20th International ULTMANN CHICAGO LYMPHOMA SYMPOSIUM

APRIL 21-22, 2023

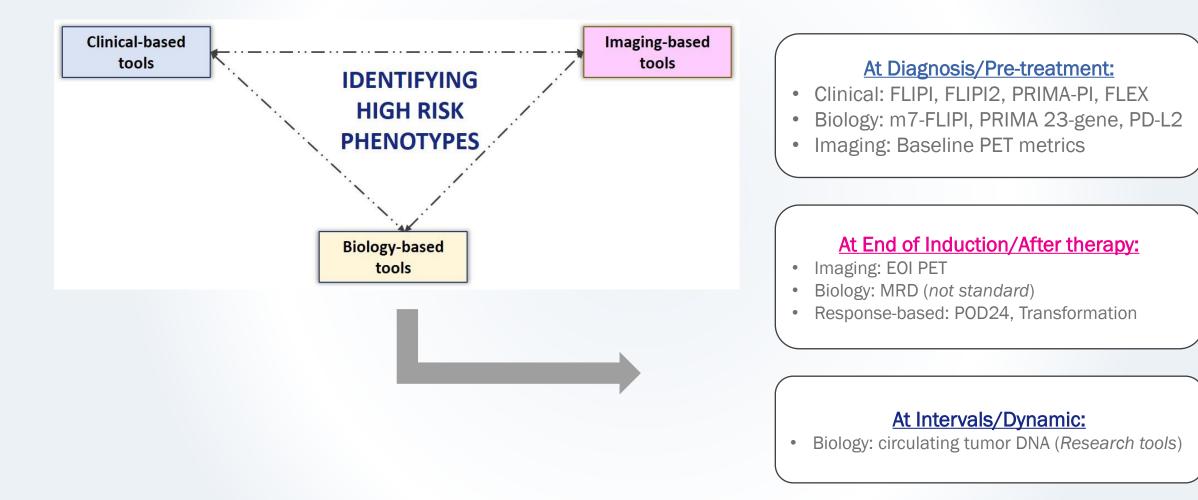
FL- Current Gaps of Treatment

Loretta J. Nastoupil, MD UT MD Anderson Cancer Center

Disclosures

I have received honorarium from:

Abbvie, ADC Therapeutics, BMS, Caribou Biosciences, Daiichi Sankyo, DeNovo, Genentech, Genmab, Gilead/Kite, Janssen, Interius Bio, MEI, Merck, Novartis, and Takeda

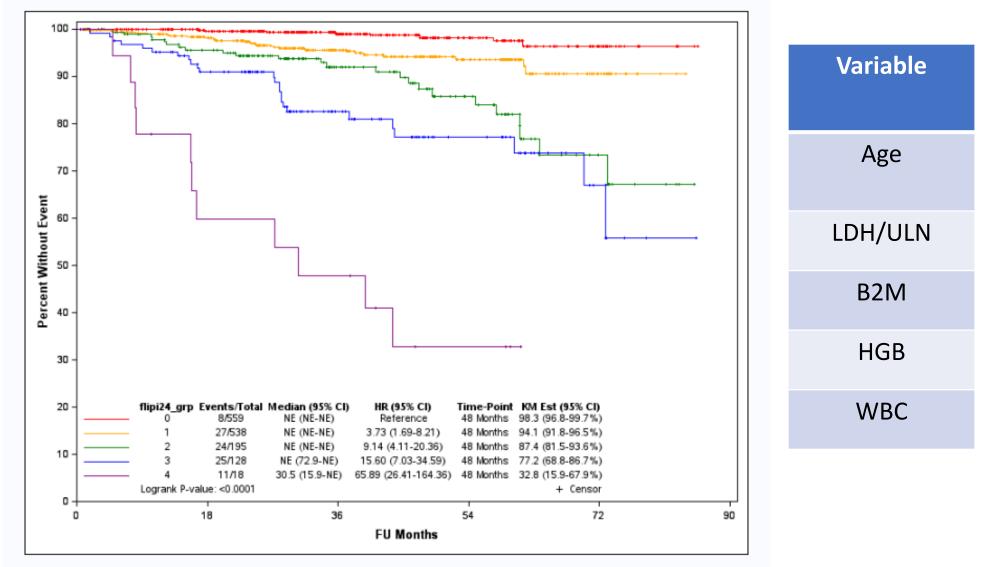

I have received research support from:

BMS, Caribou Biosciences, Daiichi Sankyo, Genentech, Genmab, Gilead/Kite, Janssen, IGM Biosciences, Novartis, and Takeda

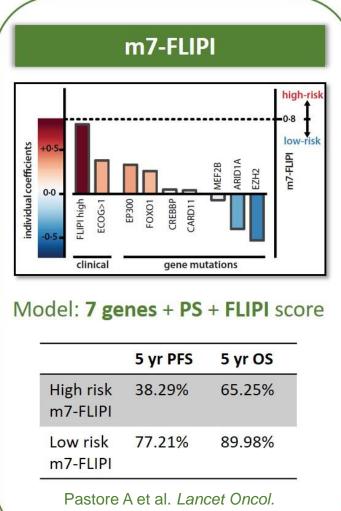
What are the Gaps in FL?

- 1. Can we cure FL?
- 2. Risk Stratification
- 3. Predictive biomarkers
- 4. Optimal Sequencing
- 5. Toxicity Mitigation

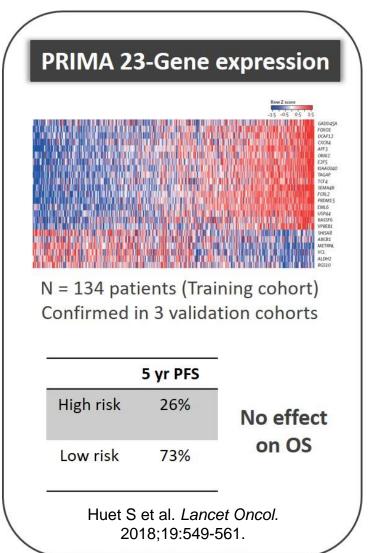
GAP- Risk Stratification

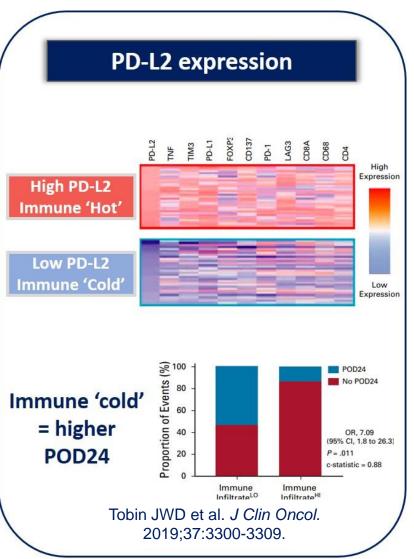

Clinical Prognostic Indices: FLIPI, FLIPI-2, PRIMA-PI and FLEX

_	FLIPI ¹	FLIPI-2 ²	PRIMA-PI ³	FLEX ⁴	
S	Age > 60 yrs	Age > 60yrs	BM involvement	Male sex	
OR	Stage III/IV	BM involvement	β_2 -M > 3mg/L	SPD in the highest quartile	
L L	LDH > normal	β_2 -M > normal		LDH > normal	
FA	Hb <120g/L	Hb <120g/L		Hb <120g/L	Each index segregates patients into
	>4 nodal sites	Tumour mass > 6cm		>2 extranodal sites	2 or 3 risk groups:
RISK				Histologic grade 3A PS > 1; NK cell count < 100/μL; β2-M > normal	Low, Intermediate and High risk
	Pre-rituximab era	R-treated	R-treated	R-treated	
	Predicts OS	Predicts PFS and OS	Predicts PFS	Predicts PFS	
	Low: 5-yr OS 91% Inter: 5-yr OS 78% High: 5-yr OS 53%	Low: 5-yr PFS 80% Inter: 5-yr PFS 51% High: 5-yr PFS 19%	Low: 5-yr PFS 69% Inter: 5-yr PFS 55% High: 5-yr PFS 37%	Low: 3-yr PFS 86% High: 3-yr PFS 68%	


1. Solal-Céligny P et al. *Blood.* 2004;104:1258-1265. 2. Federico M et al. *J Clin Oncol.* 2009;27:4555-4562. 3. Bachy E et al. *Blood.* 2018;132:49-58. 4. Mir et al. *Am J Hematol.* 2020;95:1503-1510.

FLIPI-24, Another Prognostic Tool


LEO ALL FL OS BY FLIPI24



Biological Prognostic Tools: Incorporating Tumor Genotype and TME

2015;16:1111-1122.

Can We Routinely Use These Tools to Guide Clinical Decision-Making?

High-

risk

FLIPI

High-

risk

FLIPI2

ABILITY TO IDENTIFY POD24 PATIENTS?

FLEX

M7-FLIPI

23-

aenehigh

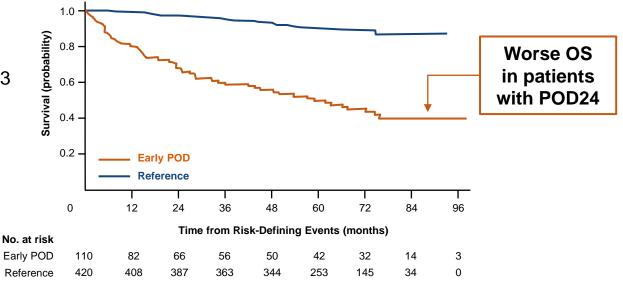
PD-L2

What is the prognostic ACCURACY? —

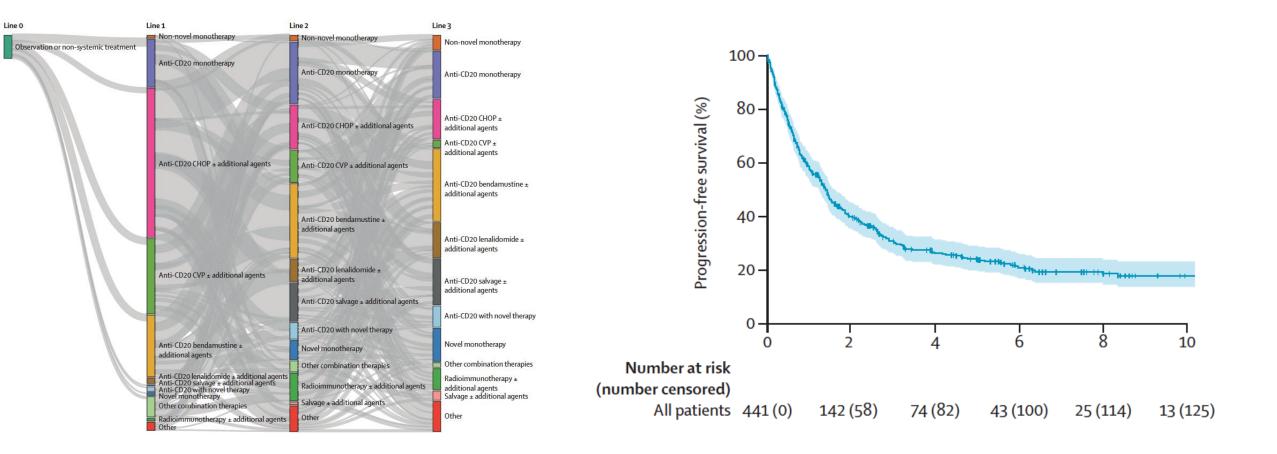
Sensitivity 53-78% 53% 69% 60% 43-61% 43% 66-74% 68% 77-86% 79% Specificity 56-62% 59-76% 48% 60-62%

PRIMA-

PI

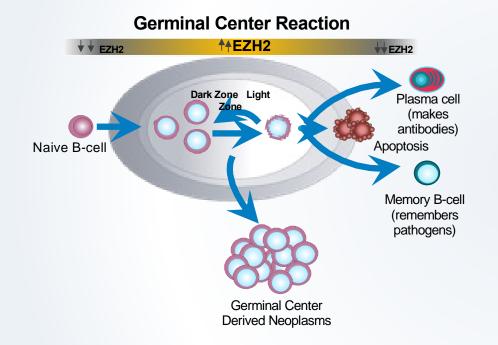

POD24

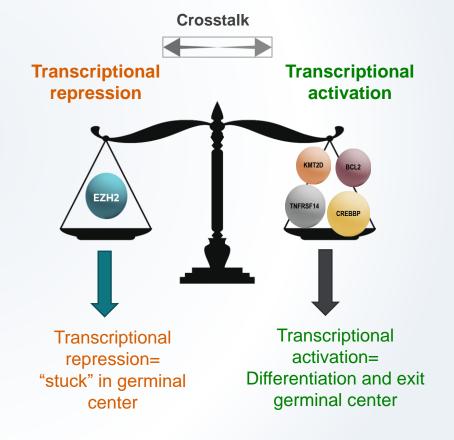
Is it ACTIONABLE? Guide therapy selection? — None guide treatment


Casulo C. *Hematol Oncol.* 2021;39 Suppl 1:88-93; Pastore A et al. *Lancet Oncol.* 2015;16:1111-1122; Huet S et al. *Lancet Oncol.* 2018;19:549-561; Tobin JWD et al. *J Clin Oncol.* 2019;37:3300-3309.

Early Relapse (POD24)

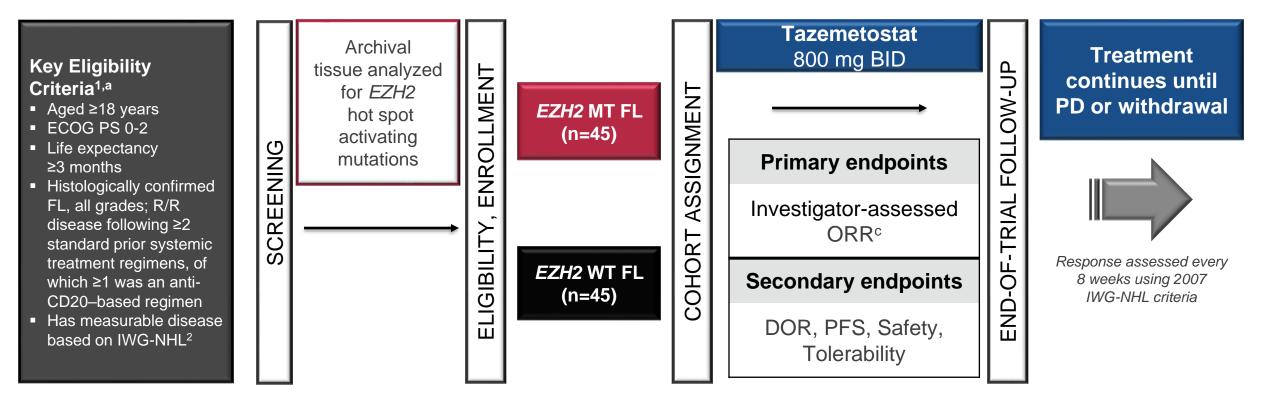
- Biopsy recommended to detect histologic transformation of FL, which is reported to occur at a rate of 2% per year^{1,2}
 - Particularly for BR treated patients, transformation rates are higher
- Early progression of disease (≤2 years) after frontline chemoimmunotherapy (POD24) occurs in approximately 10-20% of patients
 - Associated with a poor prognosis and represents an unmet medical need in FL³
 - Represents a population requiring novel intervention with nonchemoimmuntherapeutic agents


Outcomes in FL: Third Line and Beyond


Casulo C et al. Lancet Haematol. 2022;9:e289-e300.

GAP- Predictive Biomarkers

Tazemetostat: Follicular Lymphoma and EZH2



- EZH2 an epigenetic regulator of gene expression and cell fate decisions¹
- EZH2 is required for normal B-cell biology and germinal center
 - Oncogenic mutations in EZH2 suppress exit from germinal state and "lock" B cells in this state thereby transforming into a cancer²
- formation²

20th International Ultmann Chicago Lymphoma Symposium

Tazemetostat for R/R FL Phase 2, Open-Label, Multicenter Study

^aFor a full list of study eligibility criteria, please see Clinicaltrials.gov/ct2/show/NCT01897571. ^bActual enrollment: n=54. cORR defined as the number of participants with a best objective response of CR or PR.

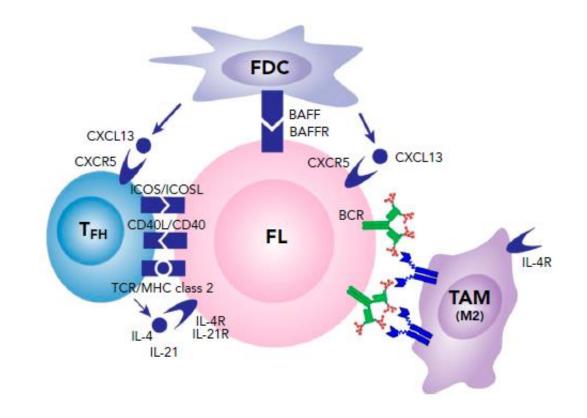
Tazemetostat for R/R FL Phase 2, Open-Label, Multicenter Study

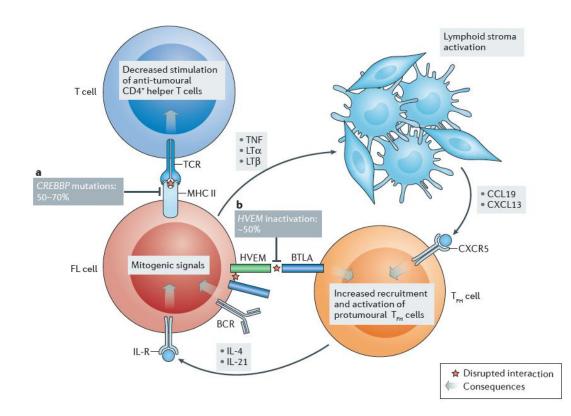
Response in the MT EZH2 Cohort

Response in MT EZH2 (n=45)	IRC	INV
ORR, n (%) [95% Clª]	31 (69) [53, 82]	35 (78) [63, 89]
CR, n (%)	6 (13)	4 (9)
PR, n (%)	25 (56)	31 (69)
SD, n (%)	13 (29)	10 (22)
PD, n (%)	1 (2)	0

- 44 of 45^b (98%) patients with evidence of tumor reduction, by IRC
- mPFS, 13.8 mos (95% CI, 10.7-22.0)

^aBy Brookmeyer and Crowley method. ^b4 subjects with missing post-baseline values and 1 subject with poor image. ^cBest overall response based on Cheson (2007) criteria for lymphomas.

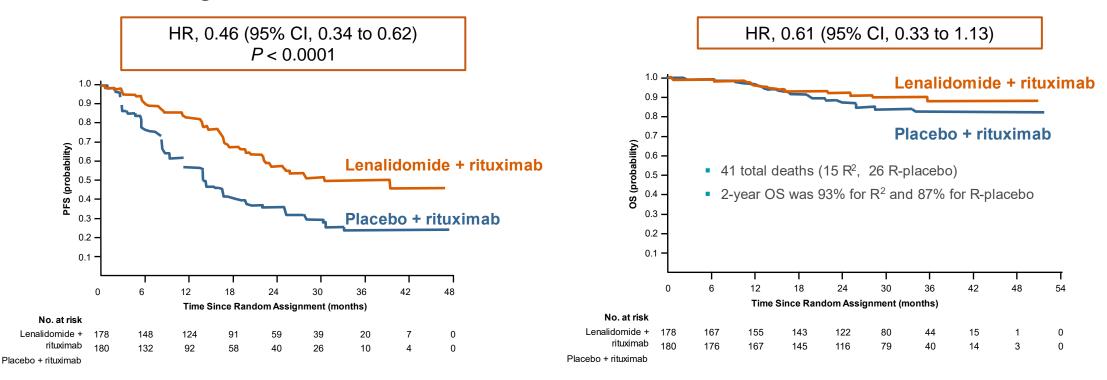

Response in the WT *EZH2* Cohort


Response in WT EZH2 (n=54)	IRC	INV
ORR, n (%) [95% Cl ^a]	19 (35) [23, 49]	18 (33) [21, 48]
CR, n (%)	2 (4)	3 (6)
PR, n (%)	17 (31)	15 (28)
SD, n (%)	18 (33)	16 (30)
PD, n (%)	12 (22)	16 (30)
NE/missing/unknown, ^b n (%)	5 (9)	4 (7)

- 37 of 49^c (69%) patients with evidence of tumor reduction, by IRC
- mPFS, 11.1 mos (95%Cl, 3.7-`14.6)

Influences of the Microenvironment on FL cells

Recurrent genetic alterations allow immune escape, shifting immune and stromal cells towards a supportive phenotype. Interactive loop between FL cells and macrophages in FL tissue provides a persistent low-level signal essential for survival.


Huet. Nature. April 2018

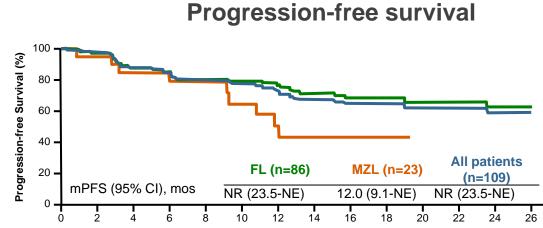
Kuppers & Stevenson. Blood. May 2018

R² vs R in R/R FL and MZL Phase III AUGMENT Study: PFS, OS

Progression-free Survival

Overall Survival

Median PFS	R² (n=178)	R-Placebo (n=180)	HR	<i>P</i> Value
By IRC, mo (95% CI)	39.4 (22.9-NE)	14.1 (11.4-16.7)	0.46 (0.34-0.62)	<0.0001
By INV, mo (95% CI)	25.3 (21.2-NE)	14.3 (12.4-17.7)	0.51 (0.38-0.69)	<0.0001


Median follow-up: 28.3 months

Leonard J et al. J Clin Oncol. 2019;37:1188-1199.

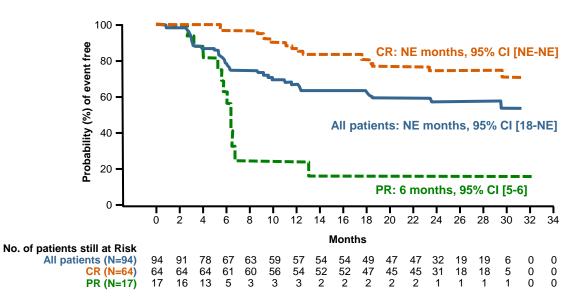
ZUMA-5 Study of Axi-cel in Relapsed/Refractory FL and MZL

Characteristic	FL n=124	MZL N=24	All Patients N=148
Median age (range)	60 (53-67)	65 (61-72)	61 (53-68)
FLIPI 3-5	54 (44%)	N/A	N/A
High tumor burden (GELF)	64 (52%)	10 (42%)	74 (50%)
Median prior tx (IQR)	3 (2-4)	3 (2-5)	3 (2-5)
Refractory to last tx	84 (68%)	18 (75%)	102 (69%)
POD24	68 (55%)	13 (57%)	81 (55%)

	All patients (n=109)	FL (n=86)	MZL (n=23)
ORR	92%	94%	83%
CRR	76%	79%	65%

AEs of Special Interest (n=148)	

Cytokine Release Syndrome	
Any grade	82%
Grade ≥ 3	7%
Neurologic Events	
Any grade	59%
Grade ≥ 3	19%

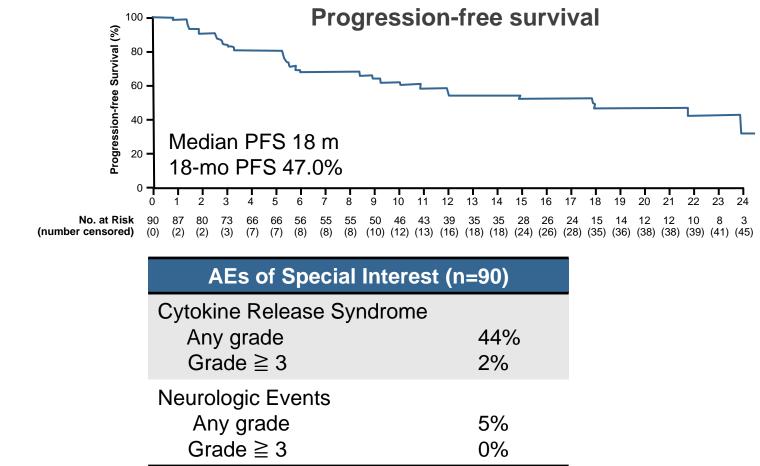

ELARA Study of Tisa-cel in Relapsed/Refractory FL

Characteristic	n=97
Median age (range)	57 (49-64)
Median prior tx (range)	4 (2-13)
Refractory	78%
POD24	63%

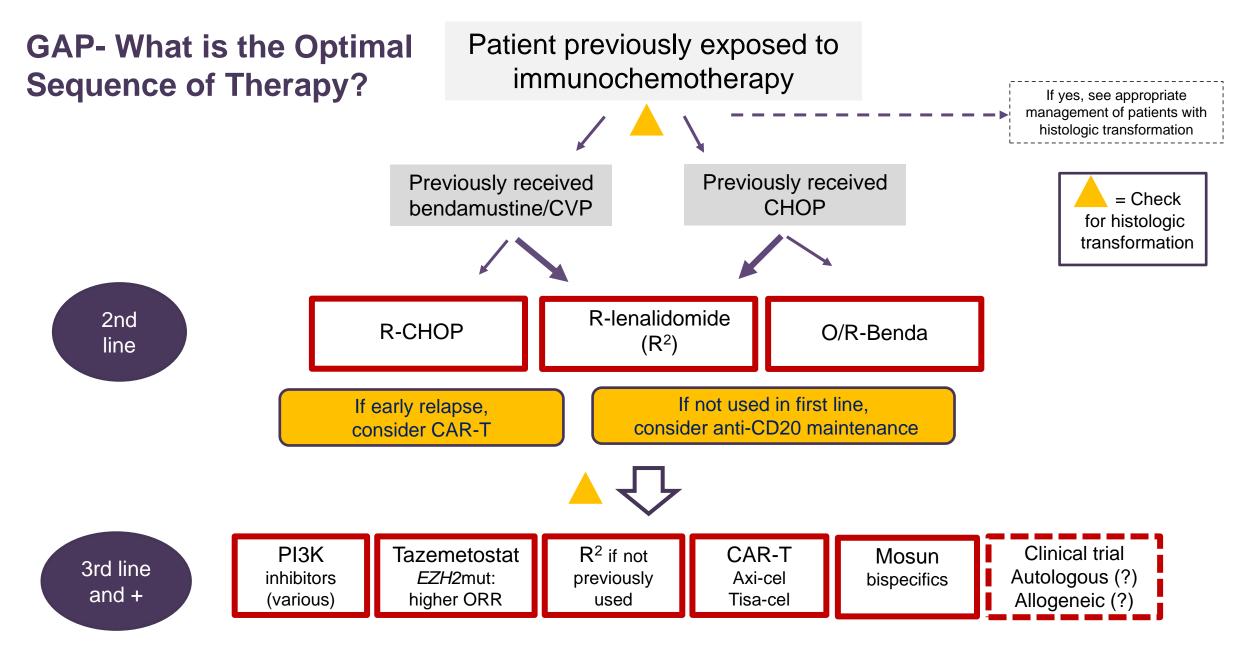
	All patients n=94
ORR	86%
CRR	69%

AEs of Special Interest (n=97)			
Cytokine Release SyndromeAny grade49%Grade ≥ 30%			
ICANS Any grade 4% Grade ≥ 3 1%			

Progression-free Survival


Median PFS not reached

Event-free Probability	% (95% CI)
24-month PFS, all patients	57 (46-67)
24-month PFS, patients in CR	75 (62-84)


The New Kid on the Block: Mosunetuzumab, an Anti-CD20/CD3 Bispecific Antibody, in Relapsed/Refractory FL

- Mosunetuzumab IV 1 mg on cycle 1 day 1, 2 mg on day 8, 60 mg on day 15 and cycle 2 day 1, and 30 mg on day 1 of cycle 3 onwards
- Total of 8 cycles for patients in CR, 17 cycles for patients in PR

Characteristic	n=90		
Median age (range)	60 (53-67)		
FLIPI 3-5	46%		
Median prior tx (IQR)	3 (2-4)		
Refractory to last tx	69%		
POD24	52%		
Response	n=90		
ORR	80%		
CRR	60%		
Median DOR	23 m		
18-mo DOR	57%		

Budde, at al. Lancet Oncol. 2022:23:1055-1065.

Adapted from: Salles G. How do I sequence therapy for follicular lymphoma? MD ANDERSON CANCER CENTER *Am Soc Hematol Educ Program.* 2020 Dec 4;2020(1):287-294.

ZUMA-5 CRS and Neurologic Events

		CRS ^a		eurologic Eventsª		
Parameter	FL (n=124)	MZL (n=22)	All Patients (N=146)	FL (n=124)	MZL (n=22)	All Patients (N=146)
Any grade	97 (78)	22 (100)	119 (82)	70 (56)	17 (77)	87 (60)
Grade ≥3	8 (6)	2 (9)	10 (7)	19 (15)	9 (41)	28 (19)
Most common CRS symptoms of any grade, I	u/n (%)					
Pyrexia	94/97 (97)	20/22 (91)	114/119 (96)	-	-	_
Hypotension	39/97 (40)	10/22 (45)	49/119 (41)	-	-	_
Most common neurologic events of any grad	e, n/n (%)					
Tremor	-	-	-	36/70 (51)	9/17 (53)	45/87 (52)
Confusional state	-	-	-	28/70 (40)	7/17 (41)	35/87 (40)
Tocilizumab use, n (%)	56 (45)	15 (68)	71 (49)	7 (6)	2 (9)	9 (6)
Corticosteroid use, n (%)	19 (15)	6 (27)	25 (17)	38 (31)	14 (64)	52 (36)
Median time to onset (range), days	4 (1–15)	4 (1–9)	4 (1–15)	7 (1–177)	7 (3–19)	7 (1–177)
Median duration of events (range), days	6 (1–27)	6 (2–14)	6 (1–27)	14 (1–452)	10 (2–81)	14 (1–452)
Patients with resolved events, n/n (%)	96/97 (99) ^b	22/22 (100)	118/119 (99) ^b	67/70 (96)	14/17 (82)	81/87 (93)

Predictors of Response and Toxicity with CD19 Auto CARs

Improved Response

PATIENT

CELLS

TUMOR

- Low tumor burden, low lactate dehydrogenase
- Low pretreatment inflammatory markers
- Absence of medical comorbidities
- Lack of need for bridging therapy
- Proportion of CCR7+ and other early memory T cells in the CAR product
- Faster doubling time in vitro
- Higher CAR T-cell peak to tumor burden
 ratio
- Low tumor myeloid-derived suppressor cells
- High tumor-infiltrating lymphocytes
- Absence of *MYC* overexpression
- Absence of CD58 mutations

Increased Toxicity

PRE-EATMENT

L R

ATMENT

ТR

POST-

- High tumor burden, elevated pretreatment lactate dehydrogenase
- High pretreatment inflammatory markers
- ? High pretreatment monocyte levels
- High peak CAR T-cell levels
- High peak cytokine levels
- Markers of disseminated intravascular coagulation (including fibrinogen levels)
- Early cytokine release syndrome

What do we know about response/risk of toxicity with bispecifics?

MD ANDERSON CANCER CENTER

Conclusions

- Outcomes for the majority of patients with FL are favorable.
 - Can we do a better job with risk stratification?
- Balancing the goals of therapy with patient specific characteristics generally informs treatment selection,
 - Can we be more scientific about this?
- An unmet need is identifying optimal sequencing of therapy.
 - We need more randomized trials and biomarker exploration.
- The goal of treatment is to achieve a normal life expectancy without negatively impacting quality of life.
 - Is functional cure as important as curative intent with a given line of therapy?

Acknowledgements

Patients and their loved ones

Indolent Lymphoma Team at MDACC Nathan Fowler, Sattva Neelapu, Michael Green, Paolo Strati, Dai Chihara

My research team: Ly Dsouza, Barbara Averill, Jennifer Mims, Karina Ibanez