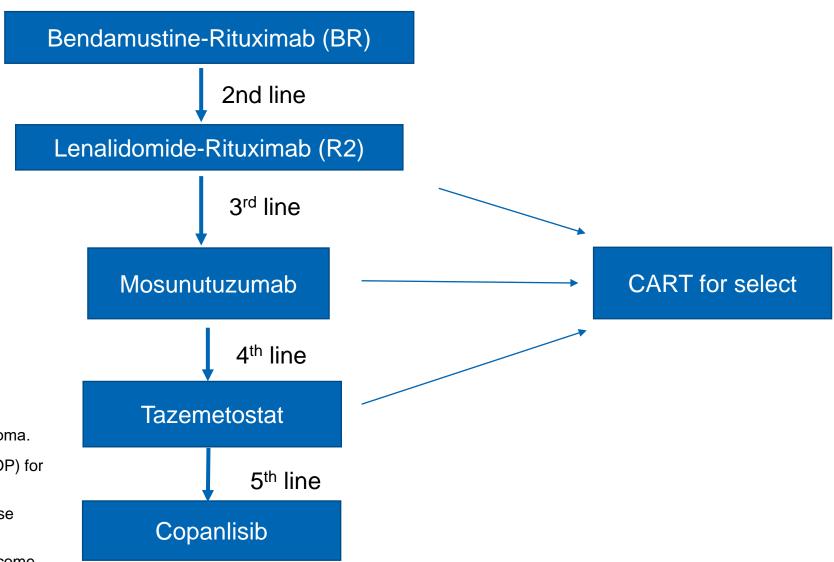
Future Directions in the Treatment of Follicular Lymphoma

Brad Kahl, MD
Professor of Medicine



An approach to the Management of High Tumor Burden FL in 2023

- Paradigm applies to "typical" follicular lymphoma.
- Allows one to save anthracycline (i.e. O-CHOP) for transformation events
- Emphasis on new agents. Can certainly re-use traditional agents.
- Anticipate this will change as new agents become available

Challenges in demonstrating improvement

- 1. Outcomes already quite good with 1st line treatment (see next slide)
 - 1. Long natural history of FL is good for patients, bad for drug development

2. Requires long term monitoring

- Not enough events in 1st few years to really declare "winners"
- 2. May need 5 -10 years of monitoring to really know
- 3. Pharma generally not interested in these sorts of timelines
- 4. Paucity of phase III trials since RELEVANCE and GALLIUM completed

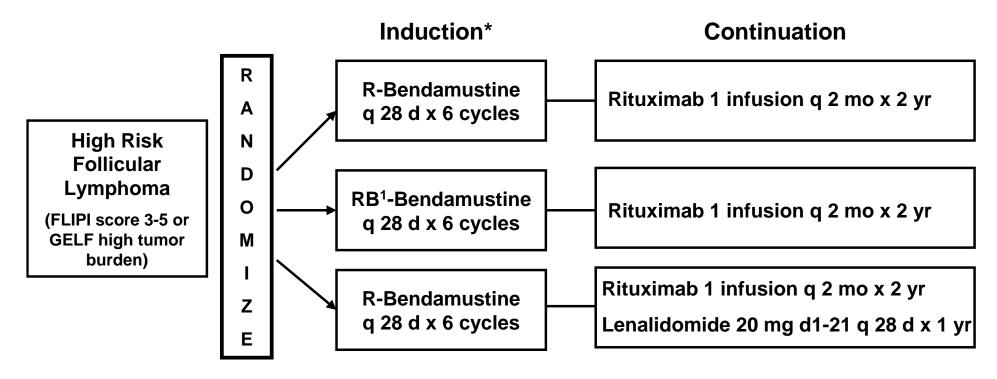
3. Not agreement on best endpoints

- 1. No argument that OS is most important, but almost impossible to show OS differences due to high activity of salvage therapies
- 2. PFS is often used but can be "manipulated" with maintenance therapies
- 3. If using maintenance therapies, need LTFU on toxicities and really need to factor in QOL, PROs, Cost, etc...

What does BR (or equivalent) achieve?

- Majority of patients appear to be still in 1st remission at 5 years
- StIL LTFU
 - just has TTNT (Rummel ASCO 2017)
- BRIGHT LTFU
 - 5 yr PFS ~ 70%
 - 5 yr PFS without MR ~60% (Flinn et al, JCO 2019)
- GALLIUM LTFU
 - 7 yr PFS 63% for O-chemo plus maintenance
 - 7 yr PFS 56% for R-chemo plus maintenance (in press)
- PRIMA LTFU
 - 10 yr PFS 51% with MR
 - 10 yr PFS 35% no MR (Bachy et al, JCO 2019)

What would "beating" BR look like?

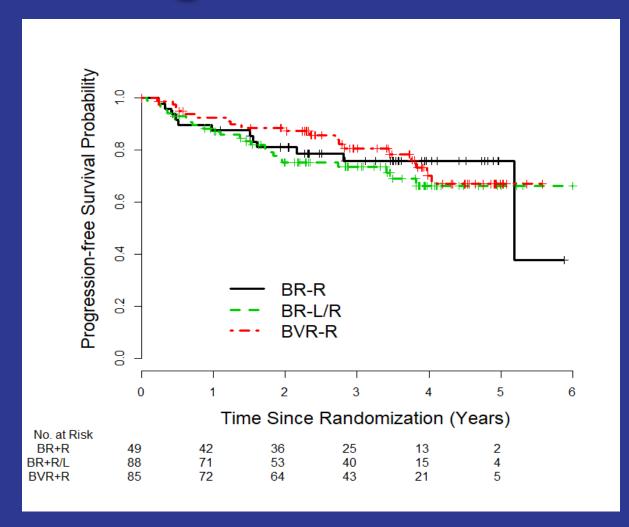

- Better PFS at 3-5 years without increased toxicity
- Comparable PFS at 3-5 years with less toxicity
 - BR (with no maintenance) is WELL TOLERATED
- Could just focus on the 10-20% of progressions in 1st two years
 - No biomarkers to accurately identify high risk patients at diagnosis
 - Efforts such of POD24 PI were not precise enough

Previous Strategies and Lessons Learned

- 1. Add to BR
 - BR plus X and R maintenance plus Z (E2408)
- 2. Replace R in BR
 - GALLIUM
- 3. Replace R in BR and add X
 - PrE0403
- 4. Risk adapt (personalize)
 - Foll 12
- 5. Move novel agent into front line
 - RELEVANCE

Untreated High Risk Follicular Lymphoma: E2408 Study Schema

BIONIC (Bortezomib Induction Or Novel Imid Continuation)



*1:2:2 randomization

¹Bortezomib (1.3mg/m² days 1, 4, 8, 11: initially IV, then SQ)

Progression-free survival (PFS)

3-year PFS*:

BR-R 76% (95% CI: 64-90%)

BVR-R 81% (95% CI:72-91%)


BR-LR 74% (95% CI: 64-84%)

P=0.49

^{*} Note: only first 250 enrolled patients (N=222 evaluable) included here

GALLIUM

Primary Endpoint: Investigator-Assessed PFS in FL

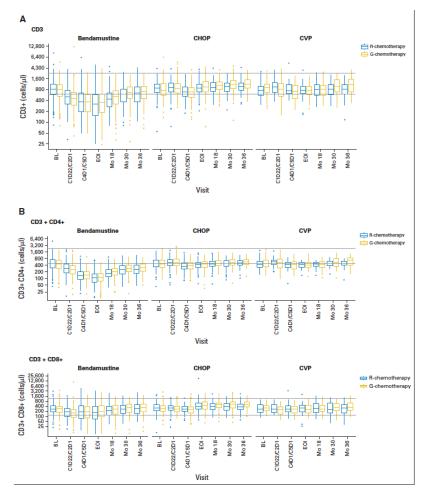
PFS by investigator	O-chemo (n=601)	R-chemo (n=601)	
Events, n (%)	101 (16.8)	144 (24.0)	
3-year PFS, % (95% CI)	80.0 (75.9, 83.6)	73.3 (68.8, 77.2)	
Median PFS, months (95% CI)	Not reached	Not reached	
Stratified HR (95% CI), p-value	0.66 (0.51, 0.85) p=0.001		

Marcus et al, NEJM 2017

Wisdom of maintenance? Toxicity Considerations from GALLIUM

	G-chemo		R-chemo			
	Induction	Maintenanc e	Follow-up	Induction	Maintenanc e	Follow-up
Benda	3/338	7/312	10/270	2/338	8/305	5/263
	(0.9%)	(2.2%)	(3.7%)	(0.6%)	(2.6%)	(1.9%)
СНОР	1/193	2/179	0/128	0/203	2/187	2/143
	(0.5%)	(1.1%)	(0.0%)	(0.0%)	(1.1%)	(1.4%)
CVP	0/61	1/57	0/44	1/56	0/43	0/45
	(0.0%)	(1.8%)	(0.0%)	(1.8%)	(0.0%)	(0.0%)

Fatal AE rate:


G-Benda: 6.8%

R-Benda: 5.1%

G-CHOP: 1.6%

R-CHOP: 2.5%

Hiddemann et al, JCO 2018

Significant and prolonged T cell depletion after bendamustine

PrE0403 Study Schema

N=56

R Ε G S T R 0

Induction³ Maintenance⁴

Cycle 1-6:

Obinutuzumab¹ 1000 mg IV d1 + Bendamustine 90 mg/m² IV d1, every 28 days

Cycle 2-6:
Venetoclax² 800 mg PO daily days 1-10 of each 28 day cycle

Obinutuzumab 1000 mg IV every 2 months x 12 cycles

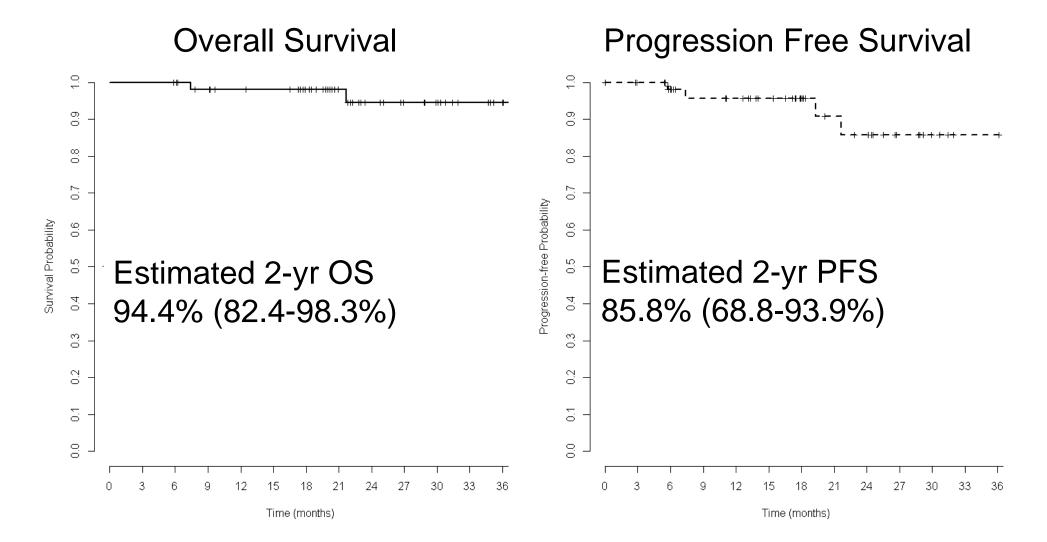
Venetoclax 800 mg PO daily days 1-28 every 28 days x 24 cycles

Complete Response

PR or SD

Obinutuzumab 1000 mg IV every 2 months x 12 cycles

¹ Cycle 1 only: obinutuzumab 100 mg IV day 1 and 900 mg on day 2 followed by day 8 and day 15, 1000 mg IV.


² Due to high rate of laboratory TLS in first 21 patients, study was amended to start venetoclax at Cycle 2 through 6 only

³ Growth Factor was required during induction cycles

⁴ Patients move on to the maintenance phase begins 8-12 weeks after induction. Maintenance for 2 years after induction.

Survival

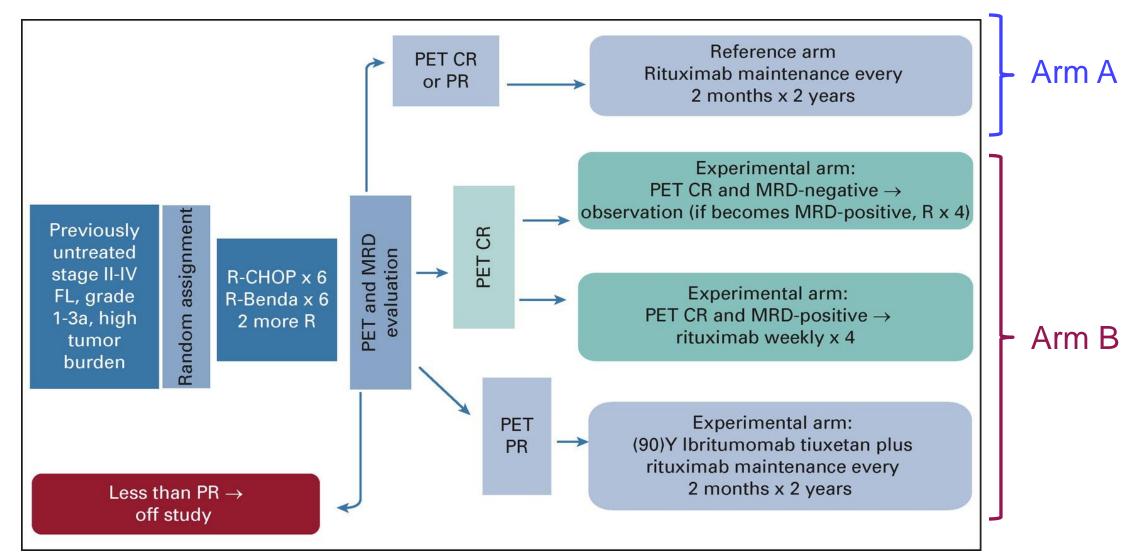
Median Follow up 20.9 months

Treatment Emergent AEs of Interest

Grade 5 CMV encephalitis as well as PJP pneumonia after C6 of induction

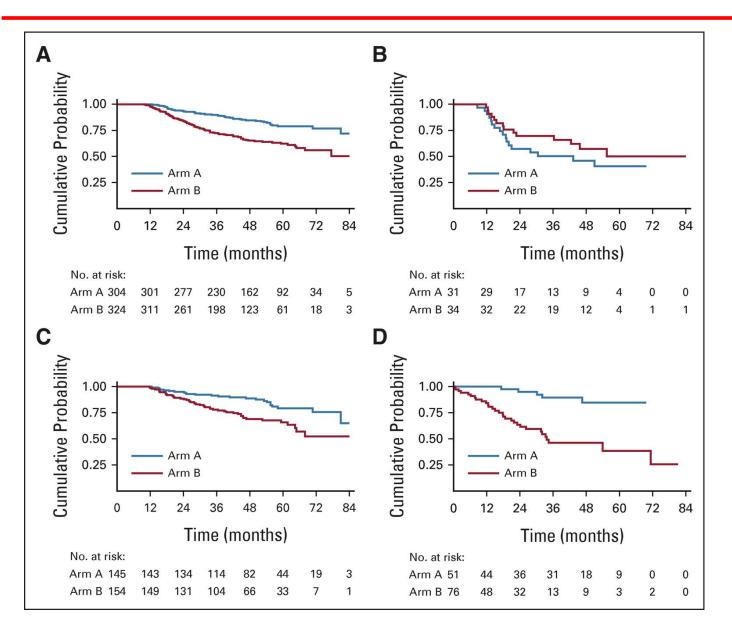
- Grade 3 PJP pneumonia after 3rd maintenance obinutuzumab
 - On Bactrim prophylaxis for 6 months
- Grade 4 BK virus nephropathy leading to ESRD and chronic hemodialysis after 6th maintenance obinutuzumab
- Grade 5 myocarditis after 8th dose maintenance obinutuzumab
 - Suspected—not proven—to be viral in etiology

Lessons Learned


• E2408

- 1. Not easy to improve on baseline BR plus R
- 2. May need an agent with more activity in FL than bortezomib
- R2 after BR disappointing. Perhaps poor T cell health after benda diminishes lenalidomide impact.

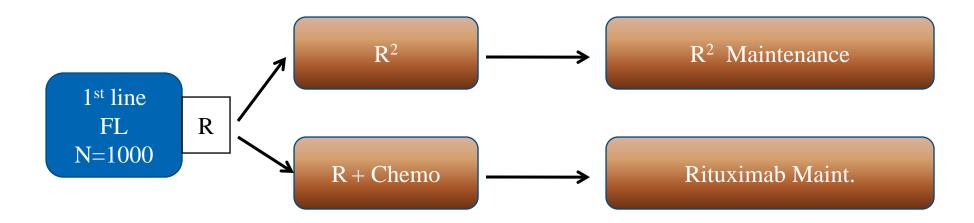
Gallium and PrE0403


- 1. Obinutuzumab does not combine as well with bendamustine
- 2. Maintenance obinunuzumab after BO probably unwise from risk benefit standpoint
- 3. Venetoclax may have improved efficacy, but unacceptable risk
- Still unclear regarding risk of MR after BR, we did not see same worrisome safety signals in E2408, but in COVID era, I no longer recommend MR in FL

Response-adapted therapy: FOLL 12

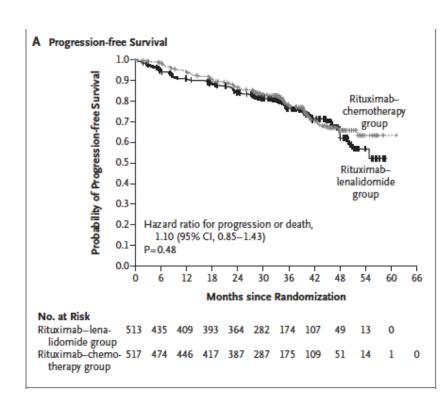
Luminari S et al. J Clin Oncol 2022 40729-739.

Response-adapted therapy: FOLL 12


PFS for patients in CR/PR after EOI with reviewed PET and MRD:

- (A) EOT PET-,
- (B) EOT PET+,
- (C) EOT PET- MRD -
- (D) EOT PET- MRD +

Arm A, reference arm


Novel Approaches to Frontline: RELEVANCE Study Design

(Rituximab and LEnalidomide versus Any ChEmotherapy)

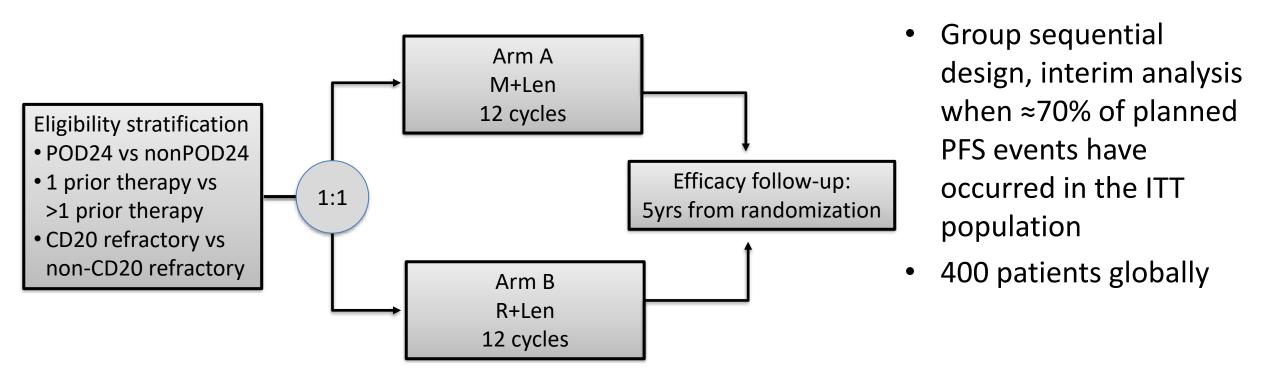
- R+Chemo:
 - •Investigator's choice of R-CHOP, R-CVP, BR
- Lenalidomide 20mg for 6 cycles, then 10mg if CR
- GELA + Selected North American Sites

RELEVANCE Results

Adverse Event	Rituximab-Lenalidomide Group (N=507)		Rituximab-Chemotherapy Group (N=503)			
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4		
	number of patients (percent)					
Neutropenia*	381 (75)	160 (32)	386 (77)	252 (50)		
Anemia*	333 (66)	0	446 (89)	0		
Thrombocytopenia*	268 (53)	11 (2)	266 (53)	8 (2)		
Cutaneous reactions†	220 (43)	36 (7)	120 (24)	5 (1)		
Diarrhea	187 (37)	10 (2)	95 (19)	6 (1)		
Constipation	178 (35)	1 (<1)	167 (33)	5 (1)		
Rash	146 (29)	20 (4)	39 (8)	1 (<1)		
Fatigue	115 (23)	1 (<1)	147 (29)	4 (<1)		
Nausea	100 (20)	0	209 (42)	8 (2)		
Abdominal pain	78 (15)	4 (<1)	46 (9)	4 (<1)		
Myalgia	73 (14)	0	29 (6)	1 (<1)		
Arthralgia	71 (14)	3 (<1)	70 (14)	1 (<1)		
Peripheral edema	69 (14)	0	47 (9)	1 (<1)		
Muscle spasms	68 (13)	0	21 (4)	0		
Infusion-related reaction	66 (13)	7 (1)	56 (11)	1 (<1)		
Upper respiratory tract infection	47 (9)	0	55 (11)	0		
Vomiting	34 (7)	2 (<1)	94 (19)	7 (1)		
Peripheral neuropathy	35 (7)	1 (<1)	79 (16)	3 (<1)		
Tumor flare reaction	30 (6)	7 (1)	1 (< 1)	0		
Leukopenia	21 (4)	8 (2)	48 (10)	30 (6)		
Febrile neutropenia	11 (2)	11 (2)	34 (7)	33 (7)		
Tumor lysis syndrome	7 (1)	6 (1)	5 (1)	3 (<1)		
Alopecia	5 (1)	0	45 (9)	3 (<1)		

Morschauser et al, NEJM 2018

Lessons Learned


Foll 12 Study

- 1. Strategies using maintenance/consolidation selectively in poor responders will not be superior to broad use of MR since MR works best in good responders.
- We actually saw this in E2496!
- 3. If reference arm does not contain MR, this strategy might work.

RELEVANCE

- 1. It is hard to beat BR (or equivalent)
- If RELEVANCE had been designed as a non-inferiority study and achieved frontline approval for R2, the results still would not truly have moved the needle in frontline FL
- We are going to need better drugs, predictive biomarkers, or both
 - 1. Currently no predictive biomarkers except EZH2 mutation/tazemetostat
 - 2. Better drugs? Maybe.

Phase III of R2 vs Mosun/Len in R/R FL

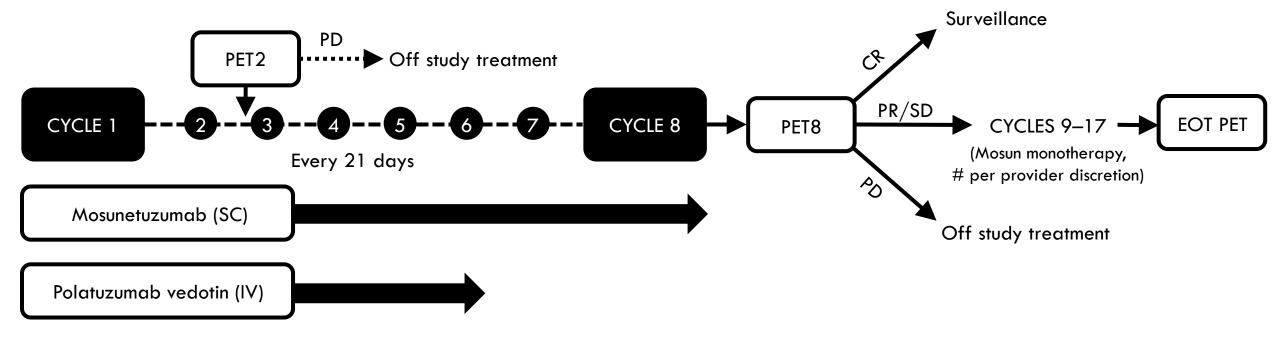
- M+Len: Mosun 1mg C1D2, 2mg C1D8, 30 mg C1D15 then D1 C2-12; Len D1-21 on C2-12
- R+Len: Rituxan 375mg/m² C1 D1,8,15,22 then D1 every other cycles (C3,5,7,11); Len D1-21 on C1-12

Frontline phase III concept (pharma)

- R2 plus bispecific X vs. R-chemo plus maintenance
 - Bispecific given for 2.5 years
- Could be very active.
- I worry about prolonged, profound B cell depletion.
- Wish was more time limited.

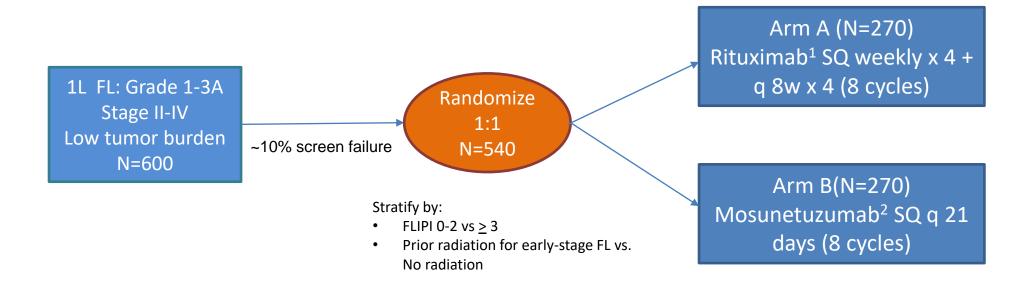
A Phase II Study Evaluating the Efficacy of Mosunetuzumab in Combination with Polatuzumab Vedotin in Untreated Follicular Lymphoma

David A. Russler-Germain, MD/PhD


Nancy L. Bartlett, MD

Department of Medicine
Division of Oncology

Study Design


Single-arm, open-label phase 2 clinical trial

What about Low Tumor Burden FL

- Patients often managed with a watch and wait strategy
- Single agent rituximab reasonable to offer
- Now have 10 year follow up from RESORT and UK Trial
 - Rituximab x 4 doses: 45% progression free at 5 years
 - Rituximab x 4 plus SAKK dosing: 55% progression free at 5 years
 - Over 1/3 progression free at 10 years

S2308: Randomized Phase III Study of Mosunetuzumab vs. Rituximab for Low Tumor Burden Follicular Lymphoma

Primary endpoint: 5 year PFS

¹ First dose of Rituximab to be administered IV

² Mosunetuzumab ramp up in cycle 1

Conclusions: 1st Line FL

- Will be difficult to show improvement in frontline FL
- BR (without maintenance) is safe and very effective
 - BR is hard to combine with however
- I would prefer to avoid long maintenance strategies as the way to improve PFS
 - CLL model may not apply here. Different risk/benefit calculation.
- The next frontier of testing appears to be bi-specifics
 - I would prefer time limited exposures
- Any new regimen should not increase risk to patients

