

WINSHIP CANCER INSTITUTE

A Cancer Center Designated by the National Cancer Institute

EMORY UNIVERSITY SCHOOL OF MEDICINE

Early therapy for SMM?

Sagar Lonial, MD Professor and Chair Department of Hematology and Medical Oncology Anne and Bernard Gray Professor in Cancer Chief Medical Officer, Winship Cancer Institute Emory University School of Medicine

Question/Challange

- You are caring for a patient who has a 50% risk of developing cancer within 2-4 years
- You have a treatment that can reduce that risk by 90% and you take it for 2 years
- The treatment is oral and is generally well tolerated

• Would you offer this approach to your patient

Points to Consider

- Genetically SMM looks identical to MM
 - The concept of 'curative treatment' earlier is interesting, but not currently supported by data
- > What differentiates SMM from MM is immune control
 - >Aggressive Tx that suppresses immunity may make things worse.
- We as a community have made the leap to say that prevention of organ damage is an important goal
 - Biomarker driven criteria for definition of MM

Updated IMWG Criteria for Diagnosis of Multiple Myeloma

MGUS	Smoldering Myeloma	Multiple Myeloma			
 M-protein < 3 g/dL Clonal plasma cells in BM < 10% No myeloma defining events 	 M-protein ≥ 3 g/dL (serum) or ≥ 500 mg/24 hrs (urine) Clonal plasma cells in BM ≥ 10% - 60% No myeloma defining events 	 Underlying plasma cell proliferative disorder AND 1 or more myeloma defining events including either: ✓ ≥ 1 CRAB feature(s) OR ✓ ≥ 1 Biomarker Driven 			
C: Calcium elevation (> 11 mg/dL or > 1 mg/dL higher than ULN)					

- **R**: Renal insufficiency (creatinine clearance < 40 mL/min or serum creatinine > 2 mg/dL)
- A: Anemia (Hb < 10 g/dL or 2 g/dL < normal)

EMORY

WINSHIP

INSTITUTE

B: Bone disease (\geq 1 lytic lesions on skeletal radiography, CT, or PET-CT)

Biomarker driven (1) Sixty-percent (≥60%) clonal PCs by BM; (2) serum free <u>Light chain ratio involved</u>:uninvolved ≥ 100 ; (3) > 1 focal lesion detected by <u>MRI</u>

The differences in outcomes vary by time

MGUS

•Serum M protein<30 g/L

•Urine M-protein < 500 mg/24h

•BMPC clone <10%

• Absence MDEs of amyloidose

SMM

Serum M protein ≥ 30 g/L and/or
BMPC clone >10%, but <60% and/or

- •Urine Mprot \geq 500 mg/24h
- Absence MDEs or amyloidosis

Types of SMM

Immunity predicts time to progression

Dhodapkar et al, Blood 2015

Myeloma progression can be driven by Th17 cells induced by specific gut microbiota

Calcinotto et al, Nat Comms 2018

Risk stratification in SMM: Too Many Choices....

Identification of features predicting 50% of progression risk in patients with Smoldering Myeloma

Serum M protein ≥30g/LIgA SMMImmunoparesis with reduction of 2 uninvolved immunoglobulin isotypesSerum involved/uninvolved FLC ratio ≥8 (but <100)</td>Progressive increase in M protein level (evolving type of SMM; increase in serum M
protein by ≥25% on 2 successive evaluations within a 6-month period)Clonal BMPCs 50%-60%Abnormal PC immunophenotype (≥95% of BMPCs are clonal) and reduction of ≥1
uninvolved immunoglobulin isotypest(4;14) or del(17p) or 1q gain
Increased circulating PCsMRI with diffuse abnormalities or 1 focal lesion

PET-CT with focal lesion with increased uptake without underlying osteolytic bone destruction Ongoing trials, irrespective of the model systems used, have targeted a group of patients with a 50% risk of progression at 2 years (approx.) and have shown benefit

EMORY WINSHIP CANCER INSTITUTE

Rajkumar SV, et al. *Blood.* 2015;125:3069-3075.

Revised risk stratification (20/2/20)

Factors

- BMPC >20%
- M Spike >2g/dL
- FLC ratio >20

Stratification

Low-risk: 0 Intermediate-risk: 1 high-risk: >=2

Time from diagnosis (years)Low risk (n = 143)Estimated rate of progression (%)	Intermediate risk (n	= 121)	High risk (<i>n</i> = 153)		
	Estimated rate of progression (%)	Rate of progression, % (CI)	OR for progression relative to low-risk group (CI)	Rate of progression, % (CI)	OR for progression relative to low-risk group (CI)
2	9.7 (5.3–17.1)	26.3 (18.4–36.2)	2.71 (1.08–6.83)	47.4 (38.6–56.4)	4.89 (2.25–10.69)
5	22.5 (14.2–33.6)	46.7 (35.8–57.9)	2.08 (1.07-4.08)	81.5 (71.3–88.6)	3.63 (2.12-6.22)
10	52.7 (30.1–74.2)	65.3 (45.5–80.9)	1.24 (0.61–2.69)	96.5 (80.9–99.4)	1.83 (1.09–3.30)

BMPC% bone marrow-plasma cell percentage, Cl 95% confidence intervals, FLCr involved to uninvolved free light chain ratio, OR odds ratio

Lakshman A, et al. Blood Cancer J. 2018;8:59.

First Demonstration of Benefit for Early Therapy

QuiRedex phase 3 trial: Rd vs observation in high-risk SMM

EMORY WINSHIP CANCER INSTITUTE

Mateos MV, et al, *N Engl J Med*, 2013;369:438-447.

Update for Original SMM trial from Spanish Group

TTP

Median f/u: 10.8years

OS

OS post progression shows no induced resistance

Mateos et al, EHA 2020

Schema

E3A06: Phase II/III Study A: Lenalidomide vs B: Observation

¹Mobilize stem cells following 4-6 cycles of therapy. While stem cell collection is suggested strongly, it is not required

Lonial S, et al. ASCO 2019. Abstract 8001.

INSTITUTE

National Cancer Institute-Designated Comprehensive Cancer Cen

Phase III PFS ITT[^]

Treatment Hazard Ratio = 0.28 [95% CI: (0.12-0.63)]

one-sided stratified log-rank test p-value = 0.0005

Phase 3 PFS	<u>Len</u>	<u>Obs</u>
1 yr	0.98	0.89
2 yr	0.93	0.76
3 yr	0.91	0.66

[^]The DSMC advised release of data in fall 2018 when at the 2nd planned interim analysis (39% full information), the observed p-value from the one-sided stratified log-rank test crossed the related boundary of nominal significance

CANCER INSTITUTE

Adverse Events

	Lenalidomide Phase II			Lenalidomide Phase III		
	[n=44]			[n=88]		
Adverse Event	Grade			Grade		
	3	4	5	3	4	5
	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)
Hematologic	•	•		•	•	•
Neutrophil count decreased	5 (11.4)	2 (4.5)	-	8 (9.1)	4 (4.5)	-
Non-Hematologic	•	•	•	•	•	•
Alanine aminotransferase increased	4 (9.1)	-	-	-	-	-
Infections	4 (9.1)	2 (4.5)	-	9 (20.5)	-	-
Dehydration	3 (6.8)	-	-	-	-	-
Dermatology/Skin	2 (4.5)	-	-	5 (5.7)	-	-
Dyspnea	-	-	-	5 (5.7)	-	-
Fatigue	5 (11.4)	-	-	6 (6.8)	-	-
Hypertension	3 (6.8)	-	-	8 (9.1)	-	-
Hypokalemia	4 (9.1)	-	-	3 (3.4)	-	-
Surgical and Medical	3 (6.8)	-	-	-	-	-
Overall Treatment-Related Toxicity						
Non-Hematologic	12 (27.3)	3 (6.8)	2 (4.5)	25 (28.4)	-	-
Hematologic and Non-Hematologic*	15 (34.1)	5 (11.4)	2 (4.5)	31 (35.2)	5 (5.7)	-
*Grade 3 Hematologic AEs not requir	ed reporting	1				

EMORY WINSHIP CANCER INSTITUTE National Cancer Institute-Designated Comprehensive Cancer Center

Lonial S, et al. JCO 2019.

Phase III PFS by Mayo 2018 Risk Criteria

High Risk

Intermediate Risk

Low Risk

Lonial S, et al. JCO 2019.

GEM-CESAR: Study Design

• Multicenter, open-label, phase II trial

*High-risk was defined according to the Mayo and/or Spanish models

- Patients with any one or more of the biomarkers predicting imminent risk of progression to MM were allowed to be included but...
- New imaging assessments were mandatory at screening and if bone disease was detected by CT or PET-CT, patients were excluded Mateos et al, ASH 2019

GEM-CESAR Consolidation: Efficacy (n=81)

Response category	Induction (n=90)	HDT-ASCT (n=83)	Consolidation (n=81)	High-risk (n=54)	Ultra high- risk (n=27)
ORR, n(%)	85 (94%)	82 (99%)	81 (100%)	54 (100%)	27 (100%)
≥CR	37 (41%)	53 (64%)	61 (76%)	41 (76%)	20 (74%)
VGPR	35 (39%)	18 (22%)	15 (19%)	10 (19%)	5 (19%)
PR	13 (14%)	11 (13%)	5 (6%)	2 (4%)	2 (7%)
SD	1 (1)	1 (1)	-	-	-
Progressive disease	2 (3%)	-	_	-	-
MRD –ve,	27 (30%)	47 (56%)	51 (63%)	36 (67%)	15 (56%)

GEM-CESAR

Induction: Safety profile (n=90)

Adverse Events	Induction (n=90)		
Hematological toxicity, n(%)	Grade 1-2	Grade 3-4	
- Anemia	7 (7%)	-	
- Neutropenia	6 (7%)	3 (3%)	
- Thrombocytopenia	9 (10%)	5 (5%)	
Non- Hematological toxicity, n(%)			
- Astenia	10 (11%)	1 (1%)	
- Diarrea/Constipation	6 (7%)/5 (5%)	1 (1%)/-	
- Infections	17 (19%)	9 (10%)*	
- Skin rash	14 (15)	8 (9%)	
- Cardiologic events	1 (1%)	1 (1%)	
- Deep venous thrombosis	2 (2%)	1 (1%)	
- Hypertension	3 (3%)	-	

Pneumoniae G1-2 (2 pts) and G3-4 (2 pts); Atrial fibrillation G1 (1pt); Cardiac failure G3 (1pt); Hypertension G2 (3 pts)

* 1 pt developped G5 AEs consisting on massive ischemic stroke after respiratory infection

Mateos et al, ASH 2019

GEM-CESAR Outcomes

6 pts did progress and in 5 pts PD was biological a4 pts were at ultra high risk

Mateos et al, ASH 2019

GEM-CESAR :Outcomes: Time to Biochemical Progression to MM

Median follow-up: 70.1 (6.2-88.8) months

34 pts progressed biochemically: 9 pts during treatment phase and 8 during the first 4 years after trx and 17 (50%) between the 4th and 5th year post trasplant

Ascent Trial

Treatment

INDUCTION

(4-week cycles for 6 cycles)

- Carfilzomib (36 mg/m² twice weekly or 56mg/m² weekly)
- Lenalidomide (25 mg daily for three weeks)
- Daratumumab (weekly for 8, every other week for 16 weeks)
- Dexamethasone 40 mg weekly

CONSOLIDATION

(4-week cycles for 6 cycles)

- Carfilzomib (36 mg/m² twice weekly or 56mg/m² weekly)
- Lenalidomide (25 mg daily for three weeks)
- Daratumumab (every 4 weeks)
- Dexamethasone 20 mg weekly

MAINTENANCE (4-week cycles for 12 cycles)

- Lenalidomide (10 mg daily for 3 weeks)
- Daratumumab (q 8 weeks)

Ascent Trial

Survival

- 4 patients have progressed, median PFS for the cohort has not been reached; PFS
 rate (95%CI) at 3 years was 89.9% (82.3-98.3%)
- 3 progressions were biochemical, 1 patient developed PCL 6 months after completing therapy

Conclusions

- New definition for high risk SMM should be used across all studies
- For patients meeting the 20/2/20 high risk criteria, early therapy with len or len/dex should be considered **IF** a trial is not an option
- The question of prevention vs cure should be addressed in clinical trials, but absent an answer to that question, we should not continue to just *'Wait for more data'*
- It is time to move towards early intervention for some patients

Thanks to:

Jonathan Kaufman Ajay Nooka **Craig Hofmeister** Madhav Dhodapkar L.T. Heffner Vikas Gupta Nisha Joseph Leon Bernal **Charise Gleason Donald Harvey Colleen Lewis** Amelia Langston Y. Gu S-Y Sun Jing Chen Mala Shanmugan Larry Boise Cathy Sharp **Jennifer Shipp**

Patients and Families

sloni01@emory.edu

And the Clinical Research Team

IMS

Golfers Against Cancer T.J. Martell Foundation

And Many Others who are part of the B-cell Team

