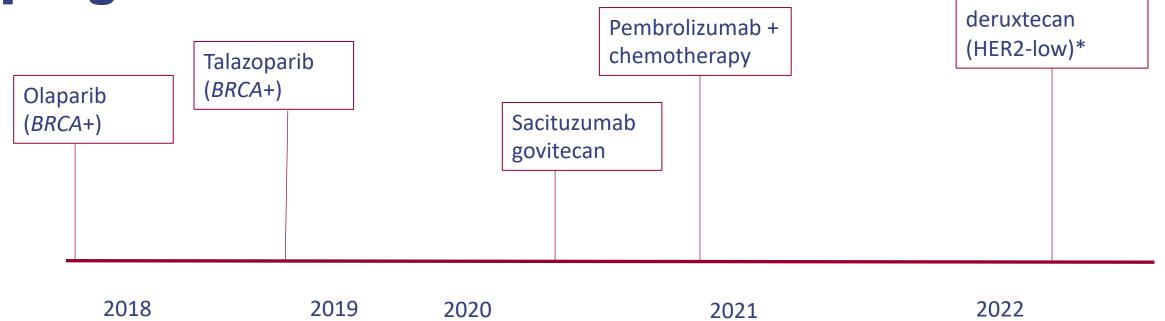


Advances in Metastatic Triple Negative Breast Cancer: Immunotherapy, Antibody Drug Conjugates, and Beyond

Jane Lowe Meisel, MD


Associate Professor of Hematology and Oncology Winship Cancer Institute of Emory University Emory University School of Medicine

Triple negative breast cancer (TNBC)

- TNBC accounts for 20% of breast cancers worldwide
 - Almost 200,000 cases per year
- More commonly diagnosed in women younger than 40, disproportionately affects black women and carriers of *BRCA1* genetic mutations
- TNBC typically presents aggressively and has a poorer prognosis compared with other subtypes
 - 5-year survival for stage 4 disease = 12%
- Historically, given the absence of targeted therapy, the mainstay of treatment has been chemotherapy – but this is not enough

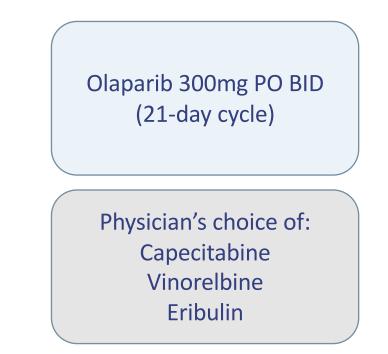
a. Gonzalez-Angulo AM, et al. Clin Cancer Res. 2011;17:1082-1089; b. Lin NU, et al. Cancer. 2012;118:5463-5472.

An area of great need...but, incredible progress

More exciting things to come:

-PARP inhibitors outside of the BRCA+ population

-New antibody-drug conjugates

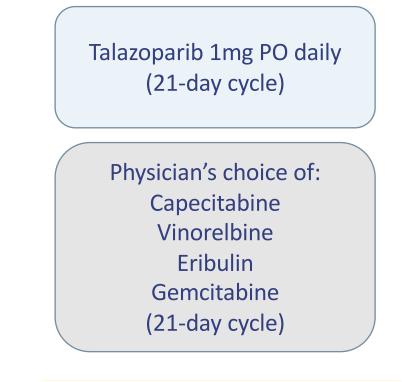

-ADCs + IO (possibility of expanding IO to PDL1- patients?)

PARP inhibition

OlympiAD: Olaparib vs Chemotherapy

Eligibility

- Deleterious BRCA mutation
- Advanced *ERBB2* breast cancer
- Up to 2 previous lines of chemotherapy for metastatic disease (platinum allowed if no POD during treatment)
- Primary Endpoint
 - Investigator-assessed PFS

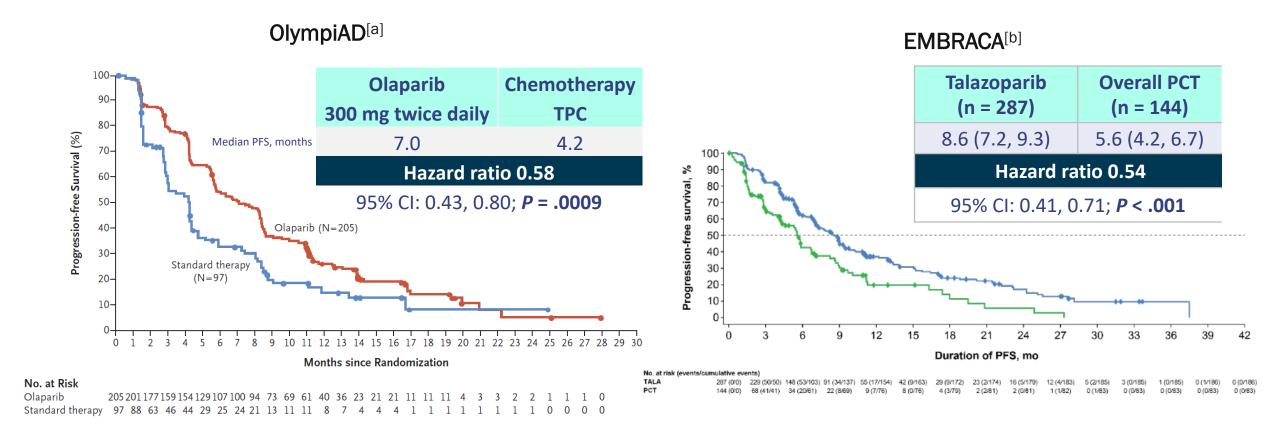

Stratification:

- Previous chemo for metastatic disease (y/n)
- HR status (+/-)
- Previous platinum-based therapy (y/n)

• Robson M, et al. N Engl J Med. 2017;377:523-533.

EMBRACA: Talazoparib vs Chemotherapy

- Eligibility
 - Deleterious BRCA mutation
 - Advanced *ERBB2* breast cancer
 - Up to 2 previous lines of chemotherapy for metastatic disease
- Primary Endpoint
 - Investigator-assessed PFS



Stratification: -# of prior regimens (0 or >/ = 1) -HR status (+/-) -CNS mets (y/n)

• Litton JK, et al. *N Engl J Med*. 2018;379:753-763.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

PARP Inhibitor Superior to Chemotherapy in *BRCA*mut MBC

• a. Robson M, et al. N Engl J Med. 2017;377:523-533; b. Litton J, et al. N Engl J Med. 2018;379:753-763.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Immunotherapy

Cortes J, et al. ASCO 2020, Abs 1000.

KEYNOTE-355: Pembrolizumab + Chemotherapy

Key Eligibility Criteria

- Age ≥18 years
- Central determination of TNBC and PD-L1 expression
- Previously untreated locally recurrent inoperable or metastatic TNBC
- Completion of treatment with curative intent ≥6 months prior to first disease recurrence
- ECOG performance status 0 or 1
- Life expectancy ≥12 weeks from randomization
- Adequate organ function
- No systemic steroids
- No active CNS metastases
- No active autoimmune disease

Pembrolizumab^a + Chemotherapy^b

Placebo^c + Chemotherapy^b

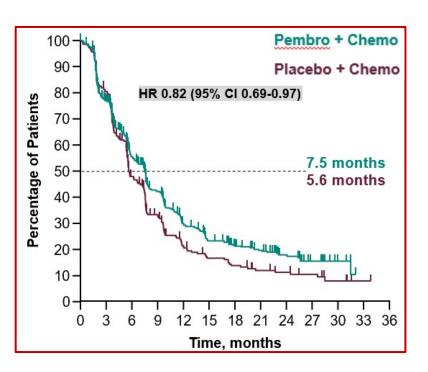
Progressive disease^d/cessation of study therapy

Stratification Factors:

R

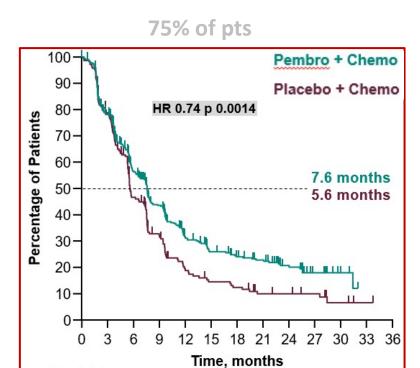
2:1

- Chemotherapy on study (taxane vs gemcitabine/carboplatin)
- PD-L1 tumor expression (CPS \geq 1 vs CPS <1)
- Prior treatment with same class chemotherapy in the neoadjuvant or adjuvant setting (yes vs no)


^aPembrolizumab 200 mg intravenous (IV) every 3 weeks (Q3W) ^bChemotherapy dosing regimens are as follows:

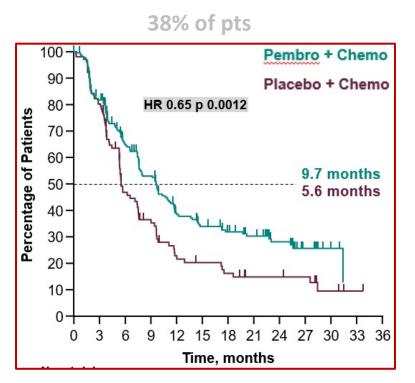
Nab-paclitaxel 100 mg/m² IV on days 1, 8, and 15 every 28 days Paclitaxel 90 mg/m² IV on days 1, 8, and 15 every 28 days Gemcitabine 1000 mg/m²/carboplatin AUC 2 on days 1 and 8 every 21 days 'Normal saline

^dTreatment may be continued until confirmation of progressive disease


Keynote-355: Progression-Free Survival

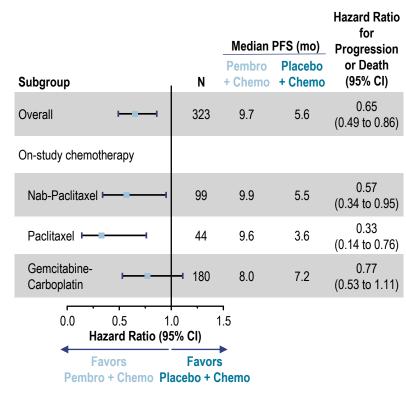
ITT

Statistical significance not tested due to prespecified hierarchical testing strategy


FDA approved 11/2020

PD-L1 CPS ≥1

Prespecified *P* value boundary of 0.00111 not met


PD-L1 CPS ≥10

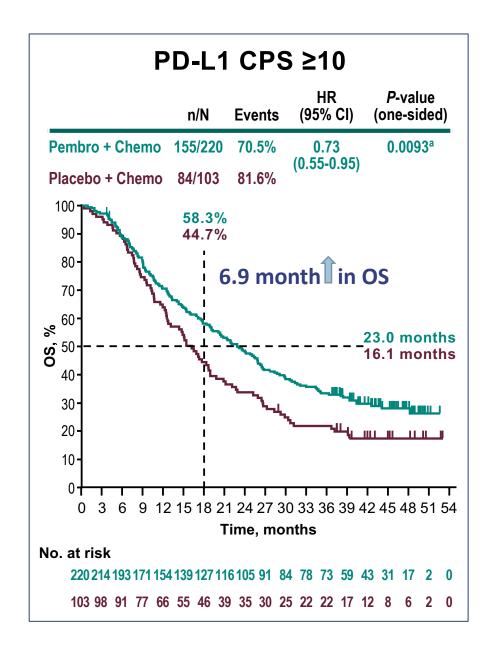
Prespecified *P* value boundary of 0.00411 met

Keynote-355: PFS Subgroup Analysis by On-Study Chemotherapy

PD-L1 CPS ≥10

PD-L1 CPS ≥1						
Subgroup		N	Pembro	PFS (mo) Placebo + Chemo	Hazard Ratio for Progression or Death (95% CI)	
Overall	— —	636	7.6	5.6	0.74 (0.61 to 0.90)	
On-study chemotherapy						
Nab-Paclitaxel		204	6.3	5.3	0.66 (0.47 to 0.92)	
Paclitaxel 🛏		84	9.4	3.8	0.46 (0.26 to 0.82)	
Gemcitabine- Carboplatin	— —	 348	7.5	7.5	0.86 (0.66 to 1.11)	
0.0 0.5 1.0 1.5 Hazard Ratio (95% CI)						
FavorsFavorsPembro + ChemoPlacebo + Chemo						

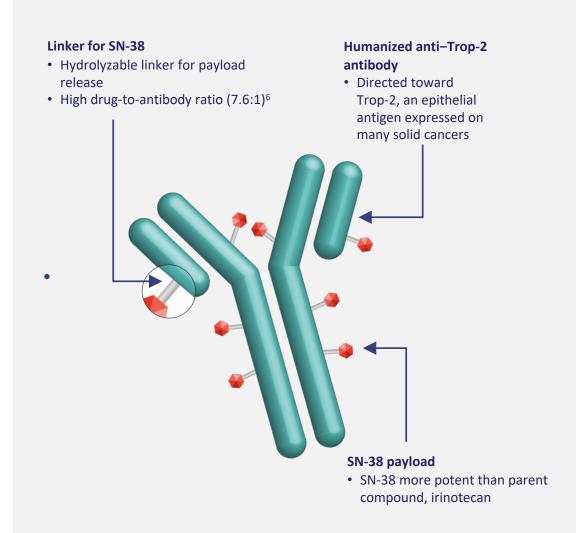
ITT

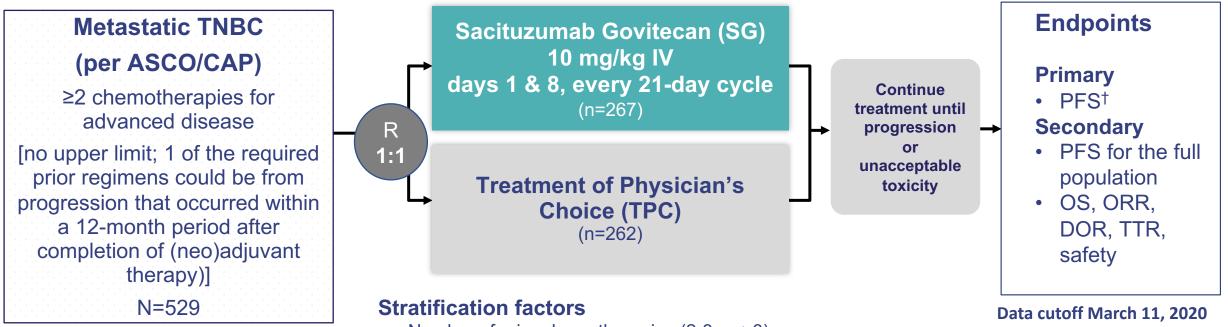

		Median I	PFS (mo)	Hazard Ratio for Progression	
Subgroup	N	Pembro- + Chemo	Placebo + Chemo	or Death (95% CI)	
Overall -	- 847	7.5	5.6	0.82 (0.69 to 0.97)	
On-study chemotherapy					
Nab-Paclitaxel	- 268	7.5	5.4	0.69 (0.51 to 0.93)	
Paclitaxel	┛ 114	8.0	3.8	0.57 (0.35 to 0.93)	
Gemcitabine-	465	7.4	7.4	0.93 (0.74 to 1.16)	
0.0 0.5 1.0 1.5 Hazard Ratio (95% CI)					
Favors Pembro + Chemo	Favo Placebo +				

• Slide adapted from Rugo H et al, SABCS 2020. GS3-01.

KEYNOTE 355 Overall Survival

	Median OS (mo)					
Subgroup		Patients <i>n</i>	Pembro + Chemo	Patients <i>n</i>	Placebo + Chemo	Hazard Ratio (95% Cl)
Overall	-+	566	17.2	281	15.5	0.89 (0.76 to 1.05)
PD-L1 CPS <1		— 141	16.2	70	14.7	0.97 (0.72 to 1.32)
PD-L1 CPS 1-9		205	13.9	108	15.5	1.09 (0.85 to 1.40)
PD-L1 CPS 10-19		80	20.3	39	17.6	0.71 (0.46 to 1.09)
PD-L1 CPS ≥20		140	24.0	64	15.6	0.72 (0.51 to 1.01)
0.0	0.5 1.0 Hazard Ratio (95%	1.5 6 CI)				
		vors + Chemo				

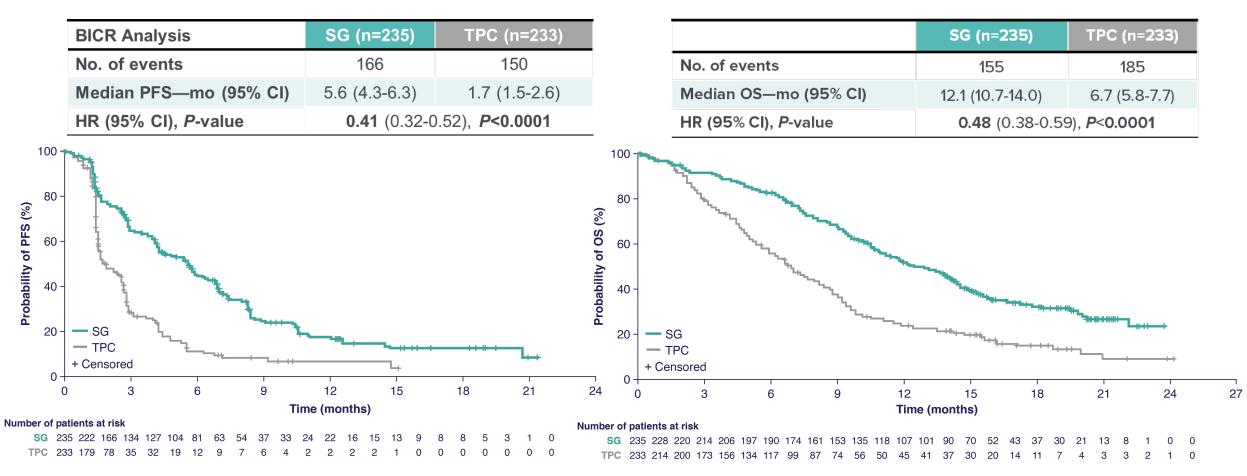

 For pembrolizumab + chemotherapy in mTNBC, CPS ≥10 is the best cut-off to define those expected to benefit, and this is the standard of care for mTNBC with CPS≥10


Antibody-drug conjugates

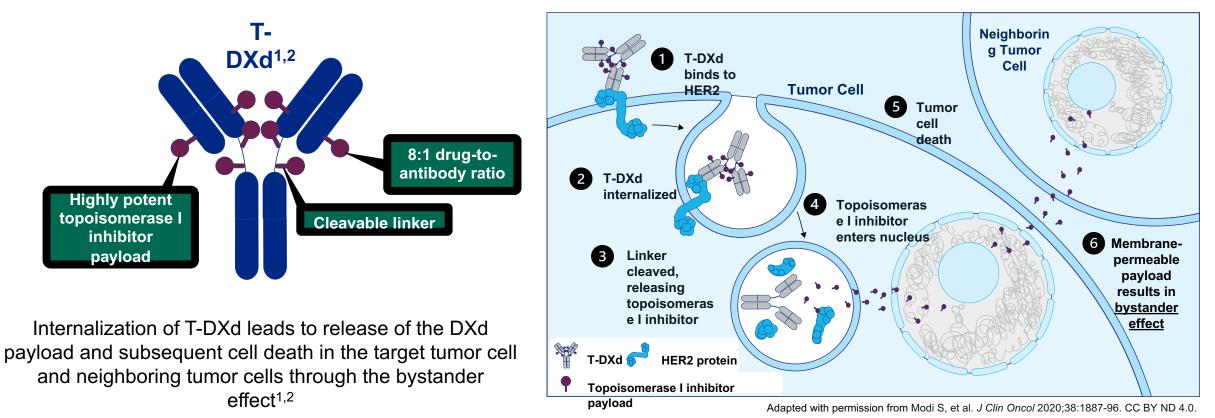
Sacituzumab Govitecan (SG)

- Trop-2 is expressed in all subtypes of breast cancer and linked to poor prognosis^[a]
- Distinct features of SG:^[b]
 - Antibody highly specific for Trop-2
 - High drug-to-antibody ratio (7.6:1)
 - Internalization and enzymatic cleavage by tumor cell not required for the liberation of SN-38 from the antibody
 - Hydrolysis of the linker also releases the SN-38 cytotoxic extracellularly in the tumor microenvironment, providing a bystander effect

ASCENT: Sacituzumab Govitecan in Refractory/Relapsed mTNBC


- Number of prior chemotherapies (2-3 vs >3)
- Geographic region (North America vs Europe)
- Presence/absence of known brain metastases (yes/no)
- Primary results including PFS and OS
- ASCENT was <u>halted early</u> due to compelling evidence of efficacy per unanimous DSMC recommendation

Bardia A, et al. Annals of Oncology (2020) 31 (suppl_4): S1142-S1215.


ASCENT: Results

PFS

OS

T-DXd MOA, Bystander Effect, and Rationale for Targeting HER2-low mBC

 Results from a phase 1b study have reported efficacy of T-DXd in heavily pretreated patients (N = 54) with HER2-low mBC, with a mPFS of 11.1 months and an ORR of 37.0%³

HER2, human epidermal growth factor receptor 2; MOA, mechanism of action; mBC, metastatic breast cancer; mPFS, median progression-free survival; ORR, objective response rate; T-DXd, trastuzumab deruxtecan. 1. Nakada T, et al. *Chem Pharm Bull*. 2019;67:173-185. 2. Ogitani Y, et al. *Clin Cancer Res*. 2016;22:5097-5108. 3. Modi S, et al. *J Clin Oncol*. 2020;38:1887-1896. 17

DESTINY-Breast04: First Randomized Phase 3 Study of T-DXd for HER2-low mBC

An open-label, multicenter study (NCT03734029)

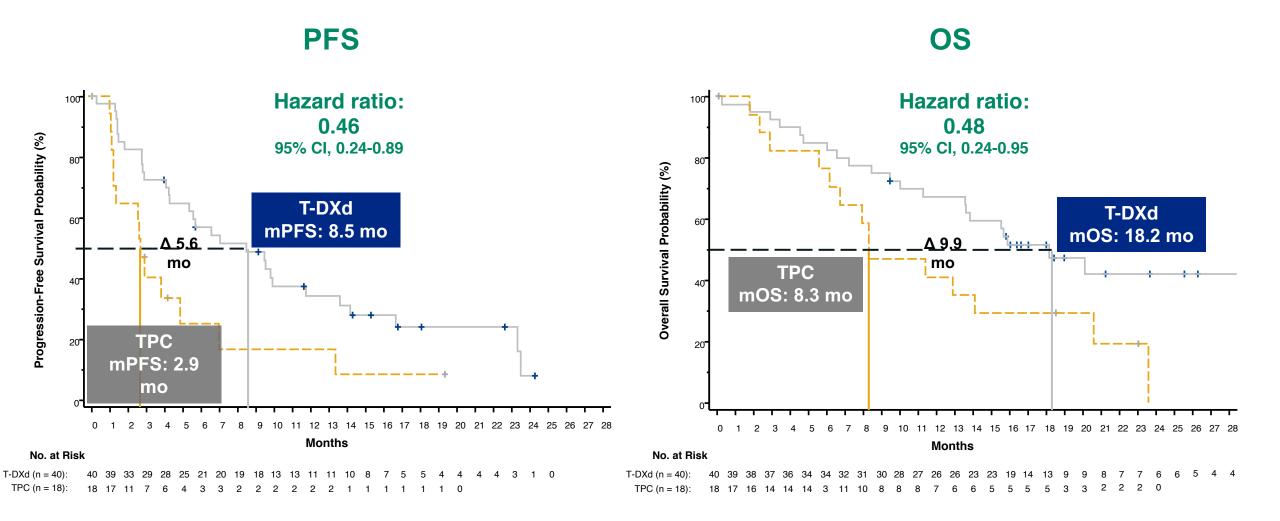
Patients^a

- HER2-low (IHC 1+ vs IHC 2+/ISH-), unresectable, and/or mBC treated with 1-2 prior lines of chemotherapy in the metastatic setting
- HR+ disease considered endocrine refractory

Primary endpoint

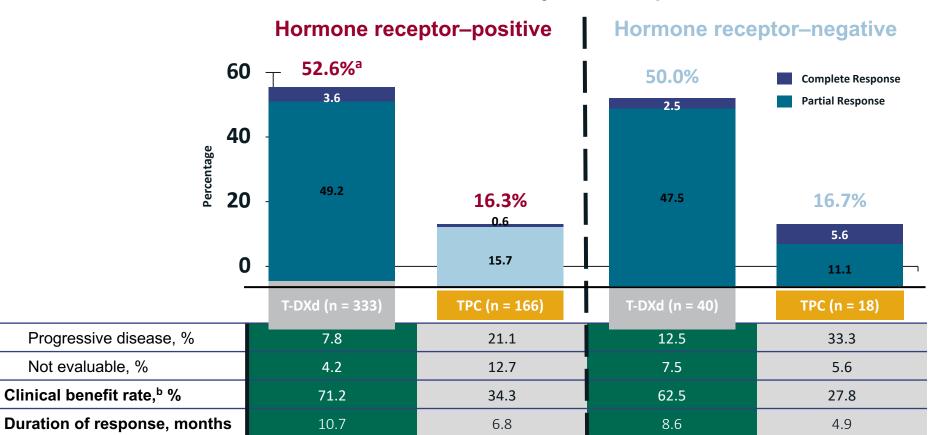
PFS by BICR (HR+)

Key secondary endpoints^b


- PFS by BICR (all patients)
- OS (HR+ and all patients)

Stratification factors

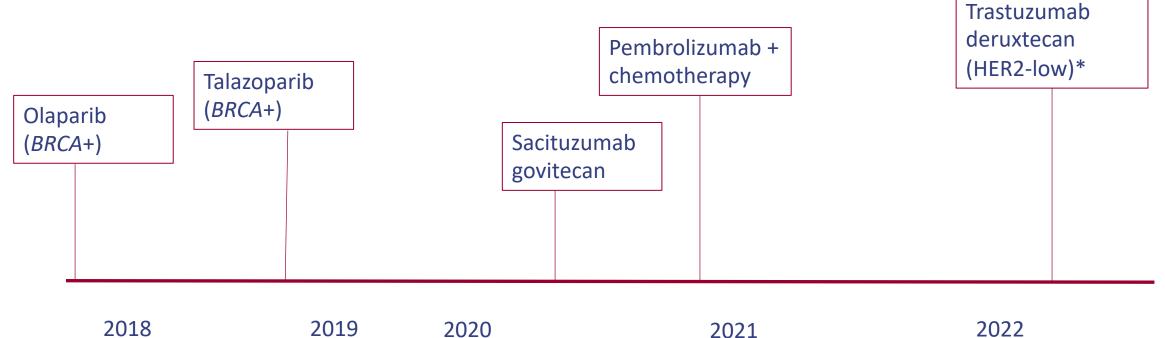
- Centrally assessed HER2 status^d (IHC 1+ vs IHC 2+/ISH-)
- 1 versus 2 prior lines of chemotherapy
- HR+ (with vs without prior treatment with CDK4/6 inhibitor) versus HR-


ASCO/CAP, American Society of Clinical Oncology/College of American Pathologists; BICR, blinded independent central review; CDK, cyclin-dependent kinase; DOR, duration of response; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IHC, immunohistochemistry; ISH, in situ hybridization; mBC, metastatic breast cancer; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; R, randomization; T-DXd, trastuzumab deruxtecan; TPC, treatment of physician's choice. alf patients had HR+ mBC, prior endocrine therapy was required. bOther secondary endpoints included ORR (BICR and investigator), DOR (BICR), PFS (investigator), and safety; efficacy in the HR– cohort was an exploratory endpoint. CTPC was administered accordingly to the label. dPerformed on adequate archived or recent tumor biopsy per ASCO/CAP guidelines using the VENTANA HER2/neu (485) investigational use only [IUO] Assay system.

PFS and OS in HR- (Exploratory Endpoints)

HR, hormone receptor; mOS, median overall survival; mPFS, median progression-free survival; OS, overall survival; PFS, progression-free survival; T-DXd, trastuzumab deruxtecan; TPC, treatment of physician's choice. For efficacy in the hormone receptor–negative cohort, hormone receptor status is based on data from the electronic data capture corrected for misstratification.

Confirmed ORR

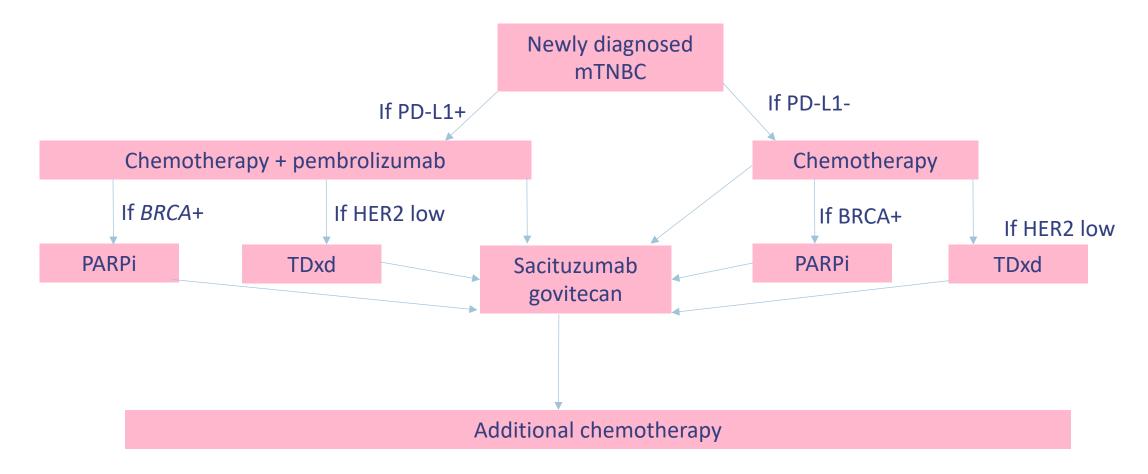

Confirmed Objective Response Rate

Hormone receptor status is based on data from the electronic data capture corrected for misstratification.

ORR, objective response rate; T-DXd, trastuzumab deruxtecan; TPC, treatment of physician's choice.

^aThe response of 1 patient was not confirmed. ^bClinical benefit rate is defined as the sum of complete response rate, partial response rate, and more than 6 months' stable disease rate, based on blinded independent central review.

Where does this leave us?


Case presentation

 45F presents with a breast mass that is biopsied and found to be triple negative invasive ductal carcinoma (ER-PR- HER2 1+). During her workup, she is found to have a liver mass that is biopsied and is found to be metastatic breast cancer, also triple negative. PD-L1 CPS score is 13. Genetic testing is done and she is *BRCA* negative.

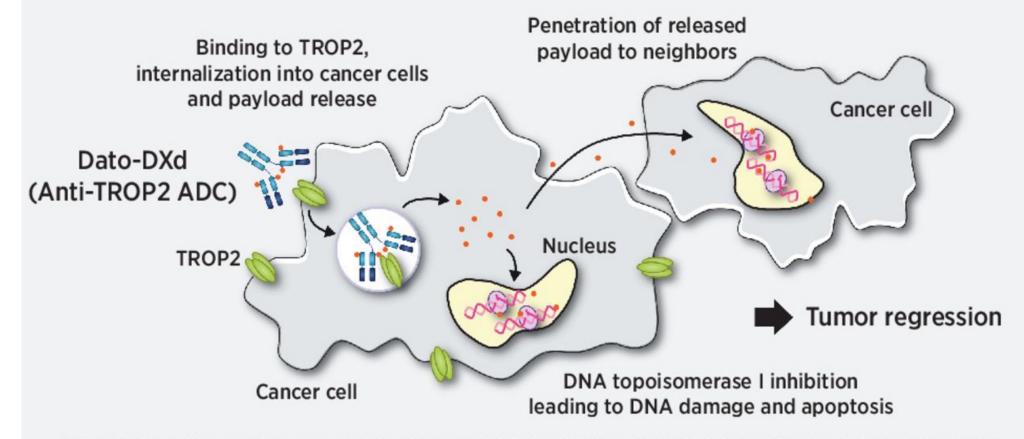
What would your recommendation be?

- a) Initiate trastuzumab deruxtecan
- b) Initiate taxane/pembrolizumab
- c) Initiate olaparib
- d) Initiate sacituzumab govitecan
- e) Initiate a taxane

Treatment of metastatic TNBC

On the horizon

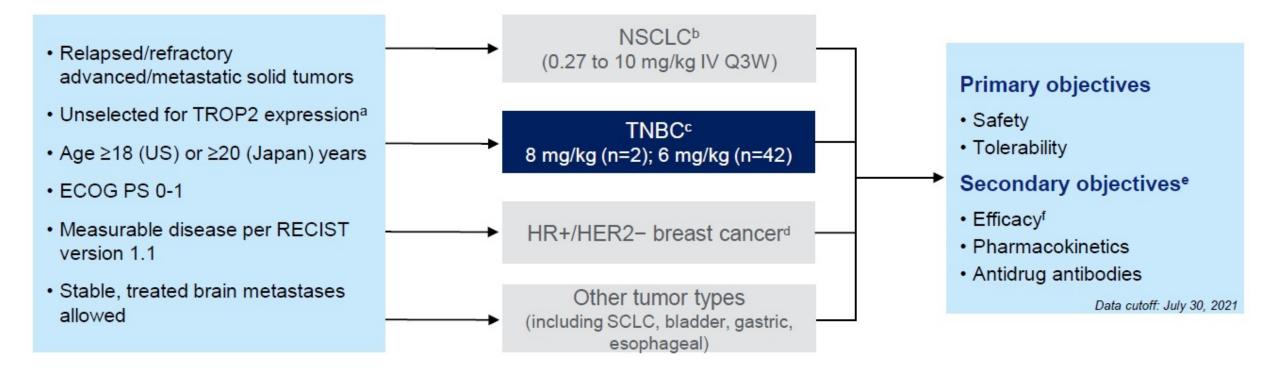
- PARP inhibitors outside of the BRCA+ population
- New antibody-drug conjugates
- ADCs + IO (possibility of expanding IO to PDL1patients?)


TBCRC 048: OLAPARIB EXPANDED Benefit in g*PALB2* + s*BRCA*

PALB2 N=13	sBRCA1/2 N=17	ATM & CHEK2** N=17
Germline: 9/11 PR (82%) 10/11 had tumor regression; 1 SD > 1 yr	8/16 PR (50%)	0/13 germline 0/4 somatic
Somatic: 0/2 – both SD* (limited assessments)		

New cohorts are beginning for gPALB2 and sBRCA1/2 breast cancer

• Tung N, et al. J Clin Oncol 38: 2020 (suppl; abstr 1002).


Datopotamab deruxtecan (Dato-DXd, DS-1062a)

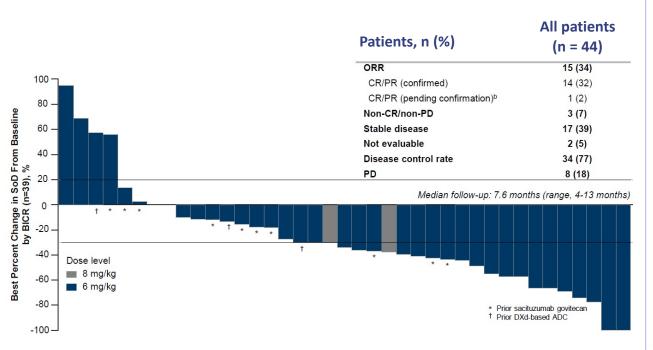
Datopotamab deruxtecan (Dato-DXd) showed potent antitumor activity against TROP2-expressing tumors by efficient payload delivery into tumors

TROPION-PanTumor01: Study Design

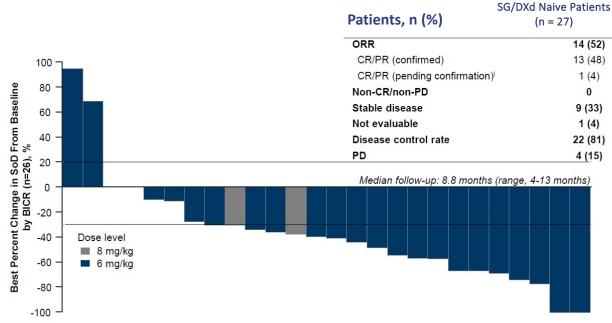
Phase 1 Trial: Datopotamab deruxtecan in advanced/metastatic HER2- breast cancer

ECOG PS, Eastern Cooperative Oncology Group performance status; Q3W, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors.

^a Pretreatment tumor tissue was required for retrospective analysis of TROP2 expression. ^b Results from the NSCLC cohort have been previously reported.^{1,2} ^c Includes patients treated in the dose-escalation and dose-expansion portions. ^d Enrollment in the HR+/HER2- cohort is now complete and data will be forthcoming. ^eExploratory objectives include analyses of biomarkers associated with response. ^f Response assessments are based on RECIST 1.1.


1. Garon E, et al. WCLC 2021. Abstract 156; 2. Meric-Bernstam F, et al. ASCO 2021.

Krop I, et al. Presented at: SABCS 2021. Abstract GS1-05.


These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

TROPION-PanTumor01: Antitumor Responses by BICR

All Patients With TNBC

Patients With TNBC Without Prior Topo I Inhibitor-Based ADC

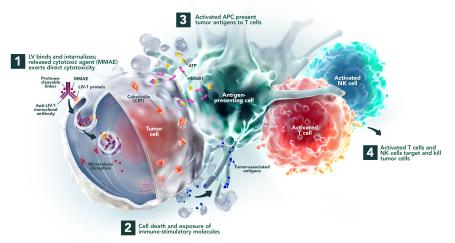
Krop I, et al. Presented at: SABCS 2021. Abstract GS1-05.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

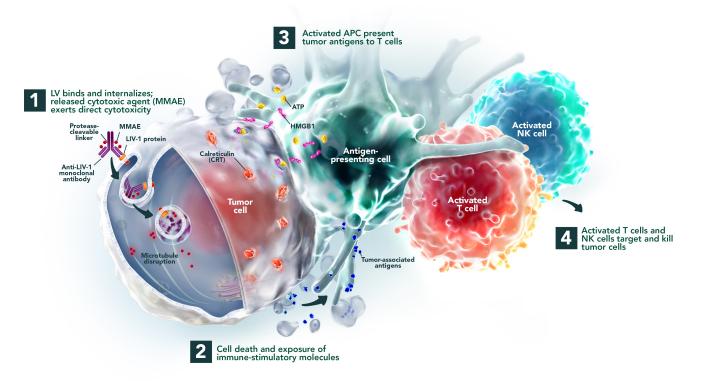
Datopotamab: next steps

- Being studied as front-line therapy for mTNBC that is not PD-L1+ (against physician's choice chemotherapy) (TROPION-Breast 02)
- Being studied in combination with durvalumab for patients with triple negative breast cancer as one arm of BEGONIA
- Being studied for ER+ pretreated mBC (TROPION-Breast 01)

Ladiratuzumab vedotin (LV)


- LIV-1 is a transmembrane protein involved in the signaling pathway leading to epithelial-mesenchymal transition (EMT) and expression has been linked with malignant progression to metastasis in breast cancer^{1,3}
- LIV-1 is expressed in ≥90% of all clinical subtypes of metastatic breast cancer tumors with low expression in normal tissues⁴

1. Lue H-W, et al. PLOS One. 2011;6(11):e27720.


- 2. Hogstrand C, et al. Biochem J. 2013;455:229-37.
- 3. Manning DL, et al. Eur J Cancer. 1994;30A(5):675-8.

4. Sussman D, et al. Mol Cancer Ther. 2014;13(12):2991-3000.

Ladiratuzumab vedotin is an investigational agents, and its safety and efficacy have not been established.

Rationale for Combining LV with Pembrolizumab

Ladiratuzumab vedotin is an investigational agents, and its safety and efficacy have not been established.

Abbreviations: LV, ladiratuzumab vedotin

1. Cao A, et al. Cancer Res. 2018;78(13 Suppl):Abstract 2742.

Jane Meisel. Phase 1b/2 Study of Ladiratuzumab Vedotin (LV) in Combination with Pembrolizumab for First-Line Treatment of Triple-Negative Breast Cancer (SGNLVA-002, Trial in Progress)

Current Study Design

- SGNLVA-002 (NCT03310957) is an ongoing global single-arm, open-label, phase 1b/2 study of LV + pembrolizumab as 1L therapy for patients with unresectable locally advanced or mTNBC
- LV 1.5 mg/kg administered on Day 1 and Day 8 (off Day 15) of every 21-day cycle in combination with pembrolizumab administered on Day 1 of every cycle
 - Rationale for the combination: LV-induced immunogenic cell death elicits an inflammatory response, leading to enhanced antitumor immunity, antigen presentation, and tumor cell immune infiltration
- Eligible patients have metastatic TNBC, no prior cytotoxic treatment in the metastatic setting, tumor tissue PD-L1 CPS <10 using the PD-L1 IHC 22C3 clone, and at least 6 months since prior treatment with curative intent

Conclusions

- Triple negative breast cancer has come a long way in the past few years, with more breakthroughs on the way
- Many more options for patients, and options that offer more longevity as well as better quality of life
- The future: defining TNBC by what it is (gBRCA, HER2-low, PD-L1+, etc) rather than by what it is not!

Thank you!

EMORY WINSHIP CANCER INSTITUTE

National Cancer Institute-Designated Comprehensive Cancer Center

