

NOVEL THERAPIES FOR RELAPSED T-CELL LYMPHOMA

Pamela Blair Allen, MD, MS
Assistant Professor
Winship Lymphoma Group
pallen5@emory.edu

DISCLOSURES

Advisory boards for Kyowa Kirin, Daichii Sankyo, Secura Bio, and Seattle Genetics.

CLINICAL CASE

- A 75 year old with a history of PTCL, T-follicular helper subtype with CD30 positivity was initially treated with brentuximab vedotin and CHP chemotherapy x 6 cycles. He achieved a CR and now 3 months later is presenting with fevers, chills, and a 10-lbs weight loss.
- Imaging shows diffuse adenopathy above and below the diaphragm.
- He has anemia, with markers for hemolysis, thrombocytopenia.
- PET scan shows lymphadenopathy along with increased avidity in the bone marrow. Echocardiogram shows a normal
 ejection fraction with no valvular dysfunction. He has no other co-morbidities.

Which of the following are potential treatment options?

QUESTION

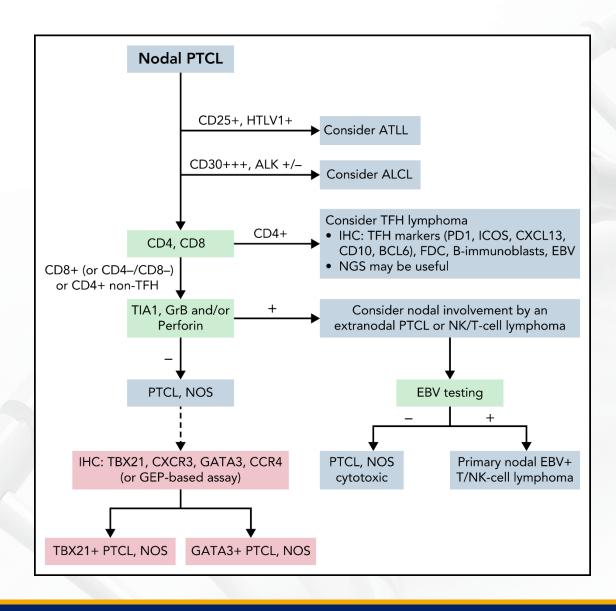
Which of the following are potential treatment options?

- A. Brentuximab vedotin
- B. Romidepsin
- C. Multiagent chemotherapy and autologous transplant
- D. Duvelisib

OBJECTIVES

- Discuss Treatment of relapsed nodal PTCL
- Discuss novel therapies including duvelisib, valemetostat, and CD70 as a target
- Discuss the evolving role of cellular therapy

LANDSCAPE OF THERAPIES FOR RELAPSED PTCL

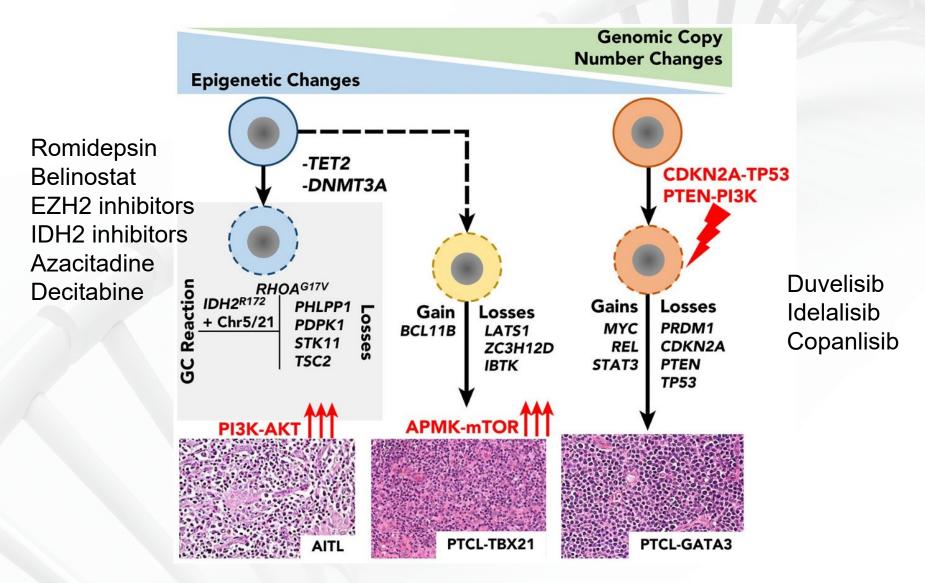

Table 3. Clinical trial efficacy data of licensed and available drug monotherapy

Drugs/ reference	Targeting site	Type of patients	Evaluable patients	ORR, %	CR/CRu, %	Median DoR, months	Median PFS, months	Median OS, months	Ref.
Pralatrexate	Antifolate	PTCL	109	29	11	10.5	3.5	14.5	[34]
Romidepsin	HDAC inhibitor	PTCL	130	25	15	28	4	_	[41, 42]
Belinostat	HDAC inhibitor	PTCL	120	25.8	10.8	13.6	1.6	7.9	[44]
Brentuximab vedotin	MoAb anti-CD30	ALCL	58	86	57	12.6	20	NR	[47]
Brentuximab vedotin	MoAb anti-CD30	PTCL	35	41	-	7.6	2.6	-	[48]
Lenalidomide	Immunomodulator	TCL	29ª	24	_	5	4	12	[60]
Bendamustine	Alkylating agent	TCL	60	50	28	6.6	3.6	6.2	[59]
Bortezomib	Proteazome inhibitor	TCL	12	67	17				[62]
Alemtuzumab	Mo Ab anti-CD52	PTCL	14	35.7	21.4				[64]

Only the data of patients who had relapsed/refractory PTCL were reported.

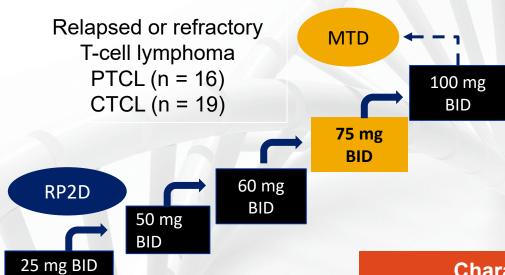
Abbreviations: —, not available; ALCL, anaplastic large-cell lymphoma; CR, complete remission; CRu, unconfirmed complete remission; DoR, duration of response; HDAC, histone deacetylase; MoAb, monoclonal antibodies; NR, not reached; OS, overall survival; PFS, progression-free survival; PTCL, peripheral T-cell lymphoma; Ref., reference; TCL, T-cell lymphoma.

CLASSIFICATION OF NODAL PERIPHERAL T-CELL LYMPHOMAS



The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee

Elias Campo et al, Blood, 2022, Figure 5.


TARGETING GENETIC SUBTYPES IN PTCL, NOS AND AITL

MOLECULAR TARGETS

- Duvelisib (IPI-145) is an oral inhibitor of phosphatidylinositol 3-kinase (PI3K)-δ/γ isoforms
- Copy number alterations deletions in TFH lymphomas are common in the following pathways:
 - PTEN, STK11, and TSC2 and/or MYC amplification
 - These pathways likely converge to constitutively activate PI3K–AKT–mTOR signaling.
- PI3K-δ/γ inhibition kills malignant T-cells directly and indirectly
 - Direct inhibition of malignant T-cell growth by blocking PI3K-δ and/or PI3K-γ signals for survival, proliferation, and differentiation of malignant cells
 - Augmenting immune responses in the TME

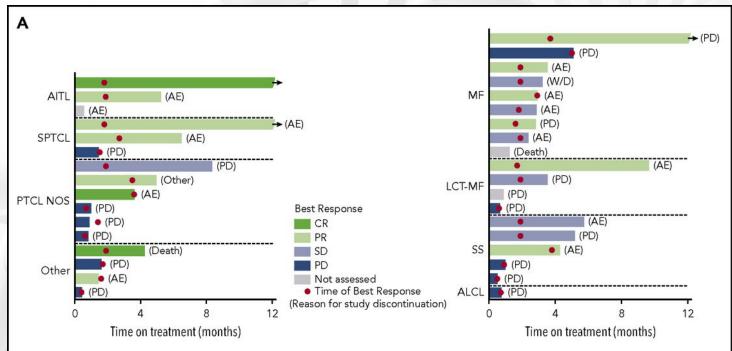
PHASE I TRIAL OF DUVELISIB MONOTHERAPY: EFFICACY IN PTCL AND CTCL

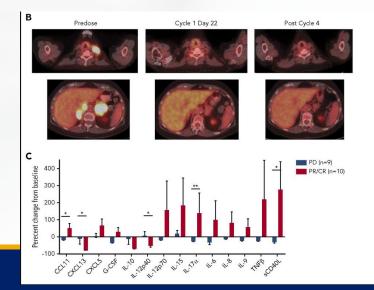
Characteristic	CTCL Cohort
MF/MF with LCT/SS/pcALCL, n	9/4/5/1
Stage IB/II-IIB/III-IIIA/IV-IVA, %	26/21/16/37
Prior lines of systemic therapy, median (range)*	6 (2-10)

*most commonly bexarotene and HDAC inhibitors

Slide credit: clinicaloptions.com

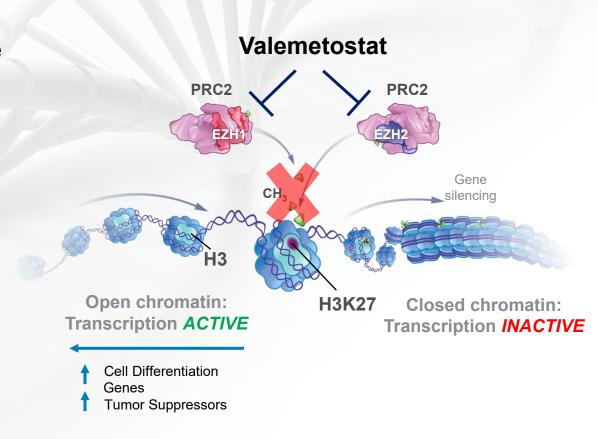
MOLECULAR TARGETING PI3K: EFFICACY


R/R PTCL (n = 16) and CTCL (n = 19)


ORR

- PTCL = 50%
- CTCL= 31.6%

Correlation to p-AKT


- In vitro, duvelisib potently killed
 - 3/4 TCL lines constitutive phospho-AKT versus
 - 0/7 lines lacking pAKT

VALEMETOSTAT IS A POTENT AND SELECTIVE DUAL INHIBITOR OF EZH1 AND EZH2

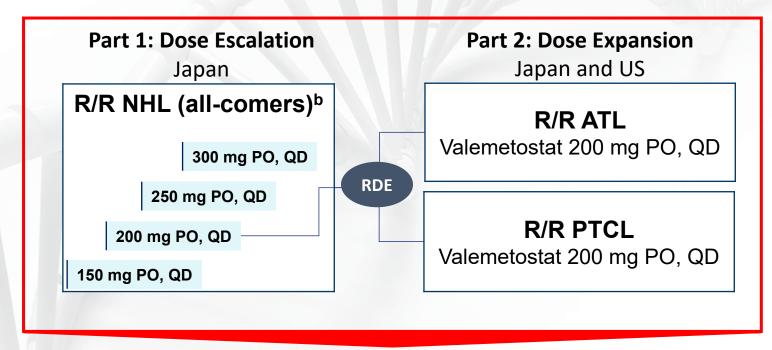
- Inhibits EZH1 and EZH2 through competitive inhibition of SAM^{1,2}
 - SAM is a methyl-providing co-factor³
- Reduces trimethylation of H3K27^{1,2}
- Alters gene expression patterns¹
- Attenuates the proliferation of EZH1- and EZH2-dependent cancer cells¹

STUDY OF VALEMETOSTAT MONOTHERAPY IN PATIENTS WITH R/R NHL

A phase 1, multicenter study of valemetostat monotherapy in patients with R/R NHL

DS3201-A-J101; NCT02732275

Patients with R/R NHL


- Age ≥20 (Japan) or ≥18 (US) years
- ECOG PS 0 or 1
- Patients with ATL: positive test result for HTLV-1

Primary endpoints

- Safety (including DLTs, TEAEs)
- Recommended phase 2 dose
- Pharmacokinetics

Secondary endpoints

- Safety
- Antitumor effect^a

- Safety analysis: all NHL (N=77)
 - B-cell NHL (n=19)
 - T-cell NHL (n=58)
- Safety and efficacy analyses: T-cell NHL (n=58)
 - o PTCL (n=44)
 - o ATL (n=14)

^aAccording to the 2007 revised International Working Group Criteria for Malignant Lymphoma or "Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international Consensus meeting." bEach dosage was tested with 3 patients

BASELINE DEMOGRAPHICS OF T-CELL LYMPHOMA COHORT

	PTCL (n=44)	ATL (n = 14)
Female, n (%)	17 (38.6)	6 (42.9)
Age, median (range), years ≥ 65 years, n (%)	68.5 (40-82) 28 (63.6)	66.5 (37-78) 7 (50.0)
ECOG PS, n (%) ^e 0 1	17 (38.6) 27 (61.4)	8 (57.1) 5 (35.7)
WHO classification, n (%) ATL AITL ALCL PTCL-NOS Others	- 17 (38.6) 2 (4.5) 20 (45.5) 5 (11.4)	14 (100.0) - - - -
Prior line of Tx, median (range)	2 (0-9)	2.5 (1-8)
Prior HSCT (n, %) Autologous, n Allogeneic, n	9 (20.5) 8 1	2 (14.3) 0 2

- PTCL: 42 patients were treated with 200 mg, and 2 were treated with 150 mg
- ATL: 12 patients were treated with 200 mg, and 2 were treated with 150 mg

Kusumoto S. EHA 2021. Abstract S218.

VALEMETOSTAT SAFETY ACROSS ALL HISTOLOGIES

	Patients, %					
Most Common TEAEs (Occurring in ≥20% of	All Histologies (N=77)					
patients with TCL)	All Grades	Grade ≥3				
Platelet count decreased	47 (61.0)	13 (16.9)				
Dysgeusia	40 (51.9)	0				
Anemia	31 (40.3)	9 (11.7)				
Neutrophil count decreased	27 (35.1)	18 (23.4)				
Alopecia	26 (33.8)	0				
WBC count decreased	23 (29.9)	12 (15.6)				

Grade ≥3 platelet count decreased and thrombocytopenia^a occurred in 13 (16.9%) and 2 (2.6%) patients with all histologies, respectively

aStudy sites could choose to enter thrombocytopenia or platelet count decreased as a term. In order of frequency reported for patients with TCL (n=58). Including 19 patients with BCLs. Grade 3 platelet count decreased, CTCAE 5.0 definition: <50,000-25,000/mm³; <50.0-25.0 × 109/L.

VALEMETOSTAT EFFICACY IN J101 STUDY

		T-cell Lymphoma Subtype					
Parameter	All PTCL (n=44)	AITL (n=17)	PTCL-NOS (n=20)	ALCL (n=2)	Other TCL (n=5)	ATL (n=14)	
ORR, n (%)	24 (54.5)	11 (64.7)	10 (50.0)	1 (50.0)	2 (40.0)	8 (57.1)	
95% CI	38.8-69.6	38.3-85.8	27.2-72.8	1.3-98.7	5.3-85.3	28.9-82.3	
Best response, n (%)							
CR	12 (27.3)	8 (47.1)	4 (20.0)	0 (0.0)	0 (0.0)	4 (28.6)	
PR	12 (27.3)	3 (17.6)	6 (30.0)	1 (50.0)	2 (40)	4 (28.6)	
PD	8 (18.2)	2 (11.8)	4 (20.0)	1 (50.0)	1 (20.0)	3 (21.4)	
Median PFS, weeks	52	52	64	-	15.9	-	
(95% CI)	(16.14, -)	(16.1, -)	(8.1-64.0)	(8.1, -)	(8.0, -)	(8.14, -)	

Median DOR: 56.0 weeks (95% CI: 44.43, –)

Kusumoto S. EHA 2021. Abstract S218.

Data cutoff: 2 November 2020.

Median follow-up times: PTCL, 19.93 (range, 3.1-68.1) weeks; ATL, 23.07 (range, 3.3-125) weeks.

^a For PTCL, 42 patients were treated with 200 mg, and 2 were treated with 150 mg. For ATL, 12 patients were treated with 200 mg, and 2 were treated with 150 mg.

^b Patients with ALCL include those with ALK-positive and -negative ALCL. ^c Consists of 7 patients with acute and 7 patients with lymphomatous subtypes. References in notes.

NOVEL AGENTS IN CTCL

- Duvelisib
- PD-1 inhibitors
- Anti-CD70

CITN-10: PHASE II STUDY OF PEMBROLIZUMAB IN R/R MF/SS

Adults with advanced stage (IIB-IV) relapsed /refractory MF/SS (N=24)

Patient 1

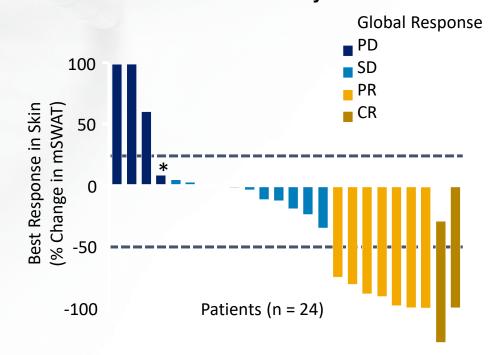
Patient 11

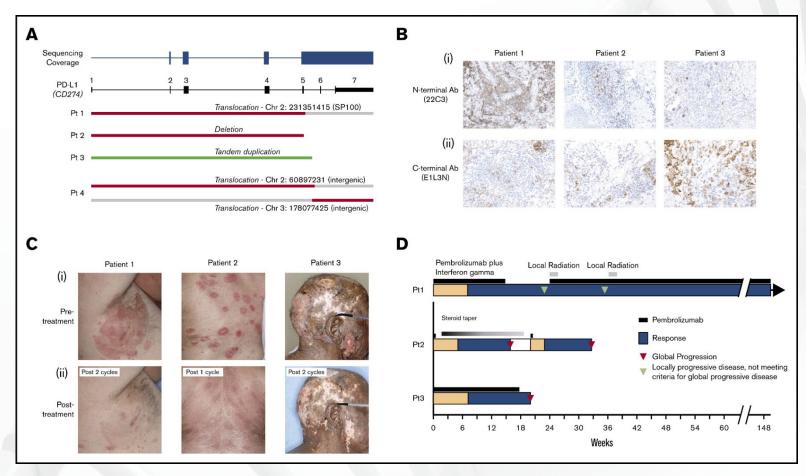
Pretreatment

Pembrolizumab 2 mg/kg IV Q3W up to 24 mo

- 8/15 patients with SS had transient skin toxicity
 - -3/8 with toxicity had a response
 - -1/7 without skin toxicity achieved response

ParameterMF/SS (N = 24)ORR, n (%)9 (38)CR, n (%)2 (8.3)PR, n (%)7 (29.1)

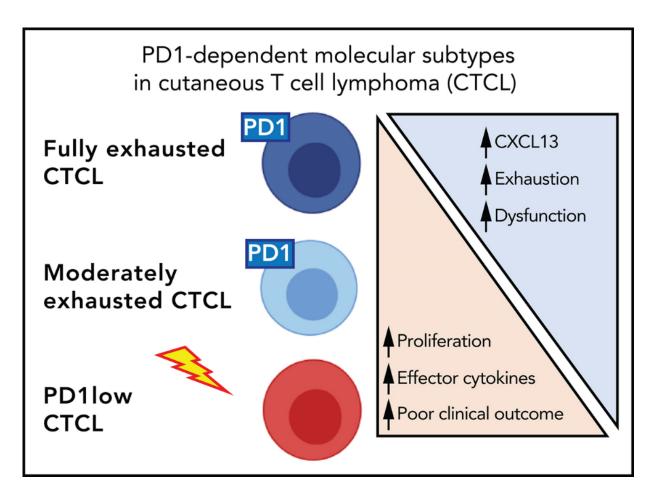

65% PFS at 1 year


Post-treatment

GENETIC ALTERATIONS IN THE PD-1 PATHWAY IN CTCL

Malignant T-cells with increased PD-L1 may be susceptible to PD-1 blockade

Genetic disruptions of the PD1/PD-L1 pathway are recurrent in MF with large cell transformation


Structural variants (SVs) involving *CD274*, the gene encoding PD-L1 leading to increased PD-L1 protein expression

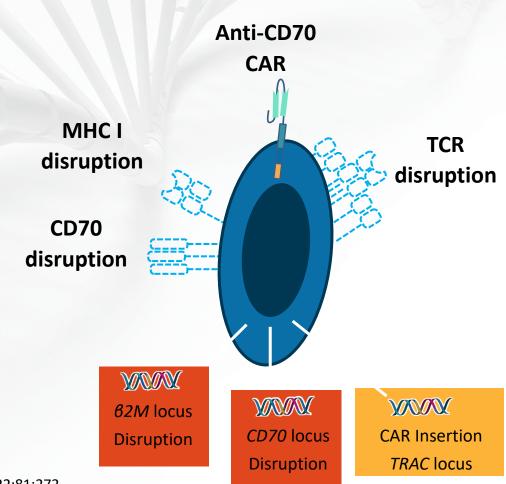
3 patients with tMF and SVs of *CD274* were treated with pembrolizumab and had a response.

69 MF patients, 4 SVs of PD-L1 identified, all in patients with LC7

PD-1 DELETIONS ARE SEEN IN LEUKEMIC MF/SS AND ARE ASSOCIATED WITH POOR OUTCOMES

PD1 mutations drive aggressive behavior.

PD1 was highly expressed in *non-*proliferating samples but was not expressed in highly proliferative samples

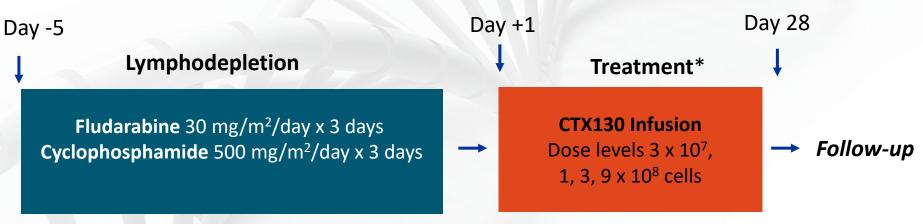

PD1 deletions lead to reversal of T-cell exhaustion in malignant T-cells and are associated with a worse prognosis

Like terminally exhausted T cells, fully exhausted CTCLs have limited proliferative capacity

PD1 deletions are sufficient to reverse the exhaustion phenotype and predict significantly worse survival

CTX130: ANTI-CD70 ALLOGENEIC CAR T-CELL THERAPY FOR T-CELL LYMPHOMA

- Autologous CAR T-Cell Therapy approaches in T-cell lymphoma difficult due to potential for fratricide, and malignant T cell contamination
- CD70 is a member of the TNF receptor subfamily highly expressed in up to 85% of TCL tumor samples
- CTX130 is an investigational CD70targeted allogeneic CAR T-cell therapy with TRAC, β2M, and CD70 disruptions
- Manufactured from healthy donor T cells and offers off-the-shelf availability



Dequeant. Cancer Res. 2021;81:1537. Iyer. EHA 2022. Abstr S262.Margues-Piubelli. Histopathology. 2022;81:272.

COBALT-LYM: CD70-DIRECTED ALLOGENIC CAR-T CELL THERAPY STUDY IN R/R T-CELL MALIGNANCIES

Multicenter, open-label, dose-escalation phase I study

Adults with confirmed R/R T-cell malignancy (≥10% CD70+ cells); ECOG PS 0-1; platelets >25,000/mm³; ANC > 500/mm³ (N = 18)

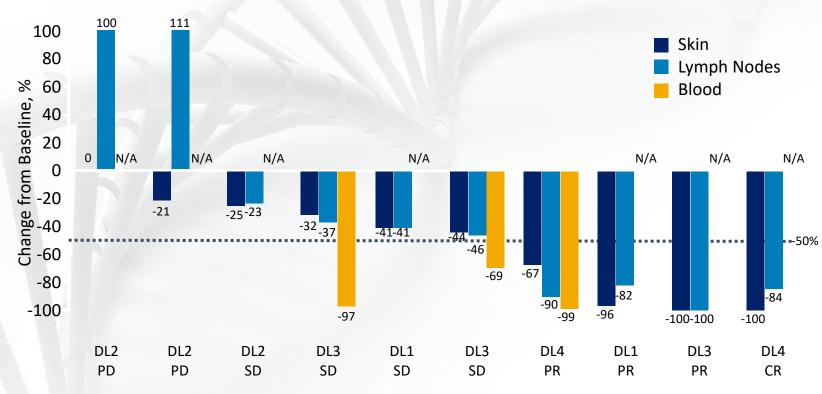
Primary endpoint: safety and ORR Secondary endpoints: PFS, OS

*A second course of CTX130 could be given if loss of CR but had experienced clinical benefit

Patient Characteristics	All Dose Levels (N=18)
PTCL/CTCL, n	8/10
Prior lines of therapy, median (range)	4 (1-8)
Second CTX130 infusion received, n (%)	5 (28)

lyer. EHA 2022. Abstr S262.

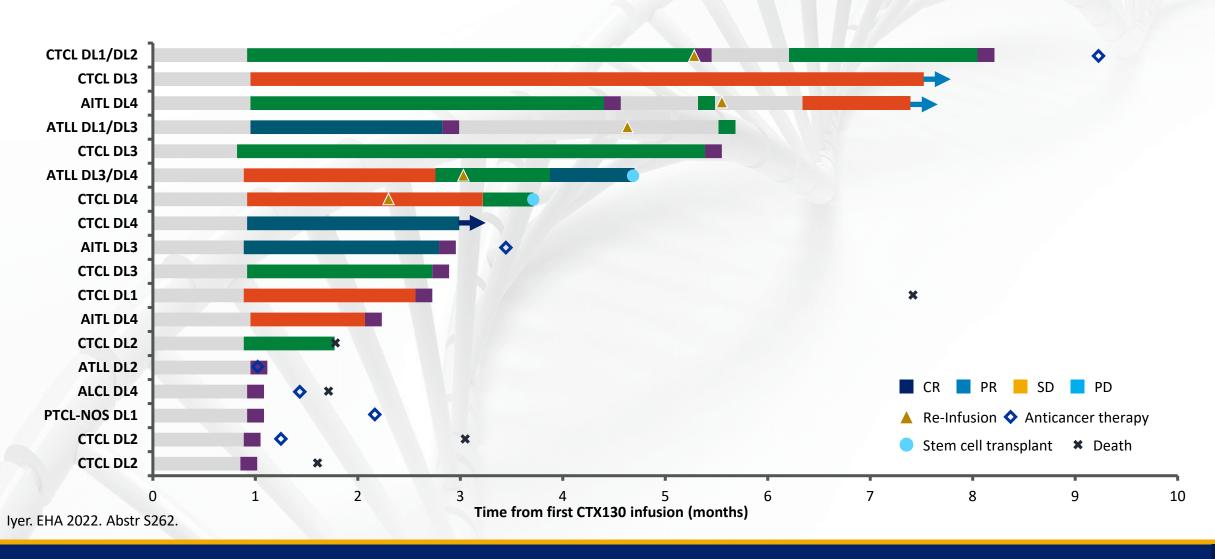
COBALT-LYM: ADVERSE EVENTS OF INTEREST


	3 x	Level 1 10 ⁷ = 4	1 x	Level 2 10 ⁸ = 4	Dose L 3 x : n =	10 ⁸	9 x	evel 4 10 ⁸ = 5		evel ≥ 3 : 10
	Gr 1-2	Gr ≥3	Gr 1-2	Gr ≥3	Gr 1-2	Gr ≥3	Gr 1-2	Gr ≥3	Gr 1-2	Gr≥3
Cytokine Release Syndrome, n (%)	1 (25)	-	1 (25)	-	4 (80)	-	4 (80)	-	8 (80)	-
ICANS, n (%)	-	-	-	-	3 (60)	-	-	-	3 (30)	-
Infections, n (%)	2 (50)	1 (25)	-	1 (25)	2 (40)	1 (20)	1 (20)	1 (20)	3 (30)	2 (20)

No instances of graft versus host disease, dose-limiting toxicities, or tumor lysis syndrome

lyer. EHA 2022. Abstr S262.

COBALT-LYM: CTCL RESPONSE RATES IN ALL DISEASE COMPARTMENTS


	CTCL Cohort				
Response, n (%)	DL≥ 3 (n=5)	Total (n=10)			
ORR	3 (60)	4 (40)			
CR	2 (40)	1 (10)			
PR	2 (40)	3 (30)			
DCR	4 (80)	8 (8N)			

Dose Level / Best Overall Response

lyer. EHA 2022. Abstr S262.

COBALT-LYM: RESPONSES IN ALL PATIENTS

CASE STUDY: CR WITH SINGLE-INFUSION OF CTX130

Patient profile

- 47-year-old male with stage IVA2 transformed mycosis fungoides (tMF)
- 5 prior lines of therapy
- Refractory after last treatment with brentuximab vedotin
- CD70+ expression: 100% at baseline

Efficacy

- CR at D28 after a single infusion of 9x10⁸
 CAR+ T cells
- Remains in CR at Month 3

Safety

- Gr 3 anemia (D3) & Gr 3 neutropenia (D4)
- All other AEs were Gr 1

OTHER AGENTS OF INTEREST IN THE LYMPHOMA PIPELINE

- SGN-CD70A monoclonal antibody (NCT04227847)
- Duvelisib + Nivolumab (NCT04652960)
- Anti-ICOS monoclonal antibodies
- Tolinapant and oral decitabine/cedazuridine in PTCL

THANK YOU!

pallen5@emory.edu

Clinical trials of interest in T-cell lymphoma

- Frontline trial of duvelisib vs. oral azacytadine in CD30 negative PTCL
- Pembrolizumab + brentuximab in CD30 + TCL
- Nivolumab + duvelisib in CTCL
- Tolinapant (ASTX6660) and oral decitabine/cedazuridine in PTCL
 - Novel oral nonpeptidomimetic, small-molecule antagonist of cellular/X-linked inhibitors of apoptosis proteins (cIAP1/2 and XIAP)