Primer on CRISPR and its Impact on Cancer Research and Treatment

Alan Cooper University of Chicago

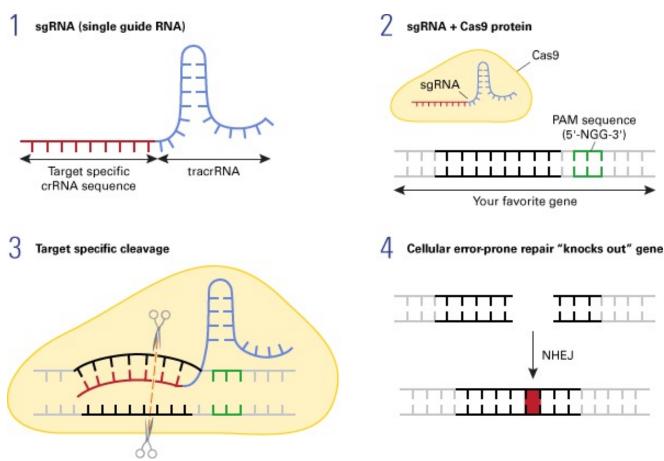
2024 International Ultmann Chicago Lymphoma Symposium

Disclosures

• None

The basics

CRISPR-Cas system in nature


A natural defense mechanism in bacteria against bacteriophages

Innovative Genomics Institute | CRISPRpedia

How CRISPR works

- Co-invented by Jennifer Doudna (UC Berkley) and Emmanuelle Charpentier (Umea University, Sweeden) circa 2012
- Gene editing technology that requires 2 components
 - A guide RNA (gRNA) that complements a desired target gene
 - Cas9 (CRISPR-associated protein 9) endonuclease that catalyzes a double strand (ds) DNA break
- Together, these components enable rapid and permanent genome modifications
 - Knock out/KO (make gene non-functional)
 - Knock in/KI (introduce a new gene)

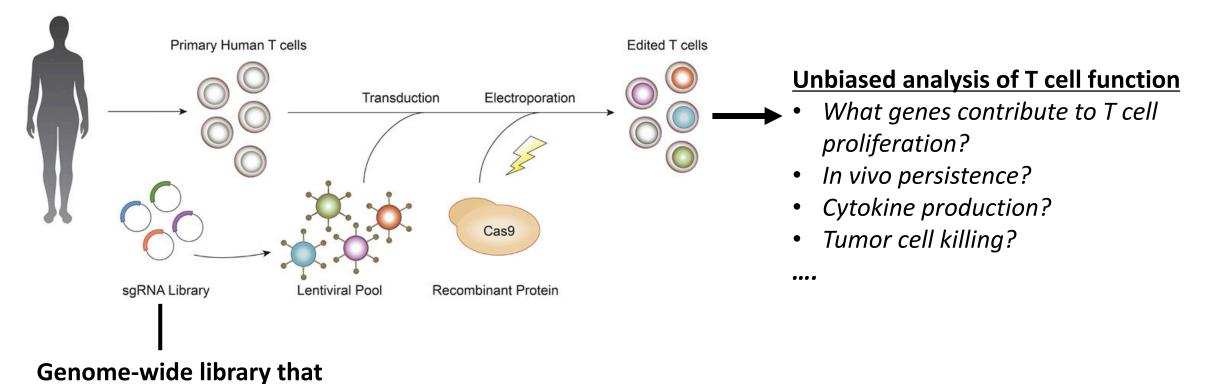
Takara Bio

UChicago Medicine

CRISPR in the lab

Studying individual genes

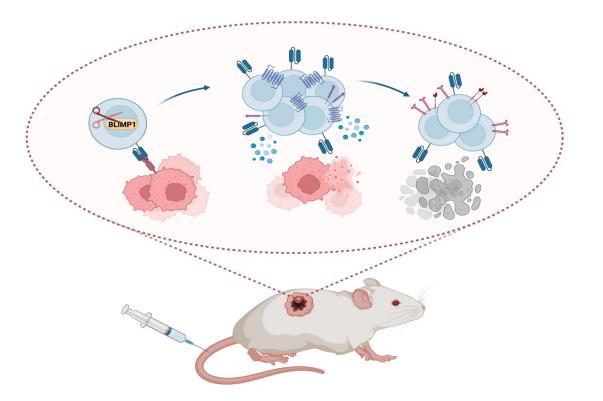
Outline of gene editing


Modeling cancer at the genetic level

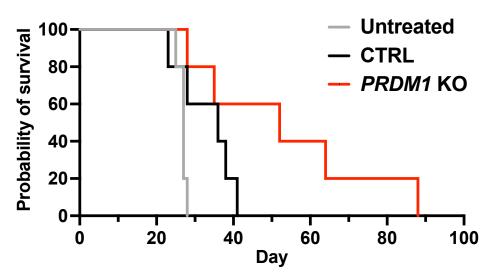
- Knock out tumor suppressors
- Knock in oncogenic mutations

Tumuluru and Godfrey et al. bioRxiv. 2024.

Studying many genes at once: CRISPR screens



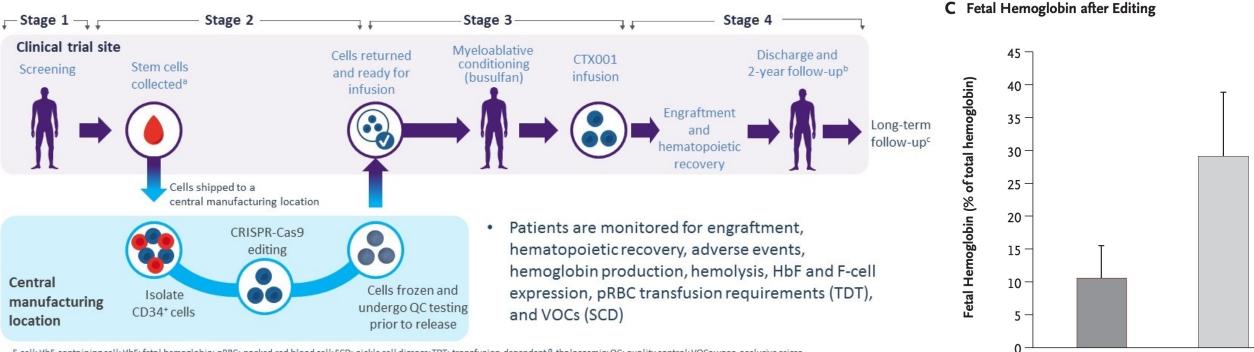
covers 19,000 genes


Shifrut et al. Cell. 2018.

CRISPR and CAR T cell engineering

Hypothesis

Disrupting *PRDM1* in CAR T cells will enhance *in vivo* persistence and antitumor activity of CAR T cells.


Sidney Wang from the Kline Lab (https://klinelab.uchicago.edu/)

CRISPR in the clinic

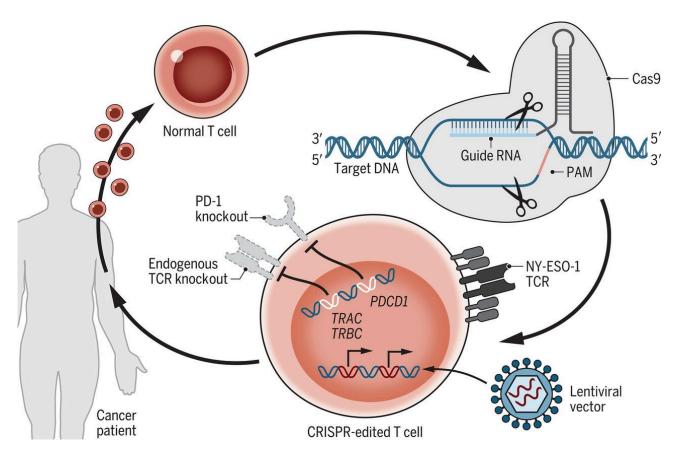
CRISPR in benign hematology

Editing BCL11A to restore fetal Hb for patients with sickle cell disease or β-thalassemia

Edited

Control

F-cell: HbF-containing cell; HbF: fetal hemoglobin; pRBC: packed red blood cell; SCD: sickle cell disease; TDT: transfusion-dependent β-thalassemia; QC: quality control; VOCs: vaso-occlusive crises. ^aPatients enrolled in CLIMB THAL-111 received a combination of plerixafor and filgrastim for mobilization, while patients enrolled in CLIMB SCD-121 received plerixafor only. Back-up cells kept at site as a safety measure; ^bPatients will be followed for 24 months after CTX001 infusion with physical exams, laboratory and imaging assessments, and adverse-event evaluations; ^cAll patients who receive CTX001 will be followed for 15 years in a long-term follow-up study (NCT04208529) after completion or withdrawal from CLIMB THAL-111 or CLIMB SCD-121.

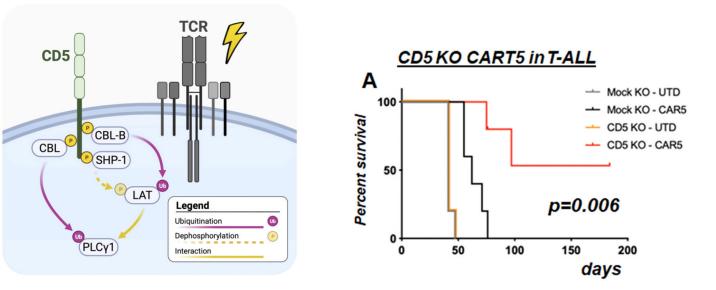


CRISPR Therapeutics. Frangoul et al. *NEJM*. 2020.

Engineered T cell therapies

CRISPR-engineered TCR T cells

- Phase 1 study, enrolled 3 patients
- Introduce T cell receptor against NY-ESO-1
- KO endogenous TCR and PD-1
- T cells persisted in the blood > 200 days
- T cells trafficked to the tumor
- No reported CRS
- Stable disease for 2 patients



Engineered T cell therapies

CRISPR-engineered CAR T cells

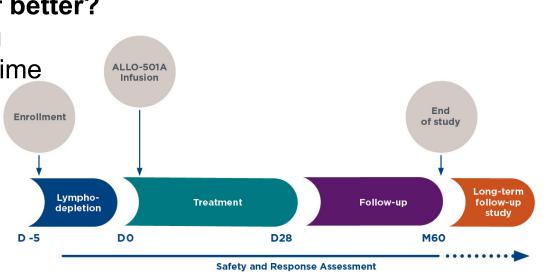
- CD5 KO CAR T
 - Improved T cell function and reduced fratricide
- CD7 KO CAR T
 - Phase 1 study for T-ALL
 - KO CD7, CD52, and the TCR
 - 3 patients treated, 2 had d28 molecular remission

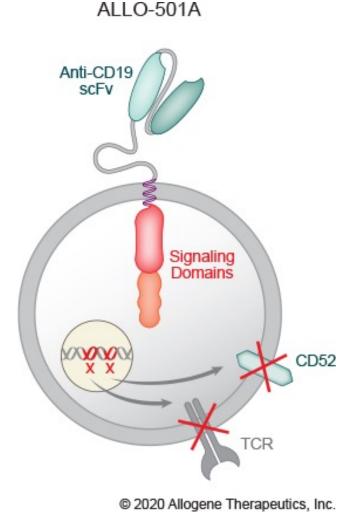
CD5 KO CAR T cells improve survival in a T cell leukemia mouse model

Adapted from Chun et al. ASH 2020 and Snook et al. ASH 2023. Chiesa et al. *NEJM.* 2024.

Allogeneic CAR T cells

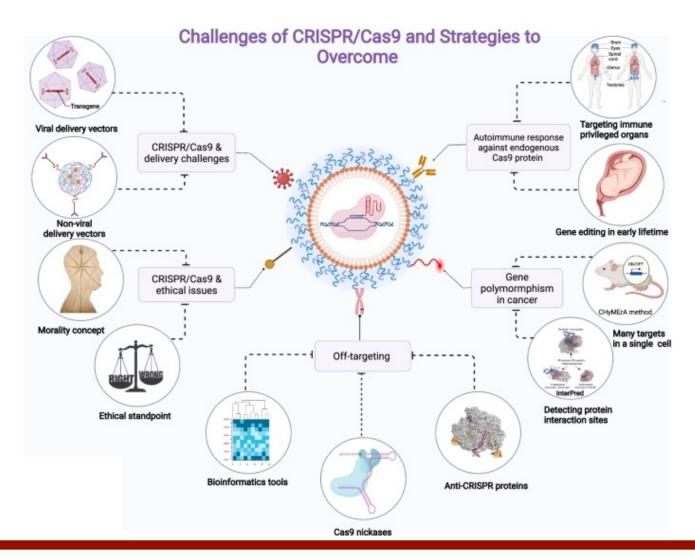
Phase 1 study in LBCL


- CAR-T-naïve population
- 66.7% ORR 58.3% CR
- mDOR 23.1 months
- No reported GvHD


Why is off-the-shelf better?

Brain-to-vein time

- T cell fitness
- Toxicity


Locke et al. ASCO 2023. Allogene Therapeutics.

Where we are going

The future of CRISPR-Cas technology

- Better DNA edits
 - Multiple edits
 - More complex edits (point mutations, indels,...)
 - Reduced off-target effects
- CRISPR-Cas9 alternatives
 - Prime editing (nickase)
- Modifying RNA instead of DNA

Rasul et al. Molecular Cancer. 2022.

Supercharged CAR T cells CAR efficacy CAR PD-1 Target LAG-3 antigen MHC I ZFN TALEN **β2M MegaTAL** CRISPR **Base-pair editing** TCR/CD3 miRNA scaffold MHC II **Prevention Prevention** of GvHD of HvG CD52 HLA-E

Celyad Oncology

Trials to watch

NCT	Trial	Product	Gene editing
NCT04416984	Safety and Efficacy of ALLO-501A Anti-CD19 Allogeneic CAR T Cells in Adults With Relapsed/Refractory Large B Cell Lymphoma, Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (ALPHA2) (ALPHA2)	ALLO-501A	CD52 KO <i>TRAC</i> KO
NCT04637763	CRISPR-Edited Allogeneic Anti-CD19 CAR-T Cell Therapy for Relapsed/Refractory B Cell Non-Hodgkin Lymphoma (ANTLER)	CB-010	PD-1 KO <i>TRAC KO</i>
NCT05643742	A Safety and Efficacy Study Evaluating CTX112 in Subjects With Relapsed or Refractory B-Cell Malignancies	CTX112	Regnase-1 KO TGFBR2 KO B2M KO <i>TRAC</i> KO CD70 KO
NCT04443907	Study of Safety and Efficacy of Genome-edited Hematopoietic Stem and Progenitor Cells in Sickle Cell Disease (SCD)	OTQ923	HBG1 HBG2

Conclusions and outstanding questions

CRISPR-Cas technology and gene editing

- CRISPR-Cas9 is a powerful tool for understanding cancer genetics
- CRISPR screens enable unbiased genome-wide discovery of relevant genes
- Are new gene editing approaches more efficient with fewer off-target effects?
- Can CRISPR-Cas9 alternatives be done at scale?

Gene editing in the clinic

Medicine

- Allogeneic CAR T cells are a promising alternative to autologous CAR T cells
- Gene editing can be used to improve T cell therapies
 - Can we engineer CAR T cells that work for more patients?
 - Even patients with solid tumors?
- Do CAR T cells for T cell lymphoma need to be edited?
 - CD5-directed CAR T cells in Snook et al. ASH 2023. and LaQuisa et al. *Blood*. 2024
- Long-term follow-up of gene-edited products in humans is needed
 - Monitoring for clonal hematopoiesis, MDS, or AML after gene therapy
 - T cell lymphomas after CAR T cell therapy

Frangoul et al. *NEJM*. 2020; Sharma et al. *NEJM*. 2024. Ghilardi et al. *Nature Medicine.* 2024; Elsallab et al. *Blood*. 2024; Harrison et al. ASH 2023.