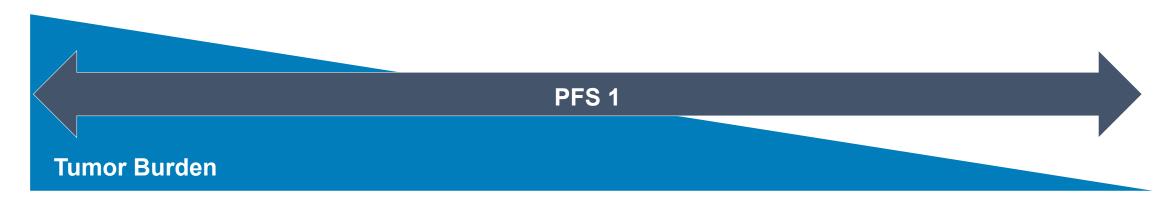
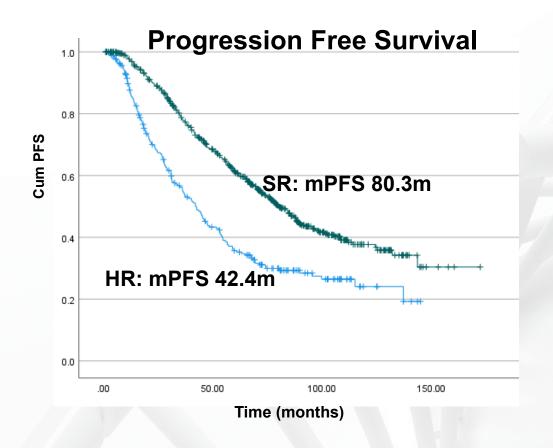


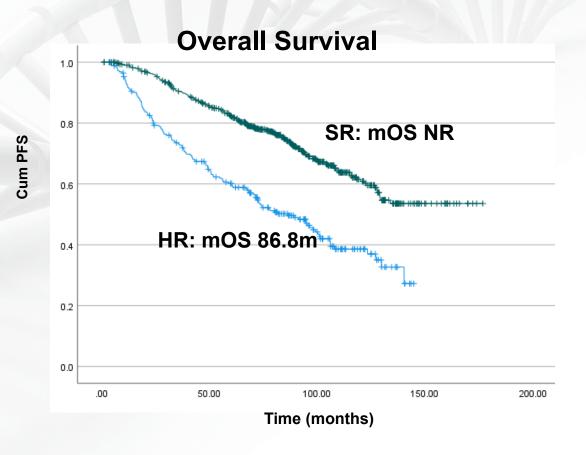
NOVEL COMBINATION THERAPIES IN NDMM – EVIDENCE FOR QUADRUPLETS

Nisha S. Joseph, MD

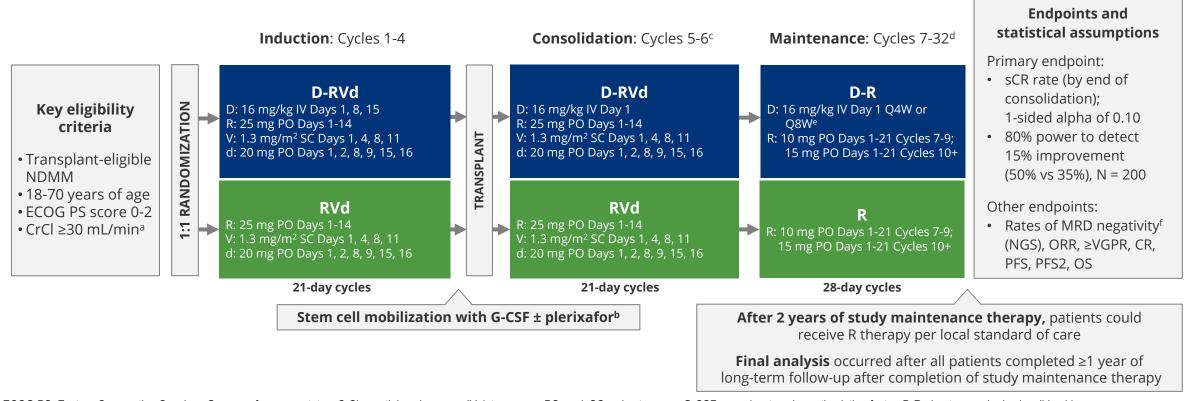

Assistant Professor


Winship Cancer Institute, Emory University




APPROACH TO NDMM: HOW DO WE OPTIMIZE DEPTH AND DURATION OF RESPONSE?

RVD 1000



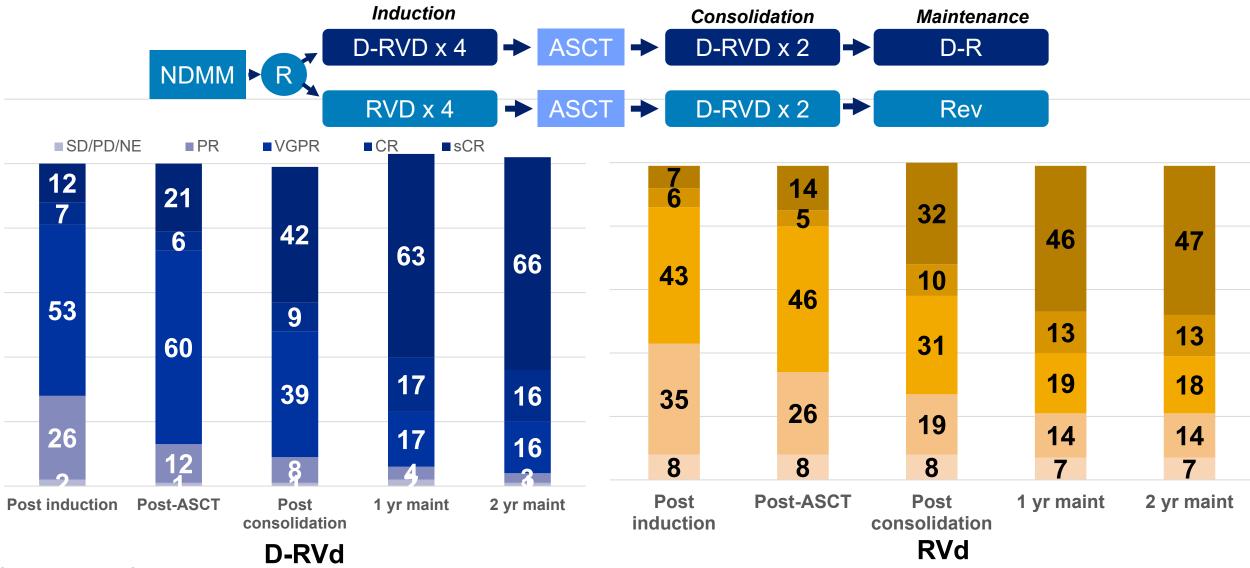
Median OS for the entire cohort was ~11 years

Parikh et al Abstract # 8061, ASCO 2022; Joseph et al JCO 2020

GRIFFIN: STUDY DESIGN

35 sites in the United States with enrollment between December 2016 and April 2018

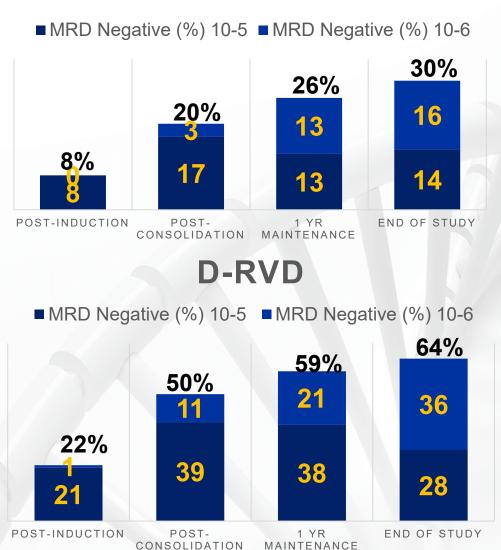
ECOG PS, Eastern Cooperative Oncology Group performance status; CrCl, creatinine clearance; IV, intravenous; PO, oral; SC, subcutaneous; G-CSF, granulocyte colony-stimulating factor; D-R, daratumumab plus lenalidomide; Q4W, every 4 weeks; Q8W, every 8 weeks; NGS, next-generation sequencing; ORR, overall response rate; VGPR, very good partial response; CR, complete response; PFS, progression-free survival; PFS2, PFS on next subsequent line of therapy; OS, overall survival. aLenalidomide dose adjustments were made for patients with CrCl ≤50 mL/min. bCyclophosphamide-based mobilization was permitted if unsuccessful. cConsolidation was initiated 60 to 100 days post-transplant. dPatients who completed maintenance Cycles 7 to 32 were permitted to continue single-agent lenalidomide thereafter. Protocol amendment 2 allowed for the option to dose DARA Q4W based on pharmacokinetic results from study SMM2001 (ClinicalTrials.gov Identifier: NCT02316106). To measure MRD negativity at a minimum threshold of 10-5, bone marrow aspirates were collected at first evidence of suspected CR or sCR (including patients with ≥VGPR and suspected DARA interference), after induction but before stem cell collection, at the post-transplant consolidation disease evaluation, and at 12 months and 24 months (±3 weeks) of maintenance therapy.

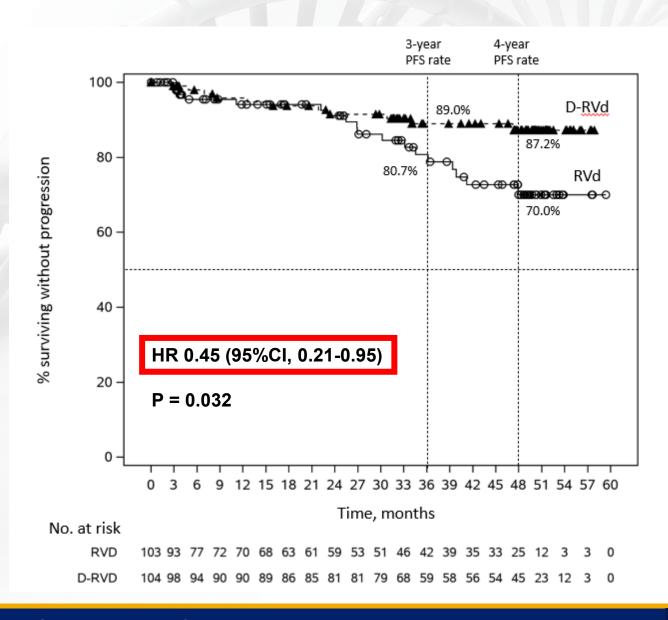

GRIFFIN: DEMOGRAPHIC AND CLINICAL CHARACTERISTICS

Characteristic	D-RVd (n = 104)	RVd (n = 103)
Age, years		
Median (range)	59 (29-70)	61 (40-70)
≥65, n (%)	28 (27)	28 (27)
Sex, n (%)		
Male	58 (56)	60 (58)
ECOG PS score, n (%) ^a		
0	39 (39)	40 (39)
1	51 (50)	52 (51)
2	11 (11)	10 (10)
Baseline CrCl, n (%)		
30-50 mL/min	9 (9)	9 (9)
>50 mL/min	95 (91)	94 (91)
ISS disease stage, n (%) ^b		
I	49 (47)	50 (49)
II	40 (38)	37 (36)
III	14 (13)	14 (14)
Missing	1 (1)	2 (2)

Characteristic	D-RVd	RVd		
	(n = 104)	(n = 103)		
Cytogenetic risk profile, n (%) ^c				
Standard risk	82 (84)	83 (86)		
High risk	16 (16)	14 (14)		
del17p	8 (8)	6 (6)		
t(4;14)	8 (8)	6 (6)		
t(14;16)	1 (1)	3 (3)		
Revised cytogenetic risk profile, n (%) ^c				
Standard risk	56 (57)	60 (62)		
High risk	42 (43)	37 (38)		
del17p	8 (8)	6 (6)		
t(4;14)	8 (8)	6 (6)		
t(14;16)	1 (1)	3 (3)		
gain 1q	34 (35)	28 (29)		
t(14;20)	1 (1)	1 (1)		
Median time since MM diagnosis, mo	onths ^d			
Median	0.7	0.9		

ITT, intent-to-treat; ISS, International Staging System; MM, multiple myeloma. a ECOG PS is scored on a scale from 0-5, with 0 indicating no symptoms and higher scores indicating increasing disability. Percentages based on evaluable patients (D-RVd, n = 101; RVd, n = 102). b The ISS disease stage is based on the combination of serum β 2-microglobulin and albumin levels. Higher stages indicate more advanced disease. c Cytogenetic risk was assessed by fluorescence in situ hybridization (locally tested) among patients with available cytogenetic risk data among evaluable patients (D-RVd, n = 97); high risk was defined as the presence of del17p, t(4;14), or t(14;16), while revised high risk was defined as the presence of del17p, t(4;14), t(14;16), t(14;20), or gain 1q (\geq 3 copies of chromosome 1q21) among those patients. d Data are based on evaluable patients (D-RVd, n = 103; RVd, n = 102).


GRIFFIN STUDY: RESPONSES DEEPENED OVER TIME



Sborov et al, IMS 2022

PHASE 2 GRIFFIN STUDY

RVD

GRIFFIN: MOST COMMON TEAES

Most samman	D-RVd	(n = 99)	RVd (n = 102)		
Most common TEAEs, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
Hematologic					
Neutropenia	63 (64)	46 (46)	41 (40)	23 (23)	
Thrombocytopenia	44 (44)	16 (16)	36 (35)	9 (9)	
Leukopenia	39 (39)	17 (17)	30 (29)	8 (8)	
Anemia	37 (37)	9 (9)	33 (32)	6 (6)	
Lymphopenia	31 (31)	23 (23)	29 (28)	23 (23)	
Nonhematologic					
Fatigue	71 (72)	7 (7)	63 (62)	6 (6)	
Upper respiratory tract infection	67 (68)	4 (4)	51 (50)	2 (2)	
Diarrhea	66 (67)	7 (7)	56 (55)	5 (5)	
Peripheral neuropathy ^b	62 (63)	7 (7)	78 (76)	9 (9)	
Cough	53 (54)	0	31 (30)	0	

Most samman	D-RVd	(n = 99)	RVd (n = 102)		
Most common TEAEs, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
Nonhematologic (cont'd)					
Nausea	52 (53)	2 (2)	51 (50)	1 (1)	
Constipation	51 (52)	2 (2)	42 (41)	1 (1)	
Pyrexia	48 (48)	3 (3)	33 (32)	3 (3)	
Insomnia	45 (45)	2 (2)	31 (30)	1 (1)	
Back pain	41 (41)	2 (2)	36 (35)	3 (3)	
Arthralgia	39 (39)	1 (1)	38 (37)	2 (2)	
Peripheral edema	36 (36)	2 (2)	37 (36)	3 (3)	
Headache	33 (33)	5 (5)	24 (24)	1 (1)	
Vomiting	32 (32)	3 (3)	29 (28)	0	
Muscle spasms	30 (30)	2 (2)	20 (20)	1 (1)	
Dyspnea	24 (24)	2 (2)	31 (30)	5 (5)	
Infusion-related reaction ^c	49 (49)	7 (7)	_	_	

- Rates of TEAEs leading to treatment discontinuation were similar (D-RVd, 33%; RVd, 31%)
- TEAEs leading to death occurred in 1 patient in each group (neither related to study treatment)

IMPROVING UPON RVD: THE ROLE OF MONOCLONAL ANTI-CD38 AB IN NDMM

		Depth of Response						
	Regimen	Post-induction (%)		(a) Po	Post-ASCT (%)		Post-consolidation (%)	
		sCR	≥VGPR	sC	R	≥VGPR	sCR	≥VGPR
CASSIOPEIA ^{1,2}	VTD	6.5%	56.19	%	9.4%	67.4%	20.3%	78%
	Dara-VTD	7.4%	65%)	13.4%	76.7%	29%	83.4%
GRIFFIN ³	RVD	7%	56%)	14%	66%	32%	73%
	Dara-RVD	12%	72%)	21%	87%	42%	91%
			Post induction (%)					
		CR		≥VGPR MRD (10-5) neg				
GMMG-HD7 ⁴	RVD	22%	22% 61%		36%			
	Isa-RVD	24%)	77%	50)%		

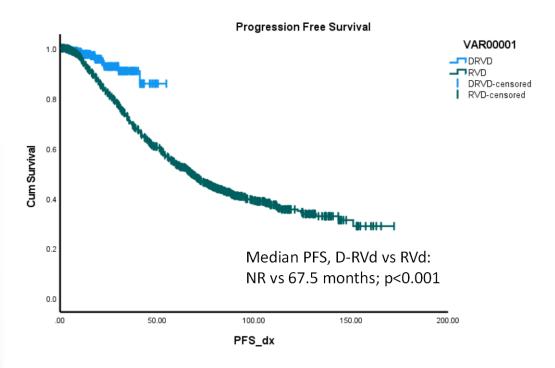
^{1.} Moreau et al., Lancet, 2019;391(10192):29-38. 2. Moreau et al, Lancet 2021;10,P1378-1390; 3. Voorhees et al., Blood, 2020;136:936-945; 4. Goldschmidt et al, Lancet Hem 2022, 11, E810-821.

APPLYING GRIFFIN TO CLINICAL PRACTICE

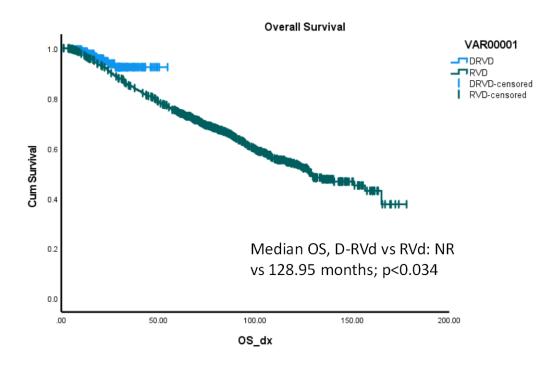
Standard risk MM Dara-RVD ASCT

mLen

- Improved DOR and higher rates of MRD negativity favoring D-RVDTime to MRD negativity was shorter for D-RVd versus RVd
- Signficant PFS benefit at 4 year mark (HR 0.45, p=0.03)
- Tolerable AE profile


Newly diagnosed

MM


 Dara exposure does not preclude later use in relapsed disease

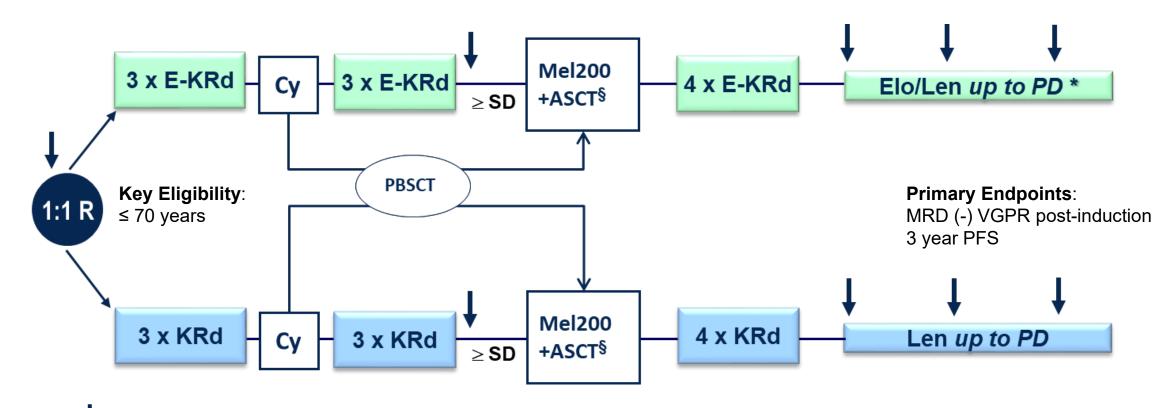
These data support the use D-RVd induction as a new standard of care in transplant-eligible patients with NDMM

DRVD VS RVD (EMORY)

1-year PFS, D-RVd vs RVd: 98% vs 93% 2-year PFS, D-RVd vs RVd: 93% vs 82%

1-year OS, D-RVd vs RVd: 99% vs 97% 2-year OS, D-RVd vs RVd: 94% vs 91%

Unpublished data. PLEASE DO NOT POST


CARFILZOMIB, LENALIDOMIDE, AND DEXAMETHASONE (KRD) VERSUS ELOTUZUMAB AND KRD IN TRANSPLANT-ELIGIBLE PATIENTS WITH NEWLY DIAGNOSED MULTIPLE MYELOMA: POSTINDUCTION RESPONSE AND MRD RESULTS FROM AN OPEN-LABEL RANDOMIZED PHASE 3 STUDY

S Knop,¹ T Stuebig,² M Kull,³ R Greil,⁴ N Steiner,⁵ F Bassermann,⁶ A Nogai,⁷ M von Lilienfeld-Toal,⁸ S Janjetovic,⁹ K Trautmann-Grill,¹⁰ M Bittrich,¹ MM Engelhardt,¹¹ A Hoferer,¹² S Theurich,¹³ M Binder,¹⁴ N Zojer,¹⁵ HA Duerk,¹⁶ M Brueggemann,¹⁷ S Held,¹⁸ and H Einsele¹ on behalf of *Deutsche Studiengruppe Multiples Myelom*

¹Wuerzburg University Medical Center, Wuerzburg, Germany; ²Schleswig-Holstein University Hospital, Kiel Campus, Kiel, Germany; ³Ulm University Hospital, Dept. of Internal Medicine 3, Ulm, Germany; ⁴3rd Medical Department, Paracelsus Medical University; Salzburg Cancer Research Institute-CCCIT; Cancer Cluster Salzburg, Austria; ⁵Medical University Innsbruck, Dept. of Internal Medicine V, Innsbruck, Austria; ⁵University Hospital rechts der Isar, Munich, Germany; ⁷Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Medizinische Klinik m.S. Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany; ⁸Jena University Hospital, Dept. of Hematology and Oncology, Jena, Germany; ⁹Helios Klinikum Berlin-Buch, Dept. of Hematology and Oncology, Berlin, Germany; ¹⁰Department of Hematology and Oncology, Dresden University Hospital Carl Gustav Carus, Dresden, Germany; ¹¹University Hospital Medical Centre, Freiburg, Germany; ¹²Robert Bosch Hospital, Dept. of Hematology and Oncology, Stuttgart, Germany; ¹³Department of internal Medicine III, Hematology and Oncology, Gene Center, Cancer- and Immunometabolism Research Group, Ludwig-Maximilians University Munich, Mu, Munich, Germany; ¹⁴Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle, Germany; ¹⁵Wilhelminen Cancer Research Institute, First Department of Medicine, Center for Oncology, Hematology, and Palliative Care, Clinic Ottakring, Vienna, Austria; ¹⁶St Barbara Hospital Hamm, Dept. of Hematology and Oncology, Hamm, Germany; ¹⁷Medical Department II, University Schleswig Holstein in the City Hospital Kiel, Kiel, Germany; ¹⁸Clinassess GmbH, Leverkusen, Germany.

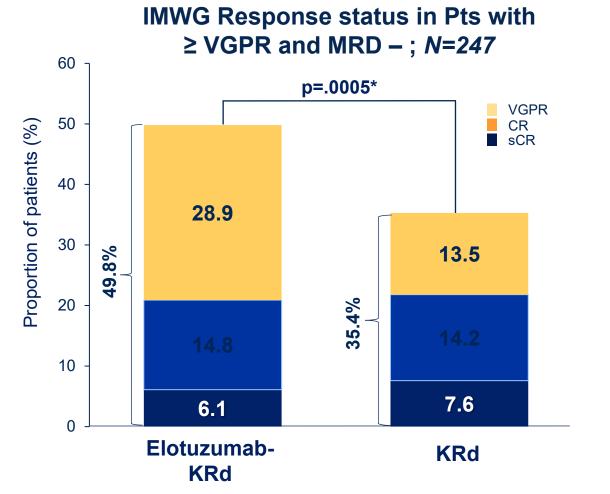
DSMM XVII Study: Elo-KRd versus KRd

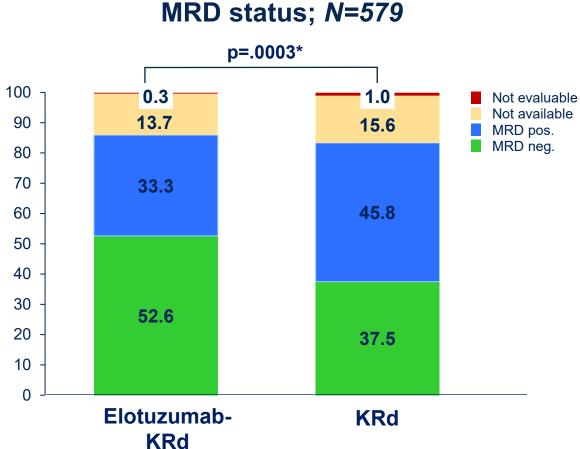
Study Design; *N*=576

MRD assessment by NGF (EuroFlow; 10exp-5 sensitivity) and NGS

* Elo maint. 20 mg/kg q28 days; § Tandem if no CR

DSMM XVII STUDY: PATIENT CHARACTERISTICS


Recruitment Period: 08/2018 – 10/2021; Data Cut-off: Jan 6, 2023


	Elo-KRd (N=291)	KRd (N=288)
Age, years		
Median (range)	58.7 (33-71)	57.9 (31-71)
Distribution, n (%)		
< 40	10 (3.4)	11 (3.8)
40 - 49	33 (11.3)	25 (12.2)
50 - 59	95 (32.6)	97 (33.3)
≥ 60	153 (52.5)	145 (50.4)
ECOG PS score ^a , n (%)		
0	159 (54.6)	155 (53.8)
1	110 (37.8)	103 (35.8)
2	20 (6.9)	28 (9.7)
R-ISS Stage, n (%)		
1	96 (33.0)	89 (30.9)
II	118 (40.5)	130 (45.1)
III	25 (8.6)	27 (9.4)
n.a.	52 (17.8)	42 (14.5)

	Elo-KRd (N=291)	KRd (=288)
Type of myeloma, n (%)		
IgG	169 (58.0)	150 (52.1)
IgA	58 (19.9)	72 (24.7)
Light chain	60 (20.5)	61 (25.0)
Other	4 (1.4)	5 (1.7)
Cytogenetic profile, n/evaluable (%)		
+ 1q21	25/241 (10.4)	20/244 (8.2)
del17p	16/244 (6.5)	16/248 (6.4)
t(4;14)	21/240 (8.8)	26/248 (10.4)
t(14;16)	2/228 (0.8)	2/236 (0.7)
High-risk MM	56/227 (24.7)	52/232 (22.4)
Median interval since diagnosis (range), months	0.3 (0.0-208.7)	0.4 (0.0-102.5)

→ 91.6% of pts received all six cycles

PRIMARY ENDPOINT: RESPONSE DETAILS

^{*} Chi square; (2-sided, alpha=.0253)

DSMM XVII STUDY: ADVERSE EVENTS (AES)

Treatment-emergent AEs (TEAEs); Safety Population, N=574

	Elo-KRd, A	I=288			KRd, <i>N</i> =279			
	Grade 1/2	Grade 3	Grade 4	Grade 5	Grade 1/2	Grade 3	Grade 4	Grade 5
			Any a	dverse event				
	78 (26.9%)	106 (36.5%)	106 (36.5%)	5 (1.7%)	102 (36.6%)	87 (31.2%)	90 (32.3%)	8 (2.8%)
		Blood ar	nd lymphatic sys	tem disorders (preferred terms)			
Neutropenia	15 (5.2%)	23 (7.9%)	10 (3.4%)		20 (6.8%)	32 (8.1%)	10 (3.5%)	
Febrile neutropenia	9 (3.1%)	16 (5.5%)	2 (0.7%)		7 (2.5%)	7 (2.5%)	1 (0.4%)	
Thrombocytopenia	25 (8.6%)	32 (7.9%)	13 (4.5%)		22 (7.7%)	10 (3.5%)	20 (7.1%)	
Thrombotic microangiopathy	1 (0.3)	1 (0.3%)					1 (0.4%)	
			Cardiac disord	lers (preferred t	erms)			
Myocardial infarction		1 (0.3%)	1 (0.3%)		1 (0.4%)		3 (1.1%)	
Cardiac arrest								1 (0.4%)
Cardiac failure	3 (1.0%)	5 (1.7%)			2 (0.7%)	5 (1.8%)	1 (0.4%)	
Atrial fibrillation	3 (1.0%)	4 (1.4%)			2 (0.7%)	4 (1.4%)	2 (0.7%)	
		(Gastrointestinal o	disorders (prefe	rred terms)			
Diarrhea	66 (22.7%)	8 (2.7%)			58 (20.4%)	5 (1.8%)		
Constipation	54 (18.6%)	2 (0.7%)			47 (16.6%)			
			Renal/urinary di	sorders (preferr	red terms)			
Acute kidney injury	7 (2.4%)	6 (2.1%)			3 (1.1%)	8 (2.8%)	3 (1.1%)	

TEAES; SAFETY POPULATION, N=574

	Elo-KRd, N	=288			KRd, <i>N</i> =279			
	Grade 1/2	Grade 3	Grade 4	Grade 5	Grade 1/2	Grade 3	Grade 4	Grade 5
		General disc	oders/administr	ation site condit	ions (preferred tern	ns)		
Chills	31 (10.7%)	1 (0.3%)			16 (5.7%)			
Pyrexia	114 (39.6%)	21 (7.2%)			68 (24.0%)	6 (2.1%)		
		Ir	nfections and in	festations (prefe	erred terms)			
CMV reactivation	4 (1.4%)	2 (0.7%)			1 (0.4%)	1 (0.4%)		
COVID-19 infection	7 (2.4%)	5 (1.7%)		1 (0.3%)	8 (2.8%)			1 (0.4%)
Pneumonia (various)	8 (2.7%)	19 (6.6%)	1 (0.3%)		0	18 (6.4%)		1 (0.4%)
Sepsis/septic shock		2 (0.7%)	1 (0.3%)		1 (0.4%)	1 (0.4%)	3 (1.1%)	1 (0.4%)
Urinary tract infection (various)	19 (6.6%)	3 (1.0%)			7 (2.5%)	3 (1.1%)		
		Metak	oolism and nutri	ition disorders (p	oreferred terms)			
Hypophosphatemia	10 (3.4%)	11 (3.8%)	1 (0.3%)		9 (3.2%)	7 (2.5%)		
TLS	1 (0.3%)	1 (0.3%)	1 (0.3%)			1 (0.4%)	2 (0.7%)	
		N	lervous system	disorders (prefe	rred terms)			
Polyneurpathy	10 (3.4%)	2 (0.7%)			13 (4.6%)	1 (0.4%)		
			Vascular disc	orders (preferred	l terms)			
Thrombosis (various)	20 (6.9%)	2 (0.7%)			12 (4.0%)	3(1.1%)		
Hypertension	22 (7.5%)	15 (5.2%)			27 (9.7%)	19 (6.7%)		
		Skin an	d sucutaneous	tissue disorders	(preferred terms)			
Rash (various)	73 (25.3%)	16 (5.5%)			73 (26.1%)	11 (4.0%)		

Stefan Knop, MD

Conclusions

- First positive randomized study for Elo in NDMM
- Met first co-primary endpoint : Higher ≥ VGPR + MRD negativity rate (49.8% vs 35.4%) post induction
- Manageable safety profile in fit patients up to 70 years

Is this practice changing data?

- ☐ Shows utility of quad vs triplet for NDMM induction (Dara)
- ■What is the optimal backbone?

IFM 2018-04 phase 2 study design

Key inclusion criteria:

- Age < 66
- Newly diagnosed multiple myeloma
- Transplant-eligible
- **High-risk FISH**: t(4;14), 17p del, t(14;16)
- ECOG 0-2

Objectives:

- Primary Objective :

Feasibility (endpoint : >70% patients completed 2nd transplant)

- Secondary Objectives:

Safety, ORR, PFS, OS, stem-cell collection

Inductio	n	
Dara-KRd	X	6

Stem cell collection

Cyclo

GCSF

+/-

Plerix

ASCT #1

Mel 200

Consolidation Dara KRd x 4

ASCT #2 Maintenance
Dara Len 2 years

Dara: 16 mg/kg IV

D1,8,15,22 (cycle 1 - 2) D1 D15 (Cycle 3 to 6)

K: (20)36 mg/m2 IV D1-2, 8-9, 15-16

Len : 25 mg D1-21

Dex: 20 mg D1-2,8-9,15-16,22-23

28-day cycles

Dara: 16 mg/kg IV D1 D15

K: **56 mg/m2 IV** D1, 8, 15

Len: 15 mg D1-21

Dex: 40 mg D1, 8, 15, 22

28-day cycles

Mel 200

Dara: 16 mg/kg IV every 8 weeks

Len: 10 mg 21/28

PRESENTED BY:
Cyrille Touzeau

Patient characteristics

	N=50
Median age (range), years	57 (38-65)
ECOG PS	
0-1	47 (94%)
2	3 (6%)
ISS score	
stage 1	21 (42%)
stage 2	17 (34%)
stage 3	12 (24%)
R-ISS score	
stage 2	38 (76%)
stage 3	12 (24%)

	N=50
High-risk (HR) cytogenetics	50 (100%)
17p deletion	20 (40%)
t(4;14)	26 (52%)
t(14;16)	10 (20%)
1q gain	25 (50%)
2 HR cytogenetic abnormalities *	34 (68%)

PRESENTED BY:
Cyrille Touzeau

^{*} defined by the presence of 2 HR abnormalities among 17p del, 1q gain, t(4;14), t(14;16)

Dara-KRd induction: Safety

Hematologic treatment related AE:

	Any grade N (%)	Grade 3/4 N (%)
Neutropenia	22 (44%)	20 (40%)
Anemia	14 (28%)	7 (14%)
Thrombocytopenia	13 (26%)	4 (8%)

AE leading to treatment discontinuation (n=2)

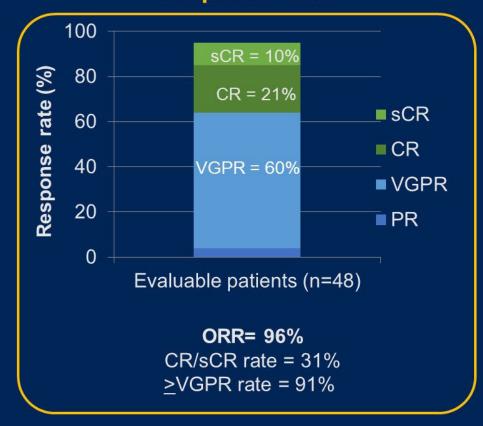
- COVID-19 infection (n=1)
- tumor lysis syndrome (n=1)

Grade 3/4 infection (n=3)

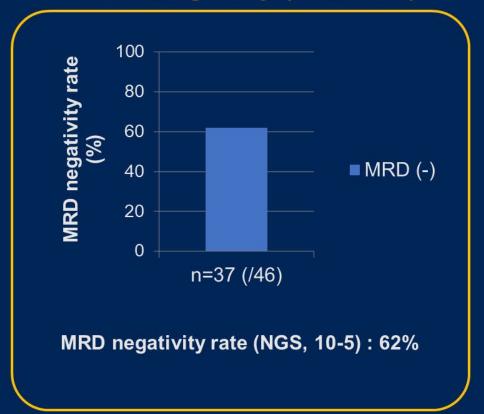
- COVID 19 infection (n=1)
- CMV infection (n=1)
- Pseudomonas aeruginosa bacteriemia (n=1)

Most common non hematologic treatment related AE:

	Any grade N (%)	Grade 3/4 N (%)		
GI disorders	23 (46%)	2(4%)		
Infection	20 (40%)	3 (6%)		
Skin rash	8 (16%)	0		
Deep-vein thrombosis	7 (14%)	3 (6%)		
Peripheral neuropathy	6 (12%)	0		
Hepatic cytolysis	4 (8%)	2 (4%)		
Renal failure	3 (6%)	3 (6%)		
Cardiac event	1 (2%)	0		

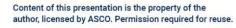


PRESENTED BY:
Cyrille Touzeau

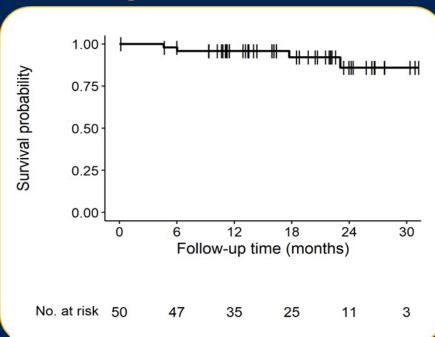


Dara-KRd induction: Response rates and MRD

Response Rate

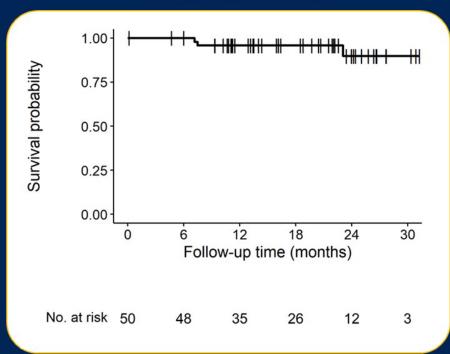

MRD negativity (NGS, 10-5)

PRESENTED BY:
Cyrille Touzeau



Progression-free and overall survival

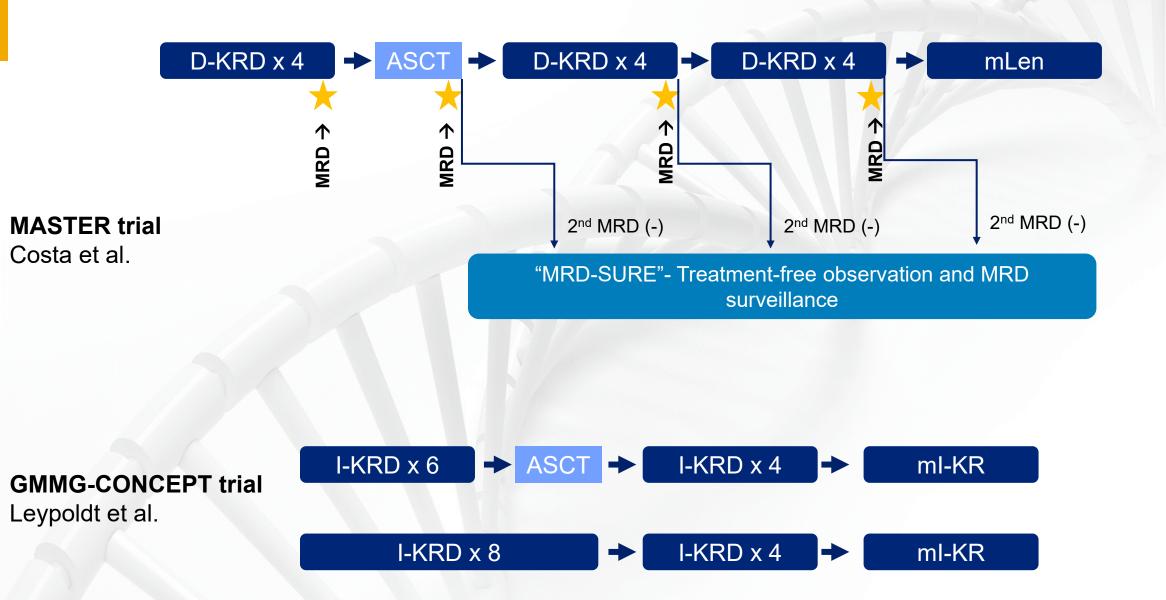
Median follow-up: 19.4 months


Data cut-off: april 25 2022

Progression-free survival

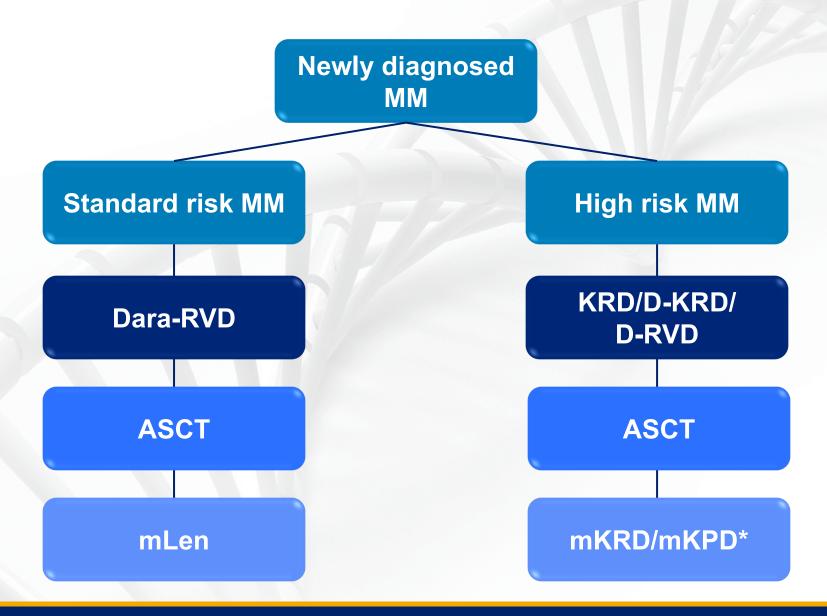
12-month PFS : 96% (90% - 100%) 18-month PFS : 92% (84% - 100%)

Overall Survival


12-month OS : 96% (90% - 100%) 18-month OS : 96% (90% - 100%)

PRESENTED BY:
Cyrille Touzeau

MONOCLONAL ANTIBODIES IN HIGH RISK MM


Trial	Regimen	Ph	n	mFU	Response Rates			MRD	PFS
					≥CR	≥VGPR	ORR	neg	
IFM 2018-04 ¹	D-KRD	2	50	19.4m	31%	91%	96%	62%	18 month PFS 92%
GMMG- CONCEPT ²	Isa-KRD	2	50	24.9m	46%,	90%	100%	62.5%	2y PFS 75.5%
MASTER 3, 5	D-KRD	2	70	25.1m	89%/ 71%*			79%/ 62%*	3y PFS 79%/50%*
GRIFFIN ⁴	D-RVD	2	47	49.6m	79%/ 62%*			56%/ 62%*	2y PFS 94%/64%*

*1 HR feature/ ≥2 HR features

^{1.} Touzeau et al, ASH 2022; 2. Leypoldt et al Leuk 2022; 3. Costa et al, JCO 2022; 4. Callander et al, ASH 2022;

^{5.} Costa et al EHA 2023

TREATMENT ALGORITHM FROM TE-NDMM

Nooka et al, Leuk 2014 Nooka et al, ASCO 2023

THANK YOU! NJOSEPH@EMORY.EDU