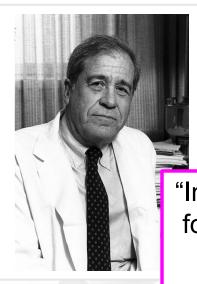


NEOADJUVANT THERAPY AND LOCO-REGIONAL CONTROL:

A SURGEON'S PERSPECTIVE


Cletus Arciero, MD, MS, FSSO, FACS
Associate Professor
Breast Surgical Oncology

EMORY
GLENN FAMILY
BREAST CENTER
WINSHIP CANCER INSTITUTE

MULTIMODALITY TREATMENT IN BREAST CANCER

SYSTEMIC CHEMOTHERAPY AS AN ADJUVANT TO SURGERY IN THE TREATMENT OF BREAST CANCER

BERNARD FISHER, MD

STATUS OF ADJUVANT THERAPY: RESULTS OF THE NATIONAL SURGICAL ADJUVANT BREAST

The New England

Journal of Medicine

*Copyright, 1970, by the massachuse

Volume 294

FEBRUARY 19, 1976

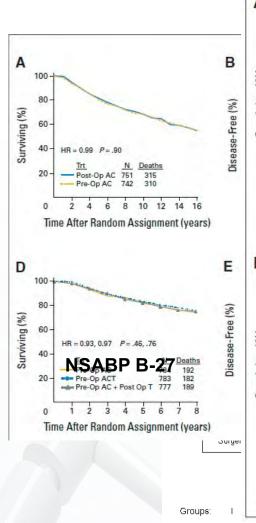
Number 8

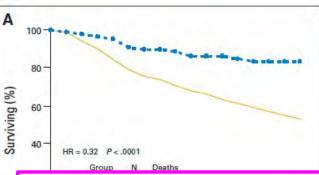
BREAST CANCER

Bernard Fisher, Surgeon University of Pittsburgh

 In 1957, helped establish the Surgical Adjuvant Chemotherapy Breast Project, later known as the National Surgical Adjuvant Breast and Bowel Project (NSABP) following radical mastectomy for breast cancer

Phase 2: Expanded chemotherapy studies


ontrol trial stratified by age, sitive lymph nodes (1-3 versus 4+), and extent of surgery (radical


mastectomy versus extended radical mastectomy) (CMF)

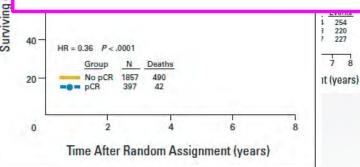
Failures	Control	CMF	p-value
Total	24%	5.3%	<10 ⁻⁶
1-3 nodes	16.8%	3.6%	<10 ⁻³
4(+) nodes	40.7%	8.8%	<10 ⁻⁴

Fisher, Cancer 1969; 24(6): 1286-1289; Fisher, Cancer 1971;28(6):1654–1658; Bonadonna, et al., N Engl J Med 1976; 294: 405-410; Fisher and Mamounas, JCO 1995; 13(3): 537-540.

NEOADJUVANT CHEMOTHERAPY

Preoperative Chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27

Priya Rastogi, Stewart J. Anderson, Harry D. Bear, Charles E. Geyer, Morton S. Kahlenberg, André Robidoux, Richard G. Margolese, James L. Hoehn, Victor G. Vogel, Shaker R. Dakhil, Deimante Tamkus, Karen M. King, Eduardo R. Pajon, Mary Johanna Wright, Jean Robert, Soonmyung Paik, Eleftherios P. Mamounas, and Norman Wolmark


No statistically significant differences in DFS or OS

"Two independent paradigms subsequently arose: one directed toward controlling local-regional disease and the other aimed at eliminating micrometastatic tumoreffective adjuvant therapy.......these two independent paradigms have converged into a single exemplar."

comes in patients < 50 years

R 0.81, P=0.06 for OS

d a complete response superior DFS and OS a poorer response

- Confirmed by EORTC 10902 as well as Early Breast Cancer Trialists' Collaborative Group meta-analysis
 - Distant recurrence rate (38.2% vs 38%, RR 1.02, 0.92–1.14) and breast cancer mortality (34.4% vs 33.7%, RR 1.06, 0.95–1.18)

Fisher, et al., JCO 1997; 15(7): 2483-2493; Rastogi, et al., JCO 2008; 26(5): 778-785; van de Velde, et al., JCO 2001; 19(2):4224-4237; Asselain et al., Lancet Oncol 2018; 19(1): 27-39

CURRENT PARADIGM: NEOADJUVANT THERAPY

Surgical

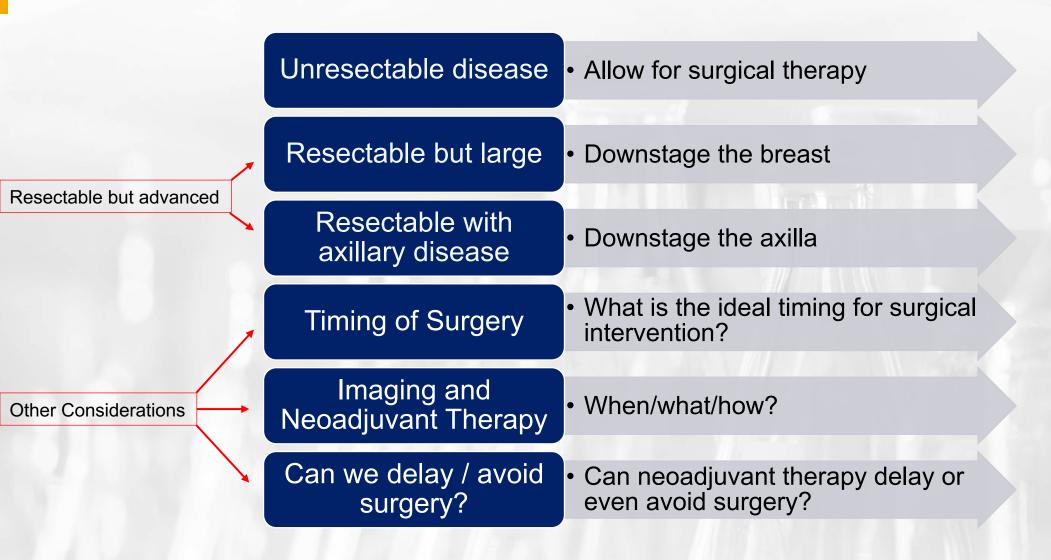
Non-Surgical

Unresectable disease

 Allow for surgical therapy

Resectable but advanced

 Downstage the disease


Provide prognostic information

 pCR = better outcomes

Provide a guide to adjuvant treatments

 Katherine, CREATE-X, etc

NEOADJUVANT THERAPY FROM A SURGEON'S PERSPECTIVE

ALLOW FOR SURGICAL THERAPY

Locally Advanced Breast Cancer

- Tumors that may preclude surgical upfront surgical resection
 - Skin involvement, ulceration
 - Chest wall involvement
 - Bulky axillary disease
- Much of the support of this approach extrapolated from the studies examining resectable locally advanced disease
 - Early study by Deo and colleagues examined T4bN0-2M0 patients (n=101)
 - Primary tumor response in 66%; axillary response 95% in the node positive group
 - NSABP B-18 and B-27 data
 - Tumor size markedly reduced in 80% of patients
 - Possible conversion to resectable
 - Not always a limited resection.....

Deo, et al., JCO 2003; 84: 192-197; Fisher, et al., JCO 1997; 15(7): 2483-2493; Rastogi, et al., JCO 2008; 26(5): 778-785

ALLOW FOR SURGICAL THERAPY

Inflammatory Breast Cancer

- Early reports in the 1900s noted dismal survival with local therapy alone
 - Survival
 - 12 to 32 months for mastectomy
 - o 9 to 29 months for radiation
 - o 7 to 42 months for combined treatments
- Combined modality introduced in the 1970s
 - Survival with the addition of chemotherapy markedly improved
 - >24 months with 5-year survival rates into the 70% range
- Chemotherapy, surgery, radiation now the standard approach

DeLena et al., Cancer Chemother Pharmacol 1978; 1: 53-59; Jaiyesimi, et al., JCO, 1992; 10: 1014-1024

DOWNSTAGE THE BREAST

Istituto Nazionale Tumori, Milan

- Tumors >3 cm
 - CMF/FAC/FEC quadrantectomy adjuvant chemo / radiation 4-6 weeks later
- "Full-dose primary chemotherapy.....allowing for breast-conserving surgery"

Royal Marsden Hospital

- Randomized to adjuvant versus neoadjuvant
- Noted that even small tumors can be decreased in volume to allow for breast conservation

NSABP B-18

- Noted 80% of patients with a reduction in tumor size after neoadjuvant therapy
- 36% had a pCR (remember this is 4 cycles of AC alone)
- Increased rate of breast conservation candidates, most pronounced in the T3 category

Table 3. Clinical Downstaging and Surgical Requirements
According to Clinical Stage and Tumor Size

		No. of Adjuvant	No. of Neoad	juvant Patients	·
rimary d regimer	Tumor Characteristic	Patients (n = 99)	Prechemotherapy (n = 101)	Postchemotherapy (n = 101))II
MF × 3	Clinical size (cm)				À
AC × 3 AC × 4	0.1-1.0	2)	2 1	62)	
EC × 3	1.1-2.0	8 10%	7 8%	20 81%*	
	2.1-3.0	42	43	11	
	3.1-4.0	32	25	3	
	4.1-5.0	7	21	4	
	> 5.0	8	3	1	
	Tumor stage				
	T0-T1	10	9	82*	
	T2	81	89	18	_
	T3	8	3	1	-
Respo	Node stage)
Co	NO	85	79	98†	
Nonr	Nla	8	14	0	
Pro	NIb	6	8	3	
P Resp	ponse (complete				
01	r partial) nplete response	.15 .18	.33 < .001	.04 .16	

Bonadonna, et al., JNCI 1990; 82(19): 1539-1545; Powles, et al., JCO 1995; 13: 547-552; Fisher, et al., JCO 1997; 15(7): 2483-2493

DOWNSTAGE THE BREAST

	Clinical response											
	Complete*	Partial [†]	Stable or progressive disease [‡]	Unknown 1	'otal							
Planned mastect	omy											
Breast- conserving	75 (60%)	121 (41%)	30 (12%)	26 (36%)	252 (33%)							
Mastectomy	49 (40%)	175 (59%)	231 (88%)	47 (64%)	502 (67%)							
Unknown	0	1 (NA)	2 (NA)	11 (NA)	14 (NA)							
Total response§	124/684 (18%)	297/684 (43%)	263/684 (38%)	84 (NA)	768 (100%)							
Jnknown planne	d therapy											
Breast- conserving	162 (83%)	164 (76%)	97 (56%)	28 (49%)	451 (70%							
Mastectomy	33 (17%)	53 (24%)	76 (44%)	29 (51%)	191 (30%							
Jnknown	2 (NA)	3 (NA)	8 (NA)	38 (NA)	51 (NA)							
otal response§	197/598 (33%)	220/598 (37%)	181/598 (30%)	95 (NA)	693 (1009							

	Eligibility for	or BCS (%)			
	Before NAT	After NAT	oCR (%)	BCS performed (%)	Shift to BCS (%)
CALGB 40601	41-4	63-7	63-7	49-0	12-9
CALGB 40603	54-2	68-1	68-1	47-3	-10-9
CHER-LOB	43-8	n.a.	89.9	64-7	39.7
IMPACT	43-6	61-8	34-6	41-5	32-3
NeoALTTO	29-8	46-9	75-4	43-6	28-2
TEAM IIA	61-8	75	64-6	65-7	23-1
TRYPHAENA	46-2	n.a.	92	58-7	21-9
Pooled values	43-3 (41-3, 45-9)	60-4 (57-8, 62-9)	74-8 (72-5, 77-0)	51-8 (49-5, 54-2)	16-6 (14-4,19-0)

EBCTCG Meta-analysis

- Marked increase in the rate of breast conservation
- Did note an increased local recurrence rate but this did not equate to changes in survival
 - And interestingly, some of the breast conservation patients included radiation alone......

More recent meta-analysis

- 7 RCTs with 1452 patients
- BCT rates increased from 43.3% to 60.4% (p<0.0001)
 - Of note: only 31% converted to BCT eligible opted for lumpectomy

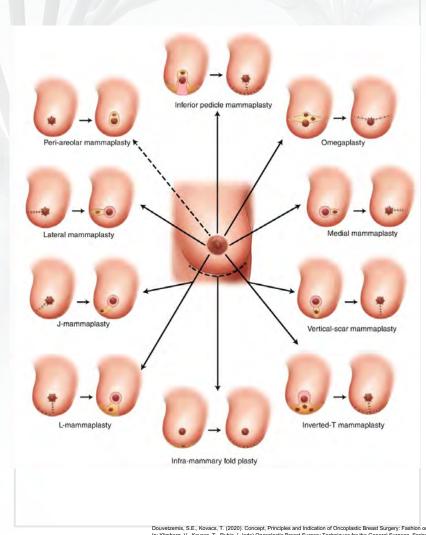
Asselain, et al., Lancet Oncol 2018; 19(1): 27-39; Krakatsanis, et al., Br J Surg 2018; 105(5): 469-481

DOWNSTAGE THE BREAST

Points to Remember:

- 1) The resection volume relates to current tumor size
- 2) All suspicious microcalcifications need to be removed

"Simple" Lumpectomy


- 1) Partial mastectomy with minimal dead space coverage or tissue re-arrangement
- 2) Ideal for small defects in larger breasts

Lumpectomy with Level 1 or 2 Oncoplastic Reconstruction

- 1) Partial mastectomy with tissue re-arrangement often performed by the breast surgeon
- 2) Local tissue rearrangement to maintain volume and minimize dead space

Lumpectomy with Advanced Level Oncoplastic Reconstruction

- 1) Partial mastectomy with large volume loss in a medium to large size breast
- 2) Plastic surgery support for large tissue rearrangements often combined with a contralateral reduction

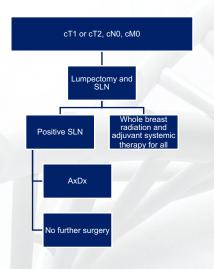
- Importance of the nodal status
 - Guide adjuvant systemic therapy
 - Guide radiation therapy
- Importance of neoadjuvant therapy
 - Downstage the "microscopically positive axilla"
 - Downstage the clinical positive axilla
 - Decrease axillary morbidity
 - Shoulder dysfunction, sensory nerve issues, and......

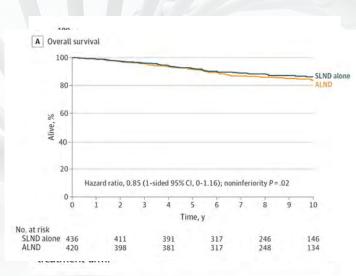
	SLN	SLN/AxDx	AxDx	AxDx/XRT	AxDx versus XRT (AMAROS)
Risk of Lymphedema (1,811 prospective patients)	7.7%	10.8%	29%	38.7%	23% versus 11%

Ashikaga et al., J Surg Oncol 2010; 102(2):111-118; Naoum et al., Int J Radiat Oncol 2019; 105: S42; Donker et al., Lancet Oncol 2014; 15: 1303-1310

I C A I												
NSAI O	BP B-; 428 p		Conversion of cN1 (non-matted nodes) to cN0									
	SLN	Study	N	Identification Rate	False Negative Rate							
0	o R	SENTINA	642	87.8%	Overall: 2+ SLN removed	14.2% 9.6%						
	8487	SN FNAC	145	87.6%	Overall: 2+ SLN removed	8.4% 4.9%						
0	SIN		649	92.7%	Overall: 2+ SLN removed (+) clipped node	12.6% 8.7% 6.8%						

Manoumas et al., J Clin Oncol 2005; 23(12): 2694-2702; Kuehn et al., Lancet Oncol 2013; 14(7): 609-618; Boughey et al., JAMA 2013; 310(14): 1455-1461; Boileau et al., J Clin Oncol 2015; 33(3): 258-264


Targeted Axillary Dissection


- Placement of a marker into the clipped node (the index nodal disease)
 - Radioactive seed, ferrous compounds, SAVI Scout reflector, wires
- Allows for a false negative rate of <5%</p>
- Provides a more accurate and complete picture of the nodal response to therapy
- Also helps the multimodality team in the planning of adjuvant treatments
 - Radiation oncology can assess need for nodal irradiation
 - Medical oncology can assess need for adjuvant systemic therapies

This is all well and good – but who cares – there is no proof that retrieving the clipped node matters in terms of loco-regional recurrence.........

What about ACOSOG Z-0011?

Interesting dilemma:

- Patient with T1/2 tumors and clinically negative axilla are eligible for limited axillary surgery for <2
 positive lymph nodes in the systemic therapy naïve patient
 - Post-NAT even isolated tumor cells warrant axillary dissection.......
- Interestingly, the rate of suspected additional nodal disease in both scenarios is ~25%
- Best approach for cT1-2N0 TNBC or HER 2+ patients that are eligible for upfront breast conservation......
 - See the debate @ 9:25 between Drs. Gogineni and Bhave "Stage I TNBC" Neoadjuvant Therapy?
 - o For now, the right answer is a multidisciplinary discussion.....

Giulliano et al., Ann Surg 2016; 264(3): 413-420, and JAMA 2017; 318(10): 918-926

TIMING OF SURGICAL THERAPY

- Emory experience: Trend towards improved overall and disease-free survival if surgery performed 4-6 weeks following completion of chemotherapy
- MD Anderson experience: "In multivariable analysis, compared with an interval of ≤4 weeks, patients who underwent surgery at 4-6 or >6 weeks had equivalent OS, LRFS, and RFS; a sensitivity analysis suggested worse OS in patients who underwent surgery at >8 weeks."
- Meta-analysis of all available studies: Optimal timing is 4-8 weeks with increased overall and disease-free survival

			Disease-free survival (mo)					
Covariate	Level	N	Hazard ratio (95% CI)	HR P-value	Type 3 P-value			
Time to	>8	44	1.23 (0.64-2.37)	.528	.407			
Surgery (wk)	>6, ≤8	55	1.42 (0.78-2.59)	.252				
	>4, ≤6	152	0.91 (0.55-1.51)	.725				
	≤4	98	-	-				

Covariate			Overall Survival (mo)						
	Level	N	Hazard Ratio (95% CI)	HR P-value	Type 3 P-value				
Time to Surgery (wk)	:>8	44	1.11 (0.52-2.35)	.784	.615				
	>6, ≤8	55	1.11 (0.59-2.10)	.739					
	>4, ≤6	152	0.79 (0.47-1.33)	.382					
	≤4	98		_					

TABLE 4 Multivariable Cox proportional hazards model

	Overall st	irvival	Relapse-fr	ree survival	Locoregional relapse-free survival				
Weeks from neoadjuvant chemotherapy to surgery	Hazard ratio	95 % CI	p	Hazard ratio	95 % CI	p	Hazard ratio	95 % CI	p
[4, 6] weeks versus [0, 4] weeks	0.89	(0.68, 1.16)	0.38	0.97	(0.74, 1.26)	0.80	0.80	(0.47, 1.36)	0.42
>6 weeks versus [0, 4] weeks	1,14	(0.84, 1.56)	0.40	1.16	(0.85, 1.58)	0.35	1.26	(0.70, 2.27)	0.45
>8 weeks versus [0, 8] weeks	1.62	(1.07, 2.36)	0.02	1.42	(0.92, 2.10)	0.09	1.75	(0.75, 3.50)	0.16

Variables included in multivariable model: age, race, clinical stage, LVI, breast cancer subtype, pCR, type of breast surgery, and number of comorbidities including hypertension, hyperlipidemia and diabetes

	Experimental		Control			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
Lai 2020	55	311	7	32	11.4%	0.77 [0.32, 1.86]		
Sanford 2015	271	1031	29	70	43.7%	0.50 [0.31, 0.83]	-	
Suleman 2020	71	528	28	93	44 9%	0,36 [0,22, 0.60]		
Total (95% CI)		1870		195	100.0%	0.47 [0.34, 0.65]	•	
Total events	397		54				7.	
Heterogeneity: Chi2 =	2.29, df	= 2 (P =	0.321, 1	= 139	5		to a de	100
Test for overall effect							0.01 0.1 1 10 Favours < 8 weeks Favours > 8 weeks	100

Fig. 2. Overall survival: < 8 weeks versus > 8 weeks.

Arciero, et al., Breast J, 2020;26(2):155-161; Sanford, et al., Ann Surg Oncol, 2016;23(5):1515-21; Cullinane, et al., Eur J Surg Oncol 2021; 47(7): 1507-1513

IMAGING AND NEOADJUVANT THERAPY

Complete imaging prior to treatment is crucial:

- Breast imaging (mammogram, ultrasound, MRI if indicated)
- Axillary imaging (ultrasound)
- Clip placement

 If clip not placed at initial
 biopsy, place prior to
 treatment

Complete imaging prior to surgical intervention:

- A guide for surgeons
- Timing not crucial close to end is ideal
- Generally, utilize the same imaging modalities

Important considerations:

- Resection volume is based on current tumor size
- All suspicious calcifications must be excised
- All previous biopsy clips must be excised

CAN WE DELAY / AVOID SURGERY?

Delay.....yes?

- COVID era learning points
 - Endocrine therapy adopted in patients to delay surgery.....but outcome data maturing.....

Avoid surgery (the ultimate in breast conservation)

- Bonadonna and colleagues treated unresectable disease (T3-T4) with chemotherapy and radiation
 - "surgery may be resumed to achieve a better localregional control"
- NSABP B-18/B-27 and EORTC 10902, pointed to good results with tri-modality approaches and pCR
- Occult primary disease now known to have equivalent outcomes when comparing mastectomy with whole breast radiation

A	ALND 4	XPT	Mastec	tomy		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Eyents	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixe	ed, 95% C1	
Kemeny 1986	1	2	4	- 11	10.1%	1.38 [0.28, 6.75]	1986		-	
Foroudi 2000	1	11	0	2	6.5%	0.75 [0.04, 14.19]	2000	-	-	
Vlastos 2000	3	25	. 3	13	32.3%	0.52 (0.12, 2.22)	2000		_	
Varadarajan 2006	()	8	U	1		Not estimable	2006		-	
He 2012	3	13	10	64	27.6%	1.48 [0.47, 4.64]	2012		-	
Woo 2013	1	11	3	12	23.5%	0.36 [0.04, 3.00]	2013	_		
Rueth 2015	0	24	0	9		Not estimable	2015			
Total (95 % CI)		94		112	100.0%	0.85 [0.42, 1.71]		4	COL	
Total events	9		20			7.0147.47.44				
Heterogeneity Chi'=	2.32. df =	4 (P=	0.68); I2=	- 0%			-	-	-	-
Test for overall effect	Z = 0.46	(P = 0.6)	55)				0.01	0.01	1 10	100
			4.4				Favor	S (ALND + XRT)	Favors [Mastec	tomyl

В	ALND +	XPT	Mastectomy			Risk Ratio			R	isk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Yea	г	M-H,	Fixed, 95	%C1	
Kemeny 1986	0	2	0	11		Not estimable	1986	1				
Vlastos 2000	2	25	2	13	34.1%	0.52 [0.08; 3.28]	2000	V	_	-		
Foroudi 2000	6	11	0	2	10.4%	3,25 [0.25, 43,03]	2000		_	-	_	_
Varadarajan 2006	0	8	0	1		Not esumable	2006					
He 2012	1	13	7	64	30.7%	0.70 [0.09, 5.24]	2012		_	-01	_	
Woo 2013	3	13 11	2	12	24.8%	1.64 [0.33, 8.03]	2013		-	- 0	-	
Rueth 2015	0	24	.0	9		Not estimable	2015			1		
Total (95%CI)		94		112	100,0%	0.85 [0,42, 1.71]				-		
Total events	12		11			Credit Trust A						
Heterogeneity Chi2 =	1.75, df =	3 (P =)	0.63); It =	0%				-		-	-	-
Test for overall effect								0.01	0.01	1	10	100
		. 30	9					Favors	[ALND + X	RT] Favo	rs [Maste	ctomy)

C	ALND + XPT		Mastectomy		Risk Ratio		Risk Ratio		Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed,95%Cl	Year	M-H, Fix	M-H, Fixed, 95% Cl		
Kemeny 1986	Ü.	2	0	11		Not estimable	1986				
Vlastos 2000	3	25	4	13	42.7%	0.39 [0.10, 1.49]	2000	-	-		
Varadarajan 2006	0	8	0	1		Not esumable	2006				
He 2012	2	13	6	64	16.4%	1.64 [0.37, 7.25]	2012	_	-		
Woo 2013	0	11	4	12	35.1%	1,12 [0.01, 2.01]	2013		_		
Rueth 2015	1	24	O	9	5.8%	1.20 [0.05, 27.05]	2015		-		
Total (95%CI)		83		110	100.0%	0.55 [0.24, 1.26]					
Total events	6		14						0.00		
Heterogeneity Chi2=	3.70, df =	3 (P=	0.30); I2 =	19%			-	- +	1		
Test for overall effect	Z = 1.41	(P = 0.1)	16)				0.01	0.01	10	-10	
							Favo	rs [ALND + XRT]	Favors [Master	tomy	

So why not avoid surgery for patients with pCR?

Macedo, et al., Ann Surg Oncol 2016; 23: 1838-1844

CAN WE DELAY / AVOID SURGERY?

First, you need to be able to accurately determine pCR without a surgical resection

- 3 studies released interim results at SABCS 2019
 - Heil, et al.: FNR=17.8% (95% CI 12.8-23.7%) thus core biopsy not sufficient
 - Tasoulis, et al.: FNR=18.7% (95% CI 9.8-26.8%)
 lowered to FNR 3.2% (95% CI 0-8.8%) if
 residual abnormality <2cm
 - TNBC and HER2+ subgroups with FNR 4.2% (95% CI 0-10.7%)
 - Basik, et al., (NRG BR-005): NPV only 77.5%
- Additional studies

For now, only in clinical trials and patient selection is key

Group/author/PI	Eligibility criteria/lesion size criteria	Type of biopsy	Number of patients	Study unique characteristics	Performance results
MD Anderson Cancer Center/Kuerer et ab	TN- or HER2-positive initial imaging size 5 cm and final size 2 cm and/or 90% of lesion sampled after NST, NO or biopsy-confirmed NT with four or less abnormal modes on initial ultrasound	Minimum of 12× 9G VAB; image guidance dependent on radiologist decision	50	No breast surgery treatment trial	Primary end point is local recurrence with continuous monitoring and early stopping rules
Netherlands Cancer Institute/MICRA Trial Vrancken-Peeters et al. ⁶⁰	Invasive breast cancer patients; nonmetastatic; with radiologic partial or complete response on CE-MRI after NST/no lesion size criteria	Ultrasound-guided 14 G biopsies targeted around pre-NST-placed marker (four central; four peripheral)	525 (150 with partial radiologic response on CE-MRI and 375 with complete radiologic response on CE-MRI)	All breast cancer subtypes; response monitoring with CE-MRI	Primary end point is a specificity of 92% (proportion of patients with residual disease in the surgical specimen that is also confirmed by biopsy). In addition, FNR will be calculated
University of Heldelberg/KESPONDER Trual Heil et al. ⁵	Invasive breast cancer after NST, clinical partial or complete response; target lesion visible on ultrasound or mammography/no lesion size criteria	Ultrasound- or mammographic-guided VAB	600	Confirmative analysis to identify a pCR using VAB	Primary end point < 10% FNR. Standardization of histopathological evaluation of post-NST samples.
University of Birmingham/Rea/NOSTRA feasibility	ER-negative or HER2-positive Invasive breast cancer receiving NST/lesion size must be >1 cm on ultrasound or node-positive	Ultrasound-directed biopsy, minimum of six	150	Microcalcifications will not be targeted; no upper limit of size criteria	FNR <10%
NRG/Basik and De Los Santos	Operable focal or multifocal (T1-T3, stage II and III/N III/	6× 8-11G VAB, stereotactic	175	Multicenter cooperative group study with trimodality imaging required	NPV = 90% and rNR = 10%

Tasoulis, et al./Heil, et al./Basik, et al., SABCS 2019, GS5-03/04/05; Heil, et al., Ann Oncol 2020; 31(1): 61-71

SUMMARY: NEOADJUVANT THERAPY FROM A SURGEON'S PERSPECTIVE

******TAKE HOME POINTS******

Unresectable Disease • Allow for Surgical Therapy

Resectable but Large

 Downstage the breast to broaden surgical options

Resectable with **Axillary Disease**

 Downstage the axilla to reduce morbidity

Timing of Surgery

 4 - 8 weeks after completion of systemic therapy

Post-treatment **Imaging**

- Identify all disease up front
- Imaging near end of therapy

Can we delay / avoid surgery?

- Delay surgery yes....sometimes
- Avoid surgery....not yet......

CASE:

65-year-old woman presents with a 5 cm mass with associated microcalcifications in the upper outer quadrant of her right breast. Diagnostic imaging and core biopsy confirms an ER(-)PR(-)HER2(+) invasive ductal carcinoma (cT2N1M0). She receives neoadjuvant systemic therapy consisting of Docectaxel / Carboplatin / Trastuzumab / Pertuzumab (TCHP) with an outstanding clinical response. Follow-up imaging (MMG/US/MRI) reveals the biopsy clip in the breast with no residual mass, persistent microcalcifications and clinically her lymph nodes are now negative. Her surgical options include:

- 1) Lumpectomy and targeted axillary dissection
- 2) Lumpectomy alone
- 3) Radiation alone
- 4) Active surveillance (no local therapy)
- 5) Radical mastectomy

NEOADJUVANT THERAPY AND LOCO-REGIONAL CONTROL:

A SURGEON'S PERSPECTIVE

Cletus Arciero, MD, MS, FSSO, FACS
Associate Professor
Breast Surgical Oncology

EMORY
GLENN FAMILY
BREAST CENTER
WINSHIP CANCER INSTITUTE

