

Biomarker-Based Treatment in Prostate Cancer

EMORY WINSHIP CANCER INSTITUTE National Cancer Institute-Designated Comprehensive Cancer Center Mehmet Asim Bilen, MD mbilen@emory.edu Winship Cancer Institute of Emory University

DDHO, July 20th 2023

Conflict of Interest

> Advisory board: Exelixis, Bayer, BMS, Eisai, Pfizer, AstraZeneca, Janssen, Calithera Biosciences, Genomic Health, Nektar, EMD Serono, SeaGen, and Sanofi

> Research: Xencor, Bayer, Bristol-Myers Squibb, Genentech/Roche, SeaGen, Incyte, Nektar, AstraZeneca, Tricon Pharmaceuticals, Genome & Company, AAA, Peloton Therapeutics, and Pfizer

Outline

> General overview

- > Role of genetic testing on patient management and therapy choice – Which testing? And what to order?
- > Recent data for PARP combinations
- > Lu-PSMA
- > MSI-high, other targets
- > Future direction

Therapeutic Options For Advanced Prostate Cancer 2023

Case 1: NGS – Biomarker Positive

- > 65 y/o male patient
- > Good health with no major issues
- > Diagnosed with prostate cancer, Gleason 4 + 5 = 9
- > PSA >1300
- > Staging work-up showed >20 bone metastases
- > Initially treated with ADT plus abiraterone in castration-sensitive setting
- > Recently became castration resistant

Case 1 (cont.): NGS – Biomarker Positive

> Obtained both germline and tissue-based somatic testing

> Patient is positive for somatic BRCA2

> Started olaparib 300mb BID

Germline vs Somatic Testing?

https://ib.bioninja.com.au/standard-level/topic-3-genetics/33-meiosis/somatic-vs-germline-mutatio.html

Approaches to Genetic Testing

- Tumor molecular testing can identify both germline and somatic HRR mutations (but cannot distinguish between them), while germline testing detects only germline HRR mutations
- Germline mutations offer information about risk for associated cancers and family members
- Performing both germline and tumor testing can identify the mutation status of a larger number of patients

Cheng H, et al. *Am Soc Clin Oncol Educ Book*. 2018;38:372-381; Haber DA, Velculescu VE. *Cancer Discov*. 2014;4:650-661; Raymond VM, et al. *J Natl Cancer Inst*. 2015;108(4):djv351; Catenacci DV, et al. *Int J Cancer*. 2015;136:1559-1567; Frey MK, Pothuri B. *Gynecol Oncol Res Pract*. 2017;4:4.

Testing Approaches: Strengths and Weaknesses

X

	Tumor testing	Germline testing	ctDNA testing
Advantages	Most validated technique that allows <u>somatic and germline</u> <u>mutations</u> detection	 Easy to obtain <u>whole blood</u> or <u>buccal swab</u> samples to test for germline mutations Can only detect <u>germline</u> <u>mutations</u> 	 <u>Plasma ctDNA</u> is tested with easy-to-obtain <u>blood</u> samples Can detect <u>germline mutations</u> Plasma testing can also detect <u>somatic mutations</u> if there is an appreciable level of ctDNA
• • • •	Requires invasive biopsies which may provide only limited tissue quantity and quality Prostate cancer primarily spreads to bone; tissue samples from bone metastases are difficult to obtain and process A biopsy may miss within-tumor genetic heterogeneity	Unable to identify somatic mutations	 Tests not currently widely available Highly sensitive tests are required May miss patients who do not shed sufficient ctDNA

What I do?

> Definitely send both germline and somatic testing

> If newer tissue, use tissue-based testing

If no recent tissue, or cannot do a biopsy (bone-only patients), or are not willing to do it, use liquid testing

DNA Repair Gene Alterations Are Common in Metastatic Prostate Cancer

- > 23% of metastatic castration-resistant prostate cancers have DNA repair alterations1
- > Frequency of DNA repair alterations increases with disease progression
- > 11.8% of 692 men with metastatic prostate cancer had germline DNA repair defects2
- Not all men with germline mutations had a family history of cancer

PARPi FDA Approvals for Prostate Cancer

Rucaparib

On May 15, 2020, on the basis of data from the TRITON-2 study, the FDA granted accelerated approval to rucaparib for the treatment of patients with deleterious *BRCA1/2* (germline and/or somatic)associated mCRPC who have been treated with an androgen receptor-directed therapy and a taxanebased chemotherapy

8/26/2020: FDA approved FoundationOne Liquid CDx as a companion diagnostic for rucaparib

Olaparib

On May 19, 2020, on the basis of data from the PROfound study, the FDA approved olaparib for the treatment of patients with pathogenic germline or somatic HRR gene-mutated mCRPC who have progressed following prior treatment with enzalutamide or abiraterone

(BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L)

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistant-prostate https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostate-cancer

Rationale for Combining PARP Inhibitors and NHAs¹

Interaction between PARP signaling and AR signaling pathways may explain the combined effect of agents observed in preclinical models

AR, androgen receptor; HRR, homologous recombination repair; HRRm, homologous recombination repair gene mutation; NHA, novel hormonal agent; PARP, poly (ADP-ribose) polymerase.

Adapted from 1. Mateo J, et al. *N Engl J Med.* 2015;373:1697-1708; 2. Schiewer MJ, et al. *Cancer Discov.* 2012;2:1134-1149; 3. Polkinghorn WR, et al. *Cancer Discov.* 2013;3:1245-1153; 4. Asim M, et al. *Nat Commun.* 2017;8:374.

PARP Combinations: GU-ASCO 2022

Olaparib 300 mg BID **Primary endpoint** Patient population · Radiographic progression or death (rPFS) 1L mCRPC Abiraterone 1000 mg QD* · Docetaxel allowed at by investigator assessment n = 399 mHSPC stage · No prior abiraterone Full dose of olaparib and abiraterone used Key secondary endpoint Other NHAs allowed if · Overall survival (alpha control) stopped ≥12 months prior to enrollment 1:1 Additional endpoints Ongoing ADT • ECOG 0-1 Stratification factors Placebo Objective response rate (ORR) Site of distant metastases: bone only vs visceral vs other Abiraterone 1000 mg QD* · Prior taxane at mHSPC: · Health-related quality of life n = 397 yes vs no · Safety and tolerability Full dose of abiraterone used

PROPEL trial

- Time to first subsequent therapy or death (TFST)
- Time to second progression or death (PFS2)
- HRRm[†] prevalence (retrospective testing)

MAGNITUDE trial

Saad et al, Genitourinary Cancer symposium, 2022 Chi et al, Genitourinary Cancer symposium, 2022

TALAPRO-2: A Randomized, Double-blind, Placebo-Controlled Study

Patient population First-line mCRPC ECOG performance status (PS) 0 or 1

Stratification factors

- Prior abiraterone^a or docetaxel in castration-sensitive setting (yes vs no)
- HRR gene alteration status (deficient vs nondeficient or unknown)

Primary endpoint

Radiographic progression-free survival (rPFS) by blinded independent central review (BICR)

Key secondary endpoint

Overall survival (alpha protected)

Other secondary endpoints

- Time to cytotoxic chemotherapy
- PFS2 by investigator assessment^b
- · Objective response rate (ORR)
- · Patient-reported outcomes
- · Safety
 - (Data cutoff: August 16, 2022)

Samples prospectively assessed for HRR gene alterations (BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, FANCA, RAD51C, NBN, MLH1, MRE11A, CDK12) using FoundationOne®CDx and/or FoundationOne®Liquid CDx

We report results only from the all-comers cohort of men unselected for HRR gene alterations

To maintain the overall type I error at or below 1-sided 0.025, alpha for rPFS by BICR was split equally between the all-comers and forthcoming molecularly selected cohort (1-sided alpha of 0.0125 for each). If the rPFS showed statistically significant improvement, overall survival was tested in a hierarchical stepwise procedure to preserve the overall type I error. "Two patients in each treatment arm received prior orteronel." Time from randomization to the date of documented progression on the first subsequent antineoplastic therapy or death from any cause, whichever occurred first.

ASCO Genitourinary Cancers Symposium

PRESENTED BY: Dr Neeraj Agarwal @neerajaiims
Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

PARP Inhibitor-Based Combination Therapy

- PROpel analysis:
 - rPFS benefit in the overall population (24.8 vs 16.6 mo; HR: 0.66; P <.0001)</p>
 - Patients were not stratified by HRR status
- MAGNITUDE analysis:
 - rPFS benefit in patients with HRR alterations (16.5 vs 13.7 mo; HR: 0.53; P = .0014)
 - No benefit in HRRmut -ve cohort
- TALAPRO-2 analysis:
 - rPFS benefit in the overall population (NR vs 21.9 mo; HR: 0.63; P = <.0001)</p>

^aAn interim analysis (IA) was planned with ~70% of the total required events. The HRRm cohort would be stopped for efficacy if the pre-specified efficacy boundary was crossed (*P* = 0.003). As the efficacy boundary was crossed at the IA rPFS, this became the final analysis. Survival and safety follow-up is continuing. All other endpoints are final.

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

TALAPRO-2 HRR-Deficient: Baseline Demographics and Disease Characteristics

These were well-balanced between treatment arms

	Talazoparib + Enzalutamide (N=200)	Placebo + Enzalutamide (N=199)
Age, median (range), years	70 (41–90)	71 (44–90)
Prostate-specific antigen (PSA), median (range), ng/mL	19.6 (0.2–3412.0)	18.0 (0.0–1055.0)
Disease site, n (%)		
Bone	175 (87.5)	158 (79.4)
Lymph node	82 (41.0)	94 (47.2)
Visceral (lung/liver)	23 (11.5)/9 (4.5)	26 (13.1)/6 (3.0)
ECOG PS 0/1, n (%)	128 (64.0)/72 (36.0)	118 (59.3)/81 (40.7)
Prior abiraterone ^a or docetaxel, n (%)	75 (37.5)	74 (37.2)
Abiraterone	16 (8.0)	16 (8.0)
Docetaxel	57 (28.5)	60 (30.2)
Tissue source for prospective HRR gene alteration testing, n (%)		
Tumor tissue only	76 (38.0)	80 (40.2)
Tumor tissue and blood (circulating tumor DNA)	121 (60.5)	115 (57.8)
Blood (circulating tumor DNA) only	3 (1.5)	4 (2.0)
30ms nations in each treatment arm reactived arise orterenal		

#ASCO23

TALAPRO-2 HRR-Deficient Primary Endpoint: rPFS by BICR

Treatment with talazoparib plus enzalutamide resulted in a 55% reduced risk of progression or death

A consistent treatment effect was seen for investigator-assessed rPFS: HR 0.48 (95% CI, 0.33–0.67); P < 0.0001

Stratified hazard ratios (HRs) and 2-sided P values are reported throughout this presentation unless otherwise stated.

#ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2 HRR-Deficient: Overall Survival (Interim Analysis)

Overall survival data are immature (24% maturity overall)

PRESENTED BY: Professor Karim Fizazi

2023 **ASCC**

ANNUAL MEETING

#ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Conclusions/Take Home Points

- > Based on TALAPRO-2:
 - > Talazoparib plus enzalutamide resulted in a statistically significant improvement in rPFS for patients with HRR gene alterations.
 - > OS data are immature, there was a favorable trend toward improved survival
- > 3 large phase 3 trials reported regarding PARP+NHA combinations:
 - > Positive rPFS in overall population (PROPEL and TALAPRO-2)
 - > Benefit is higher in HRR+ patients
- > mHSPC treatment changed which was not reflected in this trial
 - > Progression after ADT+NHA for mHSPC, singe agent parp or combination?

ASCO[°] FDA Alerts

From the American Society of Clinical Oncology in cooperation with the Food and Drug Administration (FDA) and as a service to our members, ASCO will periodically distribute information about newly approved therapies for cancer patients. This helps FDA inform oncologists and professionals in oncology-related fields about recent approvals in a timely manner. Included in the email from the FDA will be a link to the product label, which will provide the relevant clinical information on the indication, contraindications, dosing, and safety. In sending this information, ASCO does not endorse any product or therapy and does not take any position on the safety or efficacy of the product or therapy described. The following is a message from the Director of the FDA <u>Oncology Center of</u> <u>Excellence</u>, Dr. Richard Pazdur:

On May 31, 2023, the Food and Drug Administration approved olaparib with abiraterone and prednisone (or prednisolone) for adult patients with deleterious or suspected deleterious *BRCA*-mutated (*BRCA*m) metastatic castration-resistant prostate cancer (mCRPC), as determined by an FDAapproved companion diagnostic test.

#ASCO23

FDA approves talazoparib with enzalutamide for HRR gene-mutated metastatic castrationresistant prostate cancer

On June 20, 2023, the Food and Drug Administration approved talazoparib with enzalutamide for <u>homologous recombination repair (HRR) gene-mutated</u> metastatic castration-resistant prostate cancer (mCRPC).

Balancing Outcomes for Selection of Therapy

Improved OS Improved PFS Improved response rate Duration of response Improved QOL

#ASCO23

Toxicity Risk of Grade 5 event Primary progression Worsening QOL Financial toxicity

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Radiopharmaceuticals: Lu-177 PSMA

VISION: Phase 3, Open-Label Study of Protocol-Permitted SOC ± ¹⁷⁷Lu-PSMA-617 for PSMA-Positive mCRPC

Pts w/ any PSMA(-) metastatic lesion meeting these

criteria were ineligible.

RECIST v1.1 disease control rate

NCT03511664

Sartor O, et al. N Engl J Med. Jun 23, 2021. Morris M, et al. ASCO 2021. Abstract LBA4.

Stratified log-rank test (plus Cox for HR)

VISION: Co-Primary Endpoints

 rPFS benefit observed across most prespecified subgroups OS benefit was observed across most prespecified subgroups

All key secondary end points significantly favored 177Lu-PSMA-617

Median follow-up was 20.9 months Sartor O, et al. *N Engl J Med*. Jun 23, 2021.

VISION: Efficacy by Whole-Body SUV_{mean}

Higher SUV_{mean} strongly associated with improved outcomes with 177Lu-PSMA-617

rPFS by whole-body SUV_{mean} quartiles (PFS-FAS)

Higher whole-body SUV_{mean} was associated with prolonged rPFS

Cl, confidence interval; HR, hazard ratio; PFS-FAS, progression-free survival-full analysis set; rPFS, radiographic progression-free survival; SUV, standardized uptake value

Median OS

15

- Highest quartile (SUV_{mean} ≥ 9.9): 21.4 mo
- Lowest quartile (SUV_{mean} < 5.7): 14.5 mo

Absence of PSMA+ lesions in bone, liver, and lymph node, and lower PSMA+ tumor load, were indicators of good prognosis

VISION Trial Post Hoc Analysis: Association Between PSA Decline and Clinical Outcomes

rPFS rate by PSA decline up to 12 weeks in the ¹⁷⁷Lu-PSMA-617 group (n = 385) OS rate by PSA decline up to 12 weeks in the ¹⁷⁷Lu-PSMA-617 group (n = 551)

VISION: Treatment-Emergent Adverse Events

	All gr	ades	Grade 3–5					
Patients, n (%)	¹⁷⁷ Lu-PSMA-617 + SOC (n = 529)	SOC alone (n = 205)	¹⁷⁷ Lu-PSMA-617 + SOC (n = 529)	SOC alone (n = 205)				
Fatigue	260 (49.1)	60 (29.3)	37 (7.0)	5 (2.4)				
Bone marrow suppression	251 (47.4)	36 (17.6)	124 (23.4)	14 (6.8)				
Leukopenia Lymphopenia Anemia Thrombocytopenia	66 (12.5) 75 (14.2) 168 (31.8) 91 (17.2)	4 (2.0) 8 (3.9) 27 (13.2) 9 (4.4)	13 (2.5) 41 (7.8) 68 (12.9) 42 (7.9)	1 (0.5) 1 (0.5) 10 (4.9) 2 (1.0)				
Dry mouth	208 (39.3)	2 (1.0)	0 (0.0)	0 (0.0)				
Nausea and vomiting	208 (39.3)	35 (17.1)	8 (1.5)	1 (0.5)				
Renal effects	46 (8.7)	12 (5.9)	18 (3.4)	6 (2.9)				
Second primary malignancies	11 (2.1)	2 (1.0)	4 (0.8)	1 (0.5)				
Intracranial hemorrhage	7 (1.3)	3 (1.5)	5 (0.9)	2 (1.0)				

Median duration of exposure to 177Lu-PSMA-617: 6.9 mo (range, 0.3-10.2); median cycles started: 5 cycles (range, 1-6); median cumulative dose: 37.5 GBq (range, 7.0-48.3).

TheraP trial: Lu-177 PSMA vs cabazitaxel

Hofman et al. Lancet 2021

TheraP trial: Lu-177 PSMA vs cabazitaxel

Hofman et al. Lancet 2021

Phase 2 TheraP Trial: Updated Results

Primary Endpoint	LuPSMA	Cabazitaxel
PSA Reduction ≥ 50% From Baseline	66	37

Secondary Endpoints	LuPSMA	Cabazitaxel
ORR	49	24
AEs Gr 1-2 / 3-4	54 / 33	40 / 43

PFS 1.00 -¹⁷⁷Lu-PSMA-617 delayed progression (PSA + Radiographic) HR 0.62 95%CI 0.45-0.85 P=0.0028 Proportion Event-Free Secondary 0.75 Cabazitaxel Endpoint ¹⁷⁷Lu-PSMA-617 0.50 0.25 0.00 Months Number at risk Cabazitaxel 101 Lu-PSMA 99 OS (ITT) No difference in OS 1.00 HR 0.97 95%CI 0.70-1.4 P=0.99 Secondary Endpoint 0.75 Proportion Alive Cabazitaxel 177Lu-PSMA-617 0.50 0.25 0.00 Months Number at risk Cabazitaxel

Lu-PSMA

Data cutoff for OS: 31 DEC 2021; median follow-up: 36 mo. Hofman M, et al. ASCO 2022. Abstract 5000. Hofman M, et al. Lancet. 2021;397:797-804.

TheraP trial: Lu-177 PSMA vs cabazitaxel

	[¹⁷⁷ Lu]Lu-P (n=98)	SMA-617	Cabazitaxe (n=85)	1
	Grade 1–2	Grade 3-4	Grade 1–2	Grade 3–4
Fatigue	69 (70%)	5 (5%)	61 (72%)	3 (4%)
Pain*	60 (61%)	11 (11%)	52 (61%)	4 (5%)
Dry mouth	59 (60%)	0	18 (21%)	0
Diarrhoea	18 (18%)	1 (1%)	44 (52%)	4 (5%)
Nausea	39 (40%)	1(1%)	29 (34%)	0
Thrombocytopenia	18 (18%)	11 (11%)	4 (5%)	0
Dry eyes	29 (30%)	0	3 (4%)	0
Anaemia	19 (19%)	8 (8%)	11 (13%)	7 (8%)
Neuropathy†	10 (10%)	0	22 (26%)	1 (1%)
Dysgeusia	12 (12%)	0	23 (27%)	0
Haematuria	3 (3%)	1 (1%)	12 (14%)	5 (6%)
Neutropenia‡	7 (7%)	4 (4%)	4 (5%)	11 (13%)
Insomnia	9 (9%)	0	12 (14%)	1 (1%)
Vomiting	12 (12%)	1(1%)	10 (12%)	2 (2%)
Dizziness	4 (4%)	0	11 (13%)	0
Leukopenia	10 (10%)	1(1%)	5 (6%)	1 (1%)
Any adverse event	53 (54%)	32 (33%)	34 (40%)	45 (53%)

Data are n (%). Events that occurred in at least 10% of participants are shown. ¹⁷⁷Lu=Lutetium-177. PSMA=prostate-specific membrane antigen. *Including bone, buttock, chest wall, flank, neck, extremity, tumour pain, or pelvic pain. †Motor or sensory. ‡Febrile neutropenia.

Table 2: Adverse events

Hofman et al. Lancet 2021

TheraP PSMA PET As Predictive of Response

Odds of PSA50-RR to LuPSMA vs cabazitaxel

	OR (95% CI)	
PSMA SUVmean < 10	2.2 (1.1 – 4.5)	
PSMA SUVmean ≥ 10	12.2 (3.4 - 59)	
Further analysis to be performed	includingOS	

Buteau JP et al, GU ASCO 2022 Buteau JP et al, *Lancet Oncol*, 2022; 23(11): 1389-97.

FDG: prognostic biomarker (PSA50-RR)

Odds of PSA50-RR lower amongst men with high MTV OR 0.44; P=0.01

ASCO Genitourinary **Cancers Symposium**

#TheraP KNOWLEDGE CONQUERS CANCER

AMERICAN SOCIETY OF

CLINICAL ONCOLOGY

PSA50-RR to LuPSMA vs cabazitaxel

ΜΤΥ	Cabazitaxel	LuPSMA				
< 200	31/71 (44%)	48/69 (70%)				
≥ 200	6/30 (20%)	17/30 (57%)				

Radiopharmaceuticals: Lu-177 PSMA

- > Lu-PSMA is FDA approved as of March 2022 for patients with PSMA-positive mCRPC who received NHA and taxane-based chemo
- > Few eligibility criteria:
 - Ga-68 PSMA scan (initially, later plan to expend PyL PSMA PET scan)
 - Any systemic anti-cancer therapy within 28 days
 - Radionuclide therapy (Strontium-89, Samarium-153, Rhenium-186, Rhenium-188, Radium-223, hemi-body irradiation) within 6 months
 - Unmanageable urinary tract obstruction or hydronephrosis
 - Progressive deterioration of organ function (GFR < 30 mL/min or creatinine > 2-fold upper limit of normal (ULN); liver enzymes > 5-fold ULN)
 - Myelosuppression: (a) Total white cell count less than 2.5 × 109 /L (b) Platelet count less than 75 × 109 /L
- > This opens a new era with different combinations, such as IO, and also coming to the front line

Future clinical trials

Table 1. Current active and recruiting phase III prostate cancer trials involving PSMA-RLT with lutetium-177. Search performed using clinicaltrials.gov on 15 October 2022 and updated on 21 January 2023.

Trial number (name)	Type of prostate cancer	Intervention	Total enrollment	Primary outcome measures
NCT0351164 (VISION)	mCRPC previously treated with ARPI and taxane chemotherapy	¹⁷⁷ Lu-PSMA-617 with SoC versus SoC	831	rPFS and OS
NCT04876651 (PROSTACT)	mCRPC previously treated with ARPI	¹⁷⁷ Lu-TLX591 with SoC versus SoC	387	rPFS
NCT04689828 (PSMAfore)	mCRPC previously treated with ARPI and without prior taxane therapy	¹⁷⁷ Lu-PSMA-617 versus switch of ARPI	450	rPFS
NCT05204927 (ECLIPSE)	mCRPC previously treated with ARPI and without prior taxane therapy	¹⁷⁷ Lu-PSMA-I&T versus abiraterone or enzalutamide	400	rPFS
NCT04647526 (SPLASH)	mCRPC previously treated with second-line ARPI	¹⁷⁷ Lu-PSMA-I&T versus abiraterone or enzalutamide	415	rPFS
NCT04720157 (PSMAddition)	mHSPC	¹⁷⁷ Lu-PSMA-617 with SoC <i>versus</i> SoC alone	1126	rPFS

ARPI, androgen receptor pathway inhibitor; mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-sensitive prostate cancer; OS, overall survival; PSMA-RLT, prostate-specific membrane antigen-radioligand therapy; rPFS, radiographic progression-free survival; SoC, standard of care.

LuPARP: Phase 1 Trial Schema

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

LuPARP results: Treatment Related AEs >5%

	Do 177	N=3 se level Lu-PSM	1 A	Dos 177[N=3 se level 2 _u-PSMA	2	Dos 177	N=3 se leve .u-PSN	el 3 MA	D (17	N=3 ose lev ⁷ Lu-PS	vel 4 SMA	D (17	N=4 ose lev ⁷ Lu-PS	el 5 MA	Dos	N=3 e leve u-PSN	e l 6 //A	D 0 17	N=4 ose lev ⁷ Lu-PS	el 7 MA	D c 17	N=3 ose lev 7Lu-PS	el 8 MA	D (17	N=6 ose lev ⁷ Lu-PS	rel 9 SMA			
		&			&			&			&			&			&			&			&			&				
	50mg	olaparit	b BD	100mg	olaparib	BD	150 o	laparil	b BD	200m	ng olapa	arib BD	250m	ng olapa	arib BD	300 o	laparib	b BD	200m	g olapa	arib BD	300m	g olapa	arib BD	300m	ng olapa	arib BD			
	C	ay 2-15)		D	ay 2-15		Da	ay 2-1	5		Day 2-	15		Day 2-	15	Da	ay 2-18	5		Day -4-	14		Day -4-	14	[Day -4-	18	Tot	al (n=?	32)
Adverse Event (AE) Grade (G)	G1	G2	G3	G1	G2	G3	G1	G2	G3	G1	G2	G3	G1	G2	G3	G1	G2	G3	G1	G2	G3	G1	G2	G3	G1	G2	G3	G1	G2	G3
Anemia	1	-	-	2	1	-	-	-	-	-	-	-	1	1	1	-	-	1	1	-	-	-	-	-	-	1	-	5	3	2
Neutropenia	-	-	-	1	-	-	-	-	-	-	-	-	-	-	1*	-	-	1	-	-	-	-	-	-	-	-	-	1	-	2
Thrombocytopenia	-	1	-	1	-	-	1	-	-	1	-	-	1	-	1	-	1	-	-	-	-	-	-	-	1	-	-	5	2	1
Nausea	1	2	-	3	-	-	1	1	-	2	-	-	1	1	-	1	1	-	2	1	-	-	-	-	2	-	-	13	6	-
Dry Mouth	3	-	-	3	-	-	3	-	-	2	-	-	3	1	-	2	1	-	1	1	-	2	-	-	3	-	-	22	3	-
Constipation	-	-	-	-	-	-	-	1	-	2	-	-	-	-	-	1	-	-	1	1	-	1	-	-	2	-	-	7	2	-
Vomiting	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	1	-	1	-	-	1	-	-	3	1	-
Gastroesophageal Reflux	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	-	-	-	-	1	-	-	2	1	-
Diarrhea	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	1	-	-	1	-	-	-	-	-	-	-	-	3	-	-
Weight Loss	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	1	1	-
Anorexia	1	-	-	2	-	-	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	1	-	-	6	-	-
Dry Eye	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	1	-	-	2	-	-
Fatigue	-	-	-	1	-	-	1	-	-	2	-	-	1	-	-	2	-	-	1	-	-	1	-	-	6	-	-	15	-	-

No DLTs were reported across the dose levels One treatment related SAE – febrile neutropenia No grade 4 AEs

*includes one grade 3 febrile neutropenia reported in dose level 5

#ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

LuPARP results: PSA Response

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

PRESENTED BY: Shahneen Sandhu

2023 **ASCO**

ANNUAL MEETING

#ASCO23

Heterogeneity in PSMA Expression

Single cell expression of PSMA across sites

PRESENTED BY: Shahneen Sandhu

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

2023 ASCO #ASCO23

Conclusions/Take Home Points

- Important early results of 177Lu-PSMA-617 in combination with olaparib:
 - PSA-RR of 65% (21/32)
 - No dose limiting toxicities
 - The RP2D is 7.4Gb of ¹⁷⁷Lu-PSMA-617 in conjunction with olaparib 300mg BD days -4 to18 of each 6 weekly cycle
- Need longer term follow-up and larger trial
 - Dose expansion is currently ongoing.
- Encouraging translational work presented to better understand the impact of this combination

Future clinical trials

T	rial number (name)	Notable characteristics	Intervention	Total enrollment	Primary outcome measure				
17	⁷ Lu monotherapy								
	NCT05079698	Hormone sensitive, oligometastatic	177Lu-PSMA-617 with SBRT	6	DLTs				
	NCT04443062 (BULLSEYE)	Hormone sensitive, oligometastatic	177Lu-PSMA-617 versus SoC	58	Disease progression				
	NCT05114746	mCRPC	177Lu-PSMA-617 with SoC	28	DLTs and ORR				
	NCT05458544	mCRPC	177Lu-Ludotadipep	26	DLTs and ORR				
	NCT05579184	mCRPC	177Lu-Ludotadipep	30	PSA response rate				
	NCT04509557	mCRPC	177Lu-Ludotadipep	30	DLTs				
	NCT05340374	mCRPC previously treated with docetaxel and ARPI	¹⁷⁷ Lu-PSMA-617 with cabazitaxel	44	DLTs and MTD				
	NCT03454750	mCRPC	¹⁷⁷ Lu-PSMA-617 with radiometabolic therapy	210	DCR, treatment-emergent adverse events				
	NCT03042468	mCRPC previously treated with ARPI	¹⁷⁷ Lu-PSMA-617	50	DLTs and MTD				
	NCT03874884 (LuPARP)	mCRPC previously treated with ARPI	¹⁷⁷ Lu-PSMA-617 with olaparib	52	DLTs and MTD				
	NCT04343885 (UpFrontPSMA)	mHSPC	¹⁷⁷ Lu-PSMA-617 followed by docetaxel versus docetaxel	140	Undetectable PSA rate at 12 months				
	NCT05383079 (AlphaBet)	mCRPC previously treated with ARPI	177Lu-PSMA-I&T with radium-223	36	DLTs, MTD, 50% PSA response rate				
	NCT04786847 (ProstACTSelect)	mCRPC previously treated with ARPI	177Lu-DOTA-TLX591	50	Treatment-related adverse events				
	NCT05146973 (ProstACT TARGET)	Biochemically recurrent oligometastatic prostate cancer	¹⁷⁷ Lu-DOTA-TLX591 with EBRT	50	PSA PFS				
	NCT03780075	mCRPC	177Lu-EB-PSMA-617	50	PSA change, SUV change				
	NCT00859781	Biochemically relapsed prostate cancer after local therapy	¹⁷⁷ Lu-J591 with ketoconazole	55	Proportion of subjects free of radiographically evident metastases				
	NCT03658447 (PRINCE)	mCRPC previously treated with ARPI	¹⁷⁷ Lu-PSMA-617 with pembrolizumab	37	PSA response, treatment- related adverse events, tolerability				
	NCT04430192 (LuTectomy)	High-risk localized prostate cancer	¹⁷⁷ Lu-PSMA-617	20	Radiation absorbed dose				
	NCT05547061	mCRPC	177Lu-DGUL	73	ORR				
	NCT04663997	mCRPC previously treated with ARPI	¹⁷⁷ Lu-PSMA-617 versus docetaxel	200	PFS				
	NCT05113537 (UPLIFT)	mCRPC previously treated with ARPI	Abemaciclib followed by 177Lu-PSMA-617	30	DLTs and MTD				

Trial number (name)	Notable characteristics	Intervention	Total enrollment	Primary outcome measures				
NCT05230251 (ROADSTER)	Localized prostate cancer with biochemical failure, previously treated with radiation therapy	¹⁷⁷ Lu-PSMA-I&T with high-dose radiation versus high-dose radiation	12	Safety and efficacy				
NCT03805594	mCRPC previously treated with ARPI	¹⁷⁷ Lu-PSMA-617 with pembrolizumab	43	ORR				
NCT05162573 (PR0QURE-1)	N1M0	177Lu-PSMA-617 with EBRT	18	MTD				
NCT05413850	mCRPC	¹⁷⁷ Lu-rhPSMA-10.1	150	DLTs, treatment-related adverse events, 50% PSA response rate				
NCT05496959 (LUNAR)	Oligorecurrent	¹⁷⁷ Lu-PSMA-I&T before SBRT	100	PSMA-PET/CT-based PFS				
NCT03822871	mCRPC previously treated with ARPI	CTT1403	40	DLTs				
NCT05150236 (EVOLUTION)	mCRPC previously treated with ARPI	¹⁷⁷ Lu-PSMA-617 with nivolumab and ipilimumab versus ¹⁷⁷ Lu-PSMA-617	110	PSA-PFS at 1 year				
NCT04419402 (ENZA-p)	mCRPC	¹⁷⁷ Lu-PSMA-617 with enzalutamide <i>versus</i> enzalutamide	160	PSA PFS				
225Ac monotherapy								
NCT03276572	mCRPC previously treated with ARPI	²²⁵ Ac-J591	32	DLTs and MTD				
NCT04506567	mCRPC previously treated with ARPI	²²⁵ Ac-J591	105	DLTs and MTD				
NCT04946370	mCRPC previously treated with ARPI	²²⁵ Ac-J591 with pembrolizumab	76	DLTs, optimal dose, response rates				
NCT05219500 (TATCIST)	mCRPC previously treated with ARPI	²²⁵ Ac-PSMA-I&T	100	Efficacy and safety				
NCT04597411 (AcTION)	Both prior exposure and naïve to ¹⁷⁷ Lu acceptable	²²⁵ Ac-PSMA-517	60	мтр				
Combination of ¹⁷⁷ Lu and ²²⁵ Ac								
NCT04886986	mCRPC previously treated with ARPI	²²⁵ Ac-J591 with ¹⁷⁷ Lu- PSMA-I&T	33	DLTs, MTD, 50% PSA response rate				
¹⁶¹ Tb								
NCT05521412 (VIOLET)	mCRPC previously treated with ARPI	¹⁶¹ Tb-PSMA-I&T	36	DLTs, MTD, treatment- related adverse events				
²²⁷ Th								
NCT03724747	mCRPC previously treated with ARPI	BAY2315497 with or without darolutamide	63	мтр				

ARPI, androgen receptor pathway inhibitor; DCR, disease control rate; DLTs, dose-limiting toxicities; EBRT, external beam radiation therapy; mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-sensitive prostate cancer; MTD, maximum tolerated dose; ORR, objective response rate; PSA, prostate-specific antigen; PSMA-RLT, prostate-specific membrane antigen-radioligand therapy; SBRT, stereotactic body radiation therapy; SoC, standard of care.

Jang et al, Ther Adv Med Oncol . 2023

Pembrolizumab in MSI-high Prostate Cancer

- > 32 (3.1%) of 1,033 of prostate cancer patients tested with germline + somatic DNA sequencing had MSI-high or mismatch-repair deficient status
- > 6 of 11 treated with PD-1/PD-L1 antibody therapy had a PSA decline >50%
- > 8 patients were evaluable for radiographic response
- Duration of therapy ranged from
 4.6 to 89 weeks or longer

MSI, microsatellite instability; PD, progressing disease; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PR, partial response; PSA, prostate-specific antigen; SD, stable disease Abida W, et al. JAMA Oncol. 2019;5:471-8

Other novel agents on pipeline

- > CDK 4/6: Abemaciclib
- > **BITE:** AMG 509 trial
- > PSMA-ADC: ARX-517 trial
- > **TROP2-ADC:** DS-1062a
- > Novel immunotherapy combinations
 - For CRPC: Nivolumab + TLR, XL092 + Atezolizumab
- > CAR-T cell:

ARX517, an anti-PSMA ADC targeting mCRPC

Conclusions

- > Biomarker-based treatment selection is evolving in prostate cancer
- > DNA repair gene alterations are seen in metastatic prostate cancer
 - Both germline and somatic testing are required
- > PARP inhibitors have demonstrated efficacy in mCRPC
 - Olaparib and rucaparib are now FDA approved
 - Recently PARP+NHA combinations received FDA approval
- > Lu-PSMA is available for patients with mCRPC
- > Novel agents coming with different targets

Thank you....

Medical Oncology

Urologic Oncology

Radiation Oncology

Nuclear Med

Immunology

