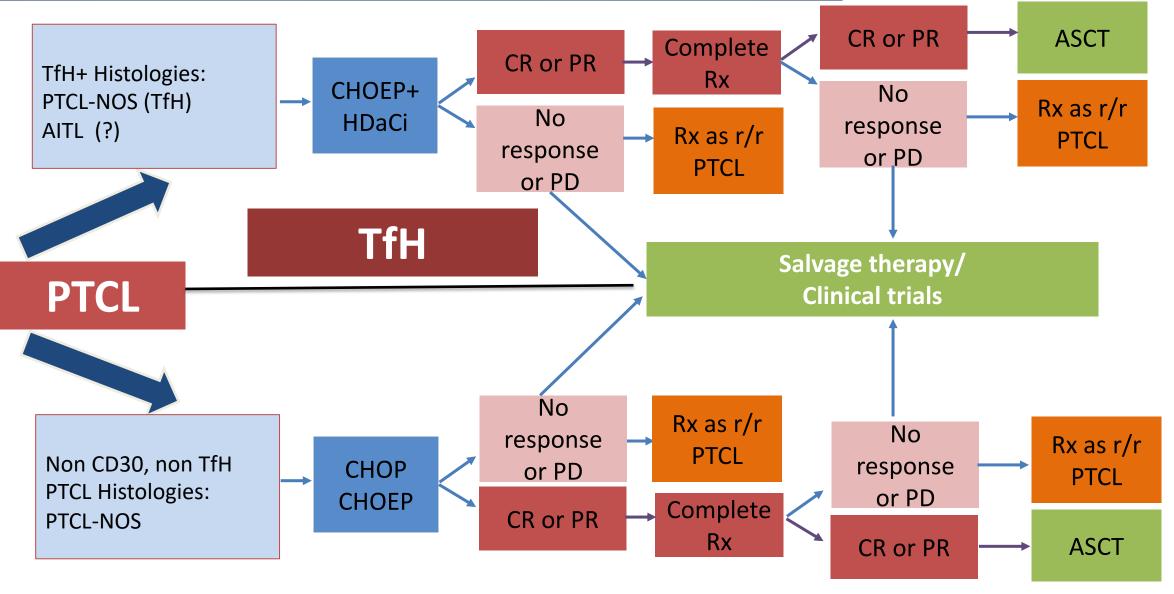

Cell of origin for PTCL-NOS								
	PTCL-GATA3	PTCL-TBX21						
Frequency	33%	49%						
Gene expression	GATA3 and its target genes	TBX21 and its target genes						
Phenotype	Th2 (IL4, IL5, IL13)	Th1 (IFNγ)						
Cell Signaling	MYC and PI3K-mTOR	NF-κB						
Median OS	< 1 year	> 2 years						

Iqbal et al. Blood 2014; 123;2915-23


COO based Diagnosis in PTCL

Making Cancer History®

Vega F, EXABS-TCL-052.2020



1. Pro. Hematol Oncol. 2017;35:914. 2. Lemonnier. Blood. 2018;132:2305.

TfH as the predictive marker in TCL: Lessons from Ro-CHOP Phase III

Making Cancer History®

Phase II Trial: Azacitidine + CHOP as Initial Therapy for PTCL

Azacitidine

Making Cancer History®

Treatment

Azacitidine: cycle 1, days -6 to 0; 1-5 days, days 8-21

Cyclophosphamide, doxorubicin, vincristine: day 1

CHOP

Prednisone: days 1-5

Azacitidine

CHOP

Azacitidine

Growth factor e.g., pegfilgrastim:

Patients with untreated PTCL (N = 20) Nodal TCL w/TFH phenotype (per WHO 2016) AITL Follicular TCL PTCL-NOS, TFH variant PTCL-NOS ALCL, ALK neg ALCL, ALK pos w/IPI >2 Adult T-cell lymphoma/leukemia

	↓		•							
	·····	********		Response		Interim			EOT	
-6 1 8	15 21 1	8 15	21 1		n	Evaluable <i>,</i> % (n = 20)	PTCL-TFH, % (n = 17)	n	Evaluable, % (n = 20)	PTCL-TFH, % (n = 17)
γ		ORR	17	85	94	15	75	88		
CI	C1 C2 to C5				11	55	59	15	75	88
 Azacitidine dosing: 300 mg/day, d-6 to 0, then D8-2 Patients in CR/PR after 6 cycles can receive consolid 				PR	6	30	35	0	0	0
				SD	2	10	0	1	5	0
		PD	1	5	6	2	10	6		
			Discontinued	0	0	0	2	10	6	
Ruan. ASH 2020. Abstr 40.		Median FU, mo			15 (range	e: 9-23)				


CHOP

THE UNIVERSITY OF TEXAS SPI-BEL-301 Phase 3 PMR Study Design in Patients **MDAnderson** Cancer Center With Newly Diagnosed, Untreated PTCL Making Cancer History® Part 1: Dose Optimization Part 2: Confirmatory RCT 75 patients 429 patients **Belinostat low dose** $600 \text{ mg/m}^2 \text{ Days } 1-5 + \text{CHOP}$ N = 15 **Belinostat optimal dose** + CHOP **Belinostat high dose** N = 143 1,000 mg/m² Days 1-5 + CHOP IDMC will select Part 2 N = 15 dose Follow-up based on Pralatrexate optimal dose for R Pralatrexate low dose Safety + COP Unconfirmed ORR at PFS 20 mg/m² Days 1 and 8 + COP N = 1433 months PFS according to N = 15 and OS investigator assessment **Pralatrexate high dose** CHOP $30 \text{ mg/m}^2 \text{ Days 1 and 8 + COP}$ N = 143 N = 15 CHOP N = 15

A051902 Intergroup Study

Making Cancer History®

TPS7593(2022).DOI:10.1200/JCO.2022.40.16 suppl.TPS7593

Emerging themes in T cell Lymphomas

Making Cancer History®

• Epigenetic targeting of Tfh

- Targeting dysregulated pathways: JAK/STAT, PI3K, EZH1/2
- Targeting cytotoxic, gamma-delta and NK subtypes

Golidocitinib: Demographics and Baseline Characteristics

Making Cancer History®

Demographics & Characteristics	n = 104
Median age, y (range)	58 (20 - 78)
Female/Male, n (%)	37 (35.6)/67 (64.4)
ECOG PS, n (%)	
0/≥1	46 (44.2)/58 (55.8)
Median lines of prior systemic therapies (range)	2 (1 - 3)
Types of prior systemic therapies, n (%)	
Chemotherapy	104 (100.0)
Pralatrexate	1 (1.0)
Mitoxantrone liposome	3 (2.9)
HDAC inhibitor	50 (48.1)
Brentuximab vedotin	13 (12.5)
ALK inhibitor	1 (1.0)
Prior autologous HSCT, n (%)	2 (1.9)
Bone marrow involvement at baseline, n (%)	20 (19.2)
LDH elevation at baseline, n (%)	52 (50.0)

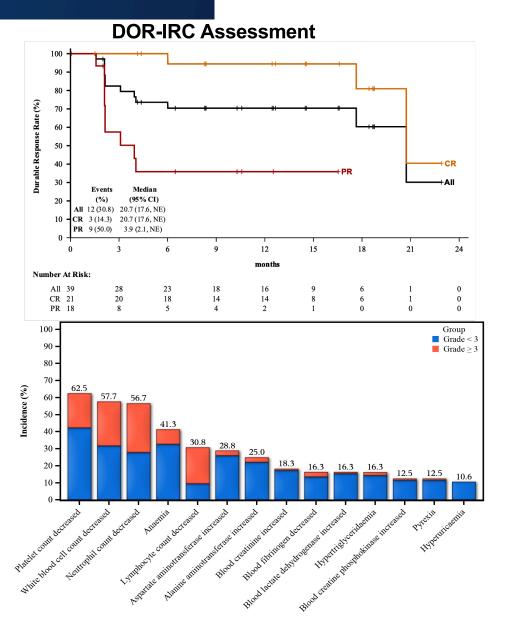
Demographics & Characteristics	n = 104
Histology subtypes by central review, n (%)	
PTCL, NOS	51 (49.0)
AITL	16 (15.4)
ALCL	11 (10.6)
NK/TCL	4 (3.8)
Others*	9 (8.7)
Central confirmed non-PTCL	4 (3.8)
Unable to confirm	9 (8.7)

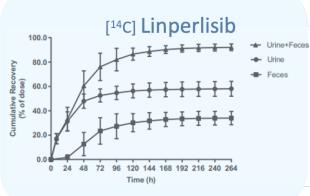
Data cut-off date: August 31, 2023

- Between Feb 26, 2021 to Oct 12, 2022, a total of 104 subjects with r/r PTCLs were enrolled.
- All subjects received at least one dose of golidocitinib at 150 mg QD.

Note: * 'Others' including 1 centrally diagnosed as T cell prolymphocytic leukemia and 8 centrally diagnosed as PTCLs with unconfirmable histology subtypes.

Abbreviations: AITL, angioimmunoblastic T cell lymphoma; ALCL, anaplastic large-cell lymphoma; ALK, anaplastic lymphoma kinase; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HDAC, histone deacetylase; HSCT, hematopoietic stem cell transplant; LDH, lactate dehydrogenase; NK/TCL, natural-killer/T cell lymphoma; PTCL, NOS, peripheral T cell lymphoma, not otherwise specified; r/r, relapsed/refractory; QD, once daily.


Tumor Response


Making Cancer History®

Tumer Deenence	n = 88			
Tumor Response	By IRC	By Investigator		
ORR, n (%)	39 (44.3)	35 (39.8)		
Overall response, n (%)				
Complete response	21 (23.9)	10 (11.4)		
Partial response	18 (20.5)	25 (28.4)		
Stable disease	17 (19.3)	15 (17.0)		
Progressive disease	20 (22.7)	26 (29.5)		
Not evaluable	12 (13.6)	12 (13.6)		

The following subjects were **not** included in the efficacy analysis set: 4 confirmed as non-PTCL by central pathology review, 9 not providing sufficient tumor tissue for central pathology confirmation, and 3 no baseline measurable lesions by IRC assessment. Abbreviations: CR, complete response; IRC, independent review committee; ORR, objective response rate; PR, partial response; PTCL, peripheral T cell lymphoma.

Linperlisib: pharmacokinetics and Efficacy

C)

Š		
baselii	100 - 90 - 80 - 70 -	CR PR SD PD
SPD from baseline	60 - 50 - 40 - 30 -	
.⊆	20 - 10 - 0 - -10 -	
change	-20 - -30 - -40 - -50 -	***
%	-60 - -70 - -80 - -90 - 100 -	
Best	100 -	Patients

* Five PD patients had new lesions appearing, even though target lesions met the response criteria Yugin Song, ASH 2023, #306

PI3K DRUG	Dose	% in Urine	% in Feces
Linperlisib	80 mg, po	58	34
Idelalisib	25 mg, po	14	78
Duvelisib	150 mg, po	14	79
Copanlisib	12 mg, iv	22	64
Umbralisib	800 mg, po	3	81
	•		

A higher urinary excretion rate of YY-20394 may lead to lower incidence of diarrhea and colitis and other AEs

Response	n(%)	•	FA	
ORR, n(%)	42(48			
95% CI	(37, 5	59)		
CR	26(30			
PR	16(18	3)	•	Ac
SD	18(21		ob	
PD	21(24			
NE	7(8)			
DCR, n(%)	60(68	3)		
95% CI	(57, 7			
PI3K Inhibitor	# pts	ORR	0	R
Duvelisib	35	50%	1	.9%*
Tenalisib	35 45.7%		2	6%

48

48%

30%

Linperlisib

Making Cancer History®

- FAS, n=88 patients
 - The study met the primary endpoint
 - ✓ CR 30%, PR 18%
- A disease control rate of 69% observed

Reference

Horwitz et al.

Huen et al.

Song et. al

Any Grade TRAEs, Preferred Term	(≥10%)		
Any Grade TRAES, Freiened Term	n (%)		
Neutropenia	58 (59)		
Leukopenia	46 (47)		
Thrombocytopenia	31 (32)		
Anemia	24 (24)		
Elevated ALT	23 (23)		
Elevated AST	20 (20)		
Pneumonia	20 (20)		
Lymphocytopenia	17 (17)		
Hypertriglyceridemia	15 (15)		
Fever	15 (15)		
Diarrhea	14 (14)		
Elevated lipase	13 (13)		
Hyperuricemia	13 (13)		
Rash	13 (13)		
Hypercholesterolemia	12 (12)		
Hyponatremia	11 (11)		
Elevated lactate dehydrogenase	10 (10)		
Elevated creatinine	10 (10)		

≥Grade 3 TRAE, Preferred Term	(≥5%)	
201aue 3 MAL, Preferreu ferrit	n (%)	
Neutropenia	31 (32)	
Pneumonia	14 (14)	
Leukopenia	10 (10)	
Anemia	6 (6)	
Thrombocytopenia	5 (5)	
Upper respiratory tract infection	5 (5)	
Lymphocytopenia	5 (5)	

- TRAEs were observed in 94 pts (95.9%)
- The most frequent ≥Grade 3 TRAE were neutropenia,
 pneumonia and leukopenia;
- Immune-related ≥Grade 3 TRAEs as elevated ALT,AST, diarrhea, colitis, rash were observed at <5%;
- The most frequent drug-related SAE was pneumonia (11%);
- Twenty-two pts (22.4%) had dose reductions, and 9 pts (9.2%) discontinued from the study due to AEs.

Efficacy: PTCL subtypes

Making Cancer History®

	AITL	PTCL-NOS	NK/T	Other*	Total
	n=48	n=24	n=8	n=8	n=88
Best Response, n (%)					
CR	23(48)	2(8)	0(0)	1(13)	26(30)
PR	8(17)	5(21)	2(25)	1(13)	16(18)
SD	8(17)	7(29)	3(38)	0(0)	18(21)
PD	6(13)	9(38)	2(25)	4(50)	21(24)
NE	3(6)	1(4)	1(13)	2(25)	7(8)
ORR, n(%)	31(65)	7(29)	2(25)	2(25)	42(48)
95% CI	(50, 78)	(13, 51)	(3, 65)	(3, 65)	(37, 59)
DCR, n(%)	39(81)	14(58)	5(63)	2(25)	60(68)
95% CI	(67, 91)	(37, 78)	(25, 92)	(3, 65)	(57, 78)

*Other, includes ALCL, MEITL, or unclassified PTCL

Open label single arm Phase2 Study Design in r/r T-Cell Lymphoma

- <u>A Phase2 study (NCT05274997) opened in August 2022</u>
 - First trial to evaluate linperlisib-treated patients in the U.S. and E.U.
 - Stage 1, interim analysis for safety,
 - Stage 2, study completion N=36 pts

• <u>r/r T-cell lymphomas having ≥1 prior therapy</u>

- All PTCL subtypes enrolling, PTCL-NOS, AITL, ALCL, NKT, EATL, MEITL and CD30+ brentuximab-progressing or intolerant.
- There is a Central Lab confirmation of diagnosis in this study
- CTCL patients are enrolling

Dose schedules for 28-day cycles

- 80 mg QD (RP2D) to progression
- 80 mg QD for 4 cycles or until response, followed by 40 mg QD

• Primary endpoint is Overall Response Rate

- Principal Investigators: Dr. Swami Iyer (Study Chair), Dr.Pierluigi Zinzani
- Study is closed

Baseline Demographics and Disease Characteristics

Making Cancer History®

Characteristic	PTCL (N = 133)	Valemetostat	
Median age, years (range)	69.0 (22–85)		PTCL subty (WHO 201
Sex, n (%)		Gene Cell differentiation	
Male	91 (68.4)	CH ₃ reactivation - Antiproliferation	AITL
Female	42 (31.6)	Tumor suppression	
ECOG PS score, n (%)		Closed chromatin: transcription INACTIVE Histone H3 Closed chromatin: transcription ACTIVE	Nodal P
0	58 (43.6)	Valemetostat tosylate (valemetostat) is a	FTL
1	65 (48.9)	novel, potent, and selective dual inhibitor of	PTCL-NOS
2	9 (6.8)	EZH2 and EZH1 that suppresses aberrant	ALCL
3	1 (0.8)	H3K27me3, thereby promoting	ALK+
Median prior lines of therapy (range)	2.0 (1–12)	antitumorigenic processes ²⁻⁴	ALK ⁻
1	36 (27.1)	50 Grade 3-4	MEITL
2	36 (27.1)	40 Grade 1-2	CD8 ⁺ PCA
3	29 (21.8)		PCGTL
≥ 4	32 (24.1)	20 – 20 – 20 – 20 – 20 – 20 – 20 – 20 –	
Prior HCT, n (%)	35 (26.3)		Other TC
Autologous	32 (24.1)	10	Non-TCL
Allogeneic	5 (3.8)	0	Missing ^c
	3 #202	hrombochopenia Anernia Diarthea Diageusia Neutropenia COVID-19 Nausea Pyrexia Coven	

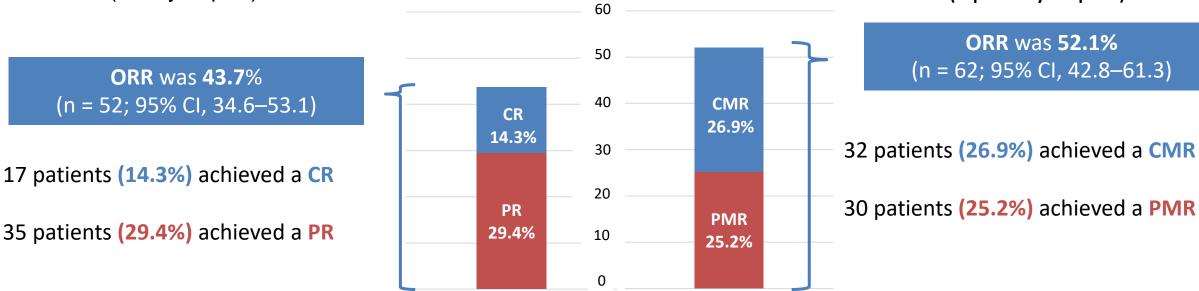
PTCL subtypes, n (%) (WHO 2016 classification; central review)	PTCL (N = 133)	
TFH phenotype		
AITL	42 (31.6)	
Nodal PTCL with TFH phenotype	8 (6.0)	
FTL	3 (2.3)	
PTCL-NOS	41 (30.8)	
ALCL		
ALK ⁺	7 (5.3)	
ALK ⁻	2 (1.5)	
MEITL	1 (0.8)	
CD8 ⁺ PCAECTCL	1 (0.8)	
PCGTL	1 (0.8)	
Other TCL ^a	13 (9.8)	
Non-TCL or undetermined ^b	6 (4.5)	
Missing ^c	8 (6.0)	

Horwitz SM, et al. ASH 2023 #302

Efficacy analysis set

Clinical Response (BICR Assessment)

CT-based assessment


(Primary endpoint)

Making Cancer History®

PET-CT-based assessment

(Exploratory endpoint)

Efficacy-evaluable population (N = 119)

• Ten (8.4%) patients treated with valemetostat proceeded to allo-HCT, including 8 patients (6.7%) with a CR^a and 2 patients with an unknown response

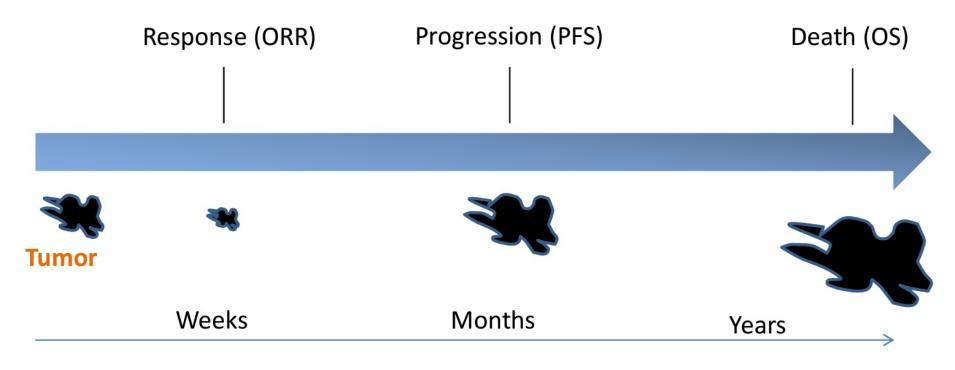
• The median time from first dose of valemetostat to subsequent allo-HCT was 6.9 months Horwitz SM, et al. ASH 2023 #302

"Do or do not. There is no try."

Making Cancer History®

• Oh yes, the past can hurt. But the way I see it, you can either run from it or learn from it- Simba

FDA: Reliability and uncertainty of Early endpoints



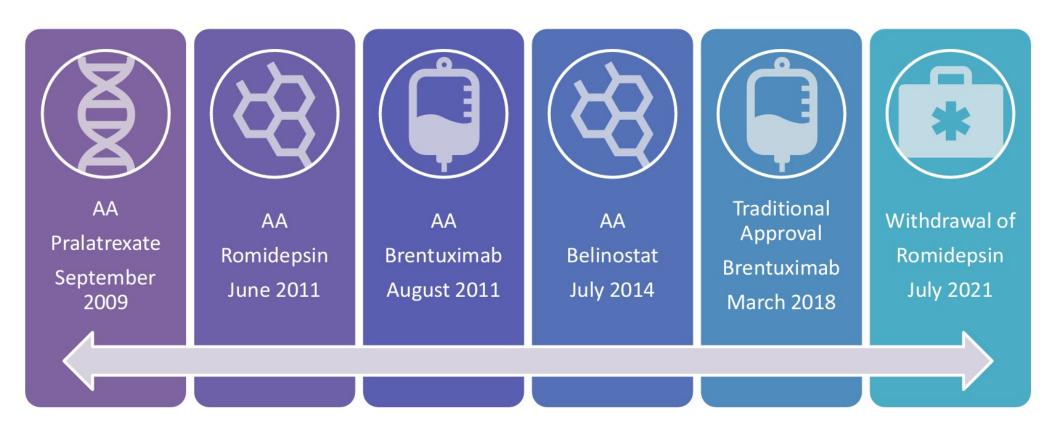
Making Cancer History®

FDA

Conduct of Clinical Trials to Verify Benefit

• Early endpoints may not correlate with longer-term outcomes

Abbreviations: ORR, objective response rate; PFS, progression-free survival; OS, overall survival


FDA: Commitments for PMR to show clinical benefit (or OS)

Making Cancer History®

Approvals in PTCL

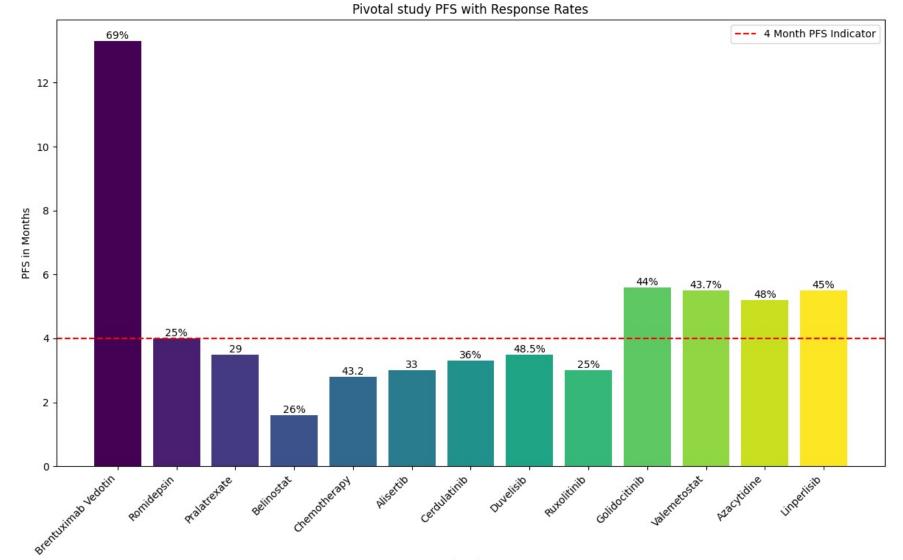
www.fda.gov

Abbreviations: AA, accelerated approval; PTCL, peripheral T-cell lymphoma

Is PFS the best endpoint for PTCL?

	Endpoint	Definition	Events Included	Clinical Implications
Reasons Why PFS Is an Inappropriate Primary End Point in Most Trials Evaluating Anticancer Drugs				Measures the effectiveness of a
Improvement in PFS is seldom a surrogate for, nor reliably predictive of, improvement in OS	PFS (Progression- Free Survival)	Time from start of treatment to disease progression or death from any cause.	 Disease progression Death from any cause 	treatment in delaying disease progression. Does
Improvement in PFS is not a surrogate for, nor predictive of, improvement in QoL				not account for subsequent treatments.
PFS does not recognize that the balance between benefit and harm depends not only on changes in tumor size but also on toxicity	EFS (Event-Free Survival)	Time from start of treatment to the occurrence of any predefined event.	 Initiation of new treatment Death from any	Provides a comprehensive view of treatment failure, including disease progression, new treatment initiation, and death.
 PFS measurement and comparisons are subject to error and bias because of Timing of assessment Measurement error in assessing tumor progression Informative censoring because of uneven dropout between groups in an RCT Improvement in PFS is widely misunderstood by patients and the public to imply improvement in survival 				
	FFS (Failure-Free Survival)	Time from start of treatment to treatment failure due to disease progression or relapse.	 Disease progression Relapse Death related to the disease (in some definitions) 	Focuses on the duration of disease control without progression or relapse, excluding deaths not directly related to the disease.

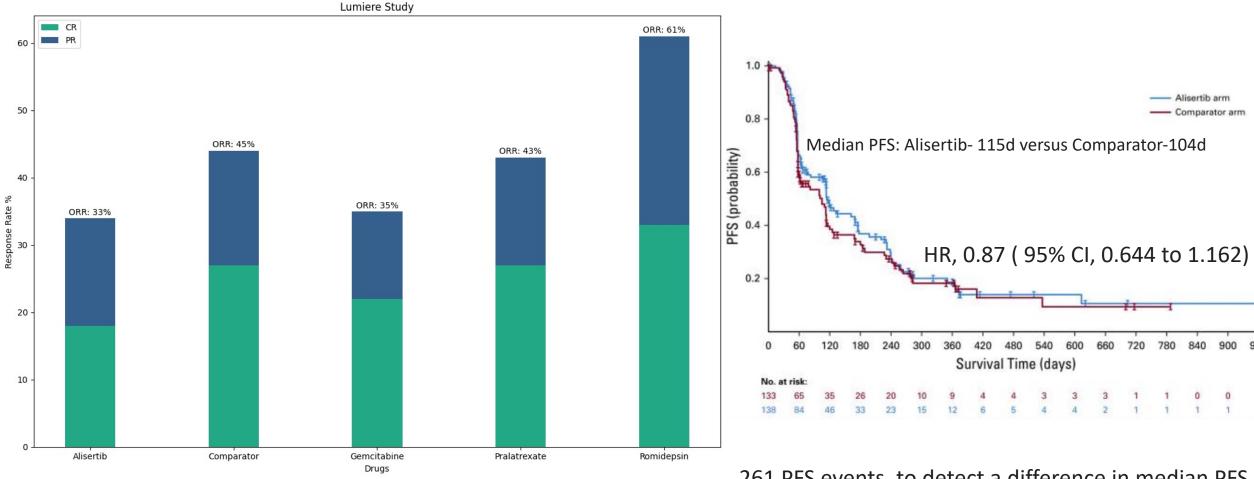
PFS in Pivotal studies



Regimen	Type of Study	No. Patients	Median PFS	PFS by Subtype
Nordic CHOEP-ASCT	Retrospective	160	5-year PFS: 44%	PTCL-NOS: 38%; AITL: 49%; ALCL: 61%
Ro-CHOP	Prospective	211	Median PFS: 12.0 months	TFH: 19.5 months, Non-TFH: 8.7 months, Median OS for TFH: 65 months, PTCL-NOS: 25.8 months
СНОР		210	Median PFS: 10.2 months	TFH: 10.6 months, Non-TFH: 9 months
ECHELON-2 BV CHP	Prospective	226	Median PFS: 62.3 months; 5-year PFS: 51%	sALCL: Not Reported (NR), PTCL-NOS: 32.3 months, AITL: 21.7 months, 5-year PFS - sALCL: 60%, PTCL-NOS: 26.5%; AITL: 26.6%;
СНОР		226	Median PFS: 23.8 months; 5-year PFS: 43%	sALCL: 54.2 months, PTCL-NOS: 10.7 months, AITL: 47.6 months, 5-year PFS -sALCL: 48.4%, PTCL-NOS: 25.7%; AITL: 48.1%;

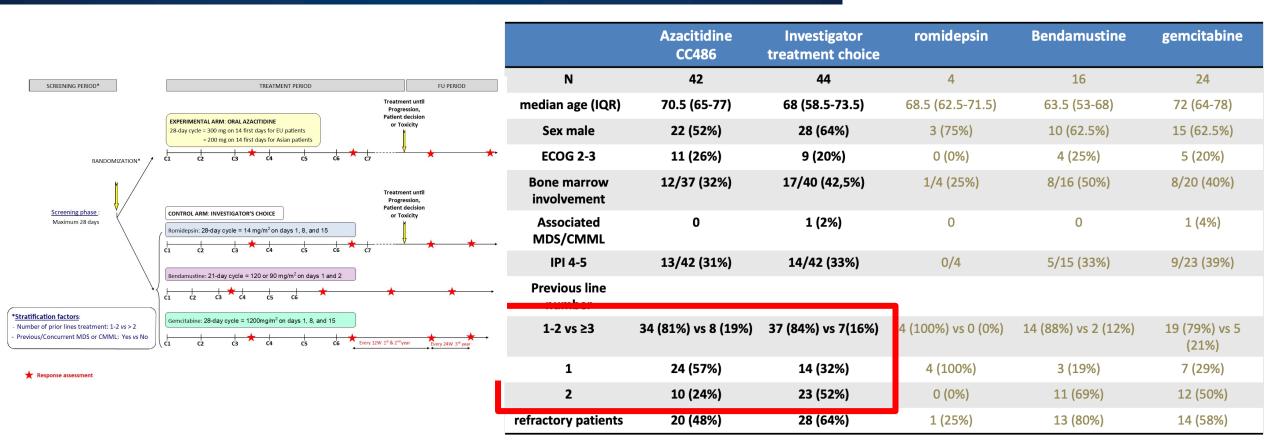
Beware of PFS threshold in r/r PTCL

Making Cancer History®



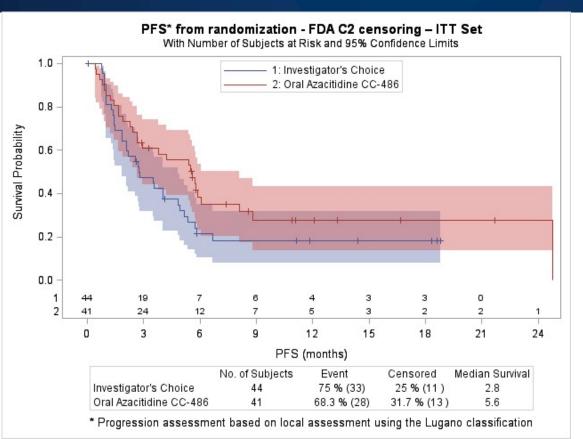
Iyer S- unpublished-Modified from pivotal studies

LUMIERE STUDY: PFS was 1/3 of proposed time

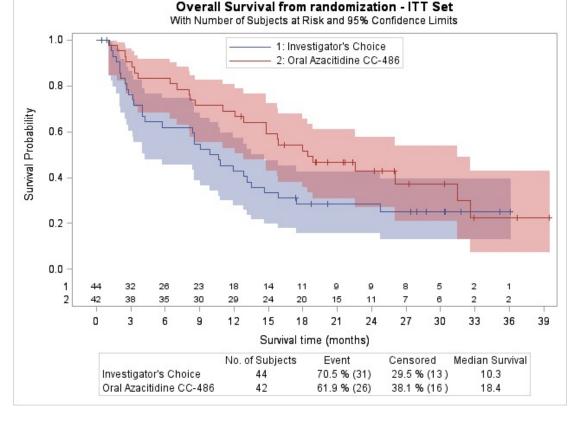

Making Cancer History®

261 PFS events, to detect a difference in median PFS of 6 months in the comparator arm and 9 months in the alisertib arm (85% power; $\alpha = .0125$)

ORACLE: Phase III study baseline characteristics



PFS – primary endpoint and OS



Making Cancer History®

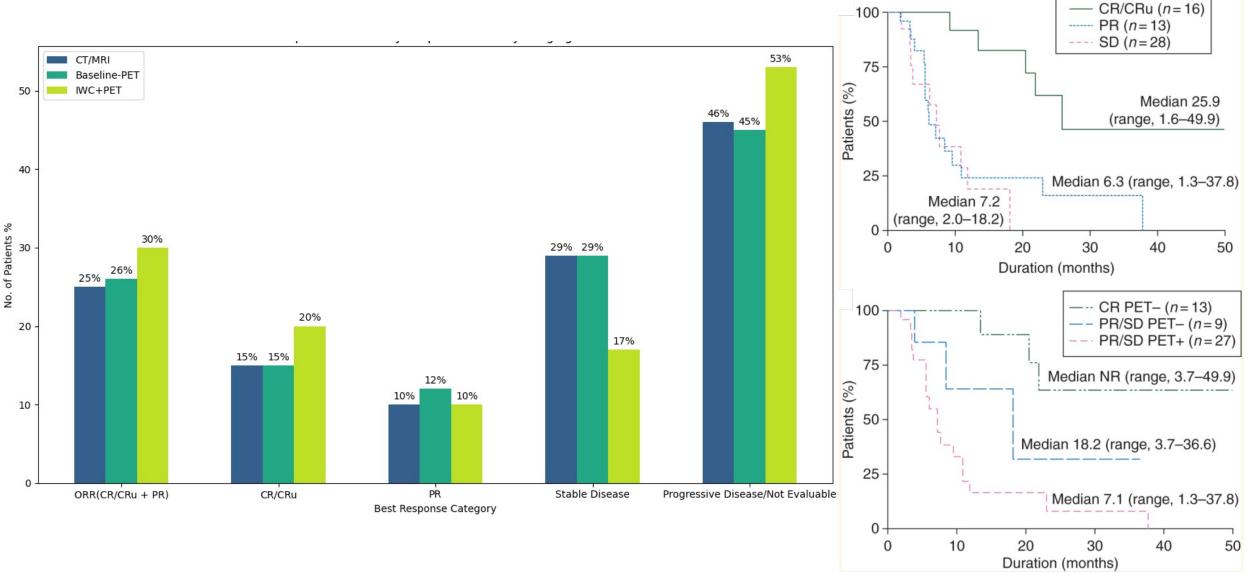
	CC-486	Investigator's choice
median	5.6 months	2.8 months
95% CI	2.7 - 8.1 months P=0.0421	1.9 - 4.8 months >p=0.025

Dupuis J et al, ASH 2022 #959

 CC-486
 Investigator's choice

 median
 18.4 months
 10.3 months

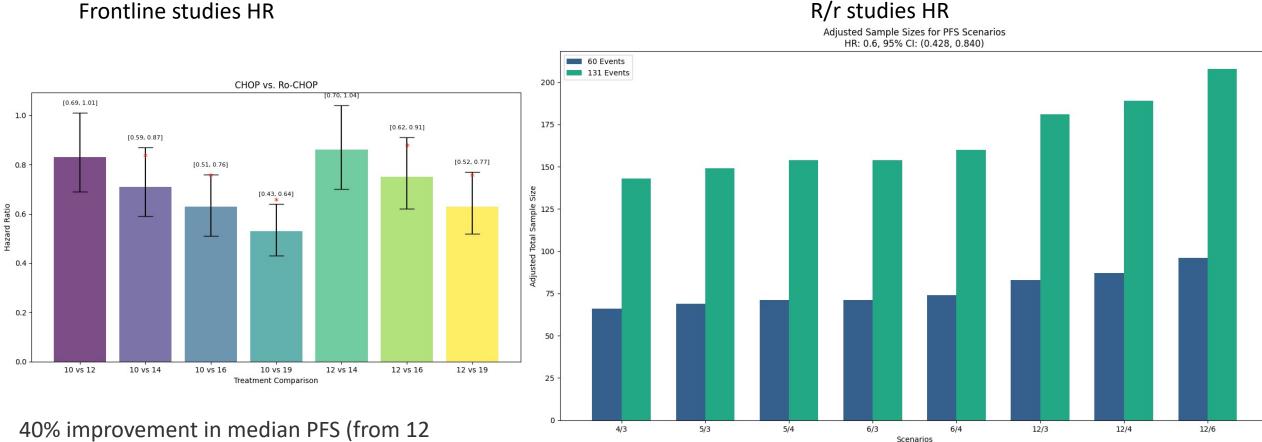
 95% CI
 12.9 – 31.5 months
 4.2 – 13.5 months


 P=0.0166*
 P=0.0166*

* Descriptive p value

Romidepsin pivotal study response rate by PET Status

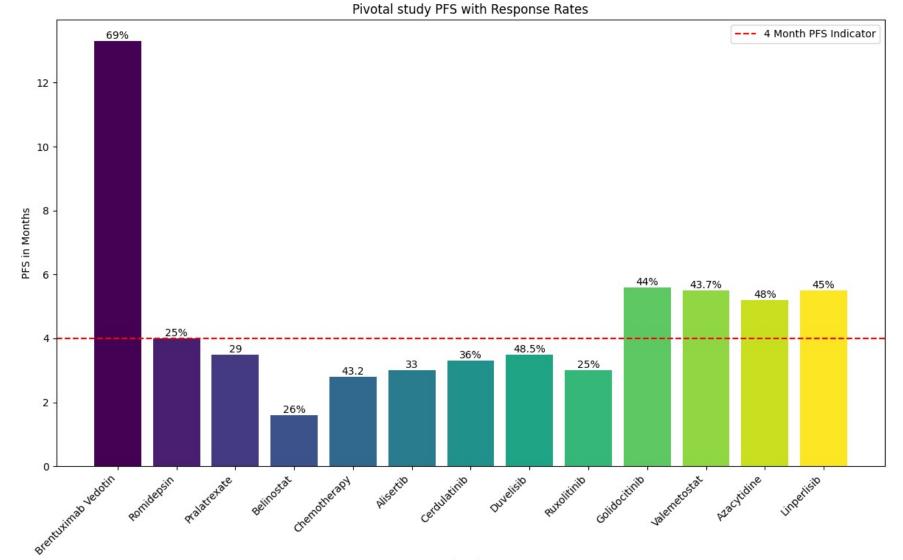
Making Cancer History®



Modified from Horwitz S, et al. Ann Oncol. 2015

PFS goals for PTCL can vary: but be realistic!

Making Cancer History®


months in control to 16.8 months in testing arms)

Iyer S- unpublished-Modified from pivotal studies

Beware of PFS threshold in r/r PTCL

Making Cancer History®

Iyer S- unpublished-Modified from pivotal studies

Conclusions

- Impact size of treatment: higher response rate (RR) generally has higher impact- intensification is reasonable
- In newly diagnosed T-cell lymphoma (TCL), progression-free survival (PFS) is around 10 months even with 80% RR
 - ✓ Adding compound X takes into account additional benefit but is diminished by compounded toxicity
 - $\checkmark~$ Benefit can vary more for one group than another
 - $\checkmark\,$ Tilting the efficacy/risk ratio by enriching responsive groups
 - \checkmark E2 and Ro-CHOP studies have shown this is possible
- Current paradigm of single agent approval followed by combination approaches
- For rare disease and promising drug- potential benefit is assumed to exist until proven otherwise
 - Preclinical and early phase studies are promising
 - However, aim for realistic PFS in front line and relapsed/refractory settings
 - Humbling lessons point to an incremental approach that can get drugs approved (eg in Lung Cancer)
 - Targeting disease subtypes
 - Naysayers and data pundits who don't treat patients
 - They analyze data and perform a watchdog function
 - We should be given the benefit of the doubt to get drugs approved
- ODAC meeting was reality check on FDA views
 - > An exceptional case was made for PTCL approval
 - > This is unlikely to happen again in PTCL or other diseases

T Cell Lymphoma Group

Making Cancer History®

Lymphoma:

- Dr.Christopher Flowers •
- Dr.Sattva Neelapu •
- Dr.Loretta Nastoupil •
- Dr.Jason Westin •
- Dr.Felipe Samaniego •
- Dr.Nathan Fowler •
- **Dr.Luis Malpica** •
- Dr.Ranjit Nair ٠
- Dr.Luis Fayad ٠
- Dr.Dai Chihara ٠
- Dr.Madeleine Duvic ٠
- **Dr.Auris Huen** ٠
- Dr.Bouthina Dabaja ٠
- Dr.Jillian Gunther ٠
- Dr.Chitra Hosing ٠
- Dr.Yago Nieto •
- Dr.Samer Srour ٠
- Dr.Meghan Heberton

- **Dr.Jeff Medeiros**
- Dr.Francisco Vega
- Dr.Roberto Miranda ٠
- Dr.Carlos Torres-Cabala •
- Dr.Mark Clemens •
- Dr.Kelly Hunt ٠
- Dr.Jessie Xu •

•

- Dr.Susan Wu ٠
- Dr.Luis Fayad ٠
- Dr. Chelsea Pinnix ٠
- Dr.Chi Ok .
- Dr.MJ You ٠
- Dr.John Stewart •
- **Dr.Keyur Patel** ٠
- Rare Lymphoma:

RAD-ON

- **Dr.Preetesh Jain**
- Dr.Raphael Steiner

- Radiology
- LOD
- Section Rare Lymphoma
- Dept. Lymphoma/Myeloma
- **Div.** Medicine

TELG

HEM-LYN

HEM

PATH

Collaborators:

Preclinical

٠

•

٠

•

Statisticians

Dr.Eric Davis

Dr.Michael Green

Dr.Simrit Parmar

Dr.Kumar Pappa

Dr.Pavan Bachireddy

Dr. Deepa Sampath

SCT

- Dr.Michael Wang
- Dr.Sairah Ahmed
- Dr.Hun Ju Lee

Thank you very much!

Making Cancer History®

Bloodbytes @DrSwami_lyer