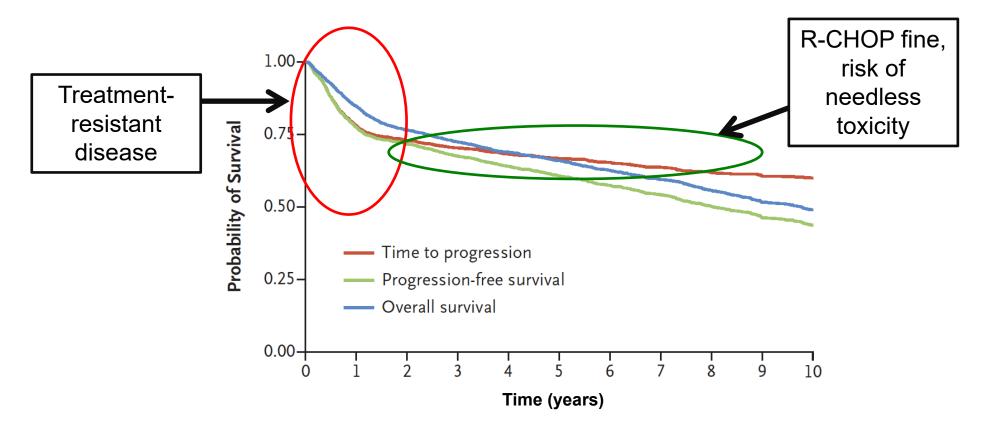
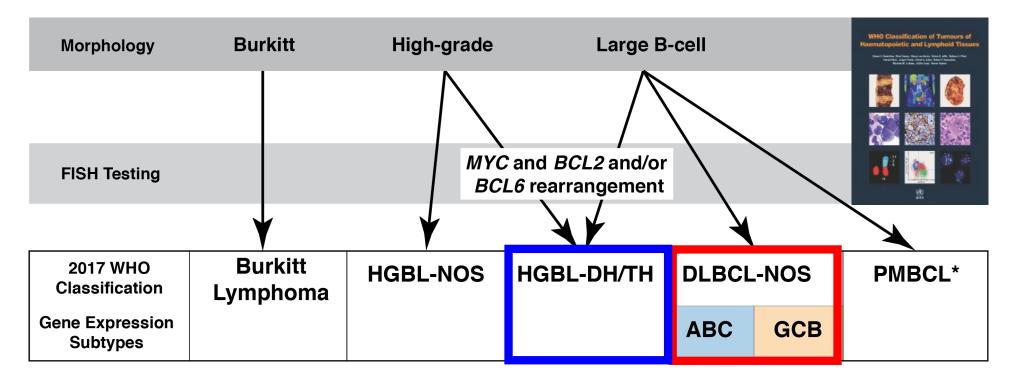
Recent Advances in the Frontline Treatment of DLBCL: Is there a new standard of care?

Laurie H. Sehn, MD, MPH Chair, Lymphoma Tumour Group BC Cancer Centre for Lymphoid Cancer Vancouver, Canada


Disclosures

- Consulting/Honoraria: Abbvie, Acerta, Amgen, Apobiologix, AstraZeneca, Celgene, Gilead, Incyte, Janssen, Kite, Karyopharm, Lundbeck, Merck, Morphosys, Roche/Genentech, Sandoz, Seattle Genetics, Servier, Teva, Takeda, TG Therapeutics, Verastem
- Research funding: Teva, Roche/Genentech

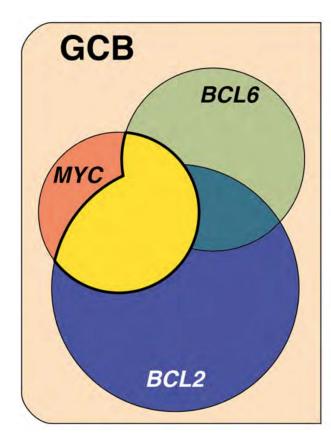
Key Considerations

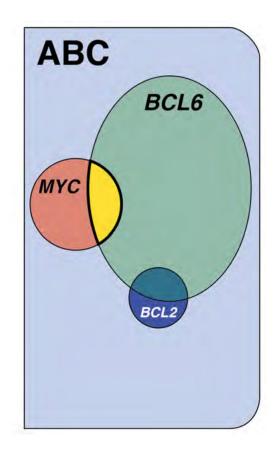

- What is standard of care and who do we treat differently now?
- Should we treat based on biology?
- Is the standard of care changing?
- What are the limitations to current trial design?
- How do we move the bar in the future?

Outcomes with R-CHOP in Untreated DLBCL

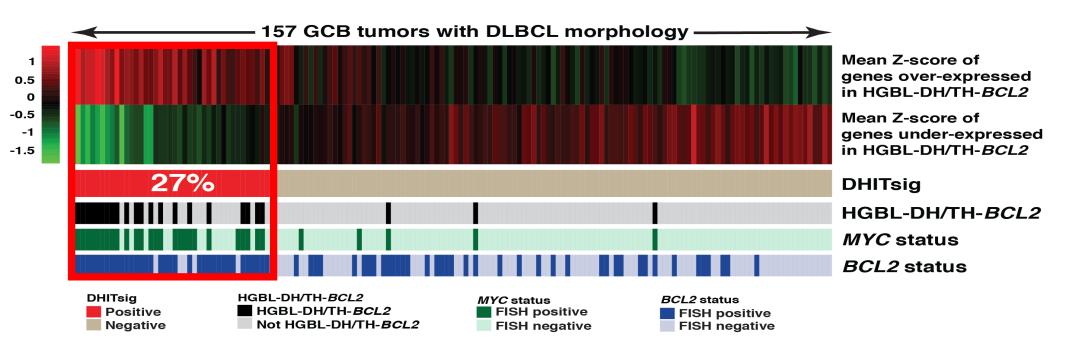
Sehn and Salles, NEJM 2021

WHO Classification – Aggressive B-cell Lymphoma




HGBL-NOS: high-grade B-cell lymphoma NOS HGBL-DH/TH: high-grade B-cell lymphoma with *MYC* and *BCL2* and/or *BCL6* rearrangements PMBCL: Primary mediastinal B-cell lymphoma

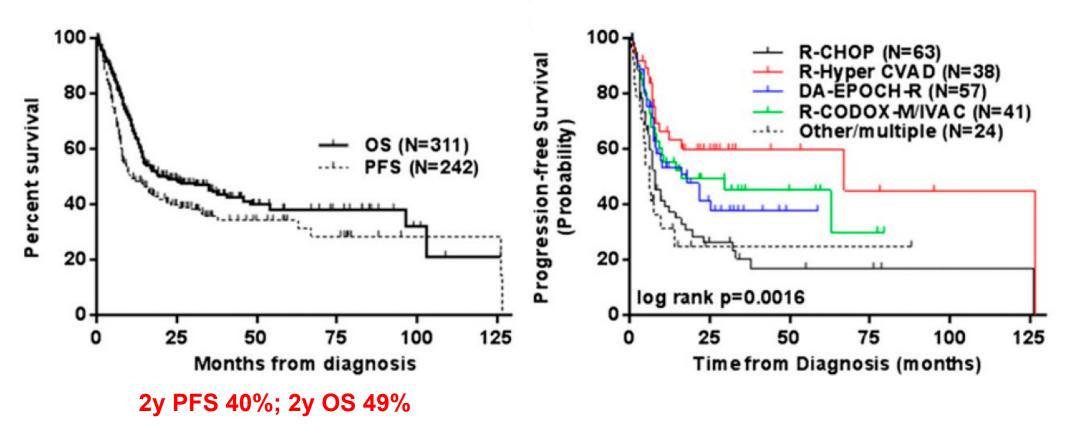
Swerdlow et al WHO revised 4th Edition 2017


Incidence of Double/Triple-Hit in DLBCL

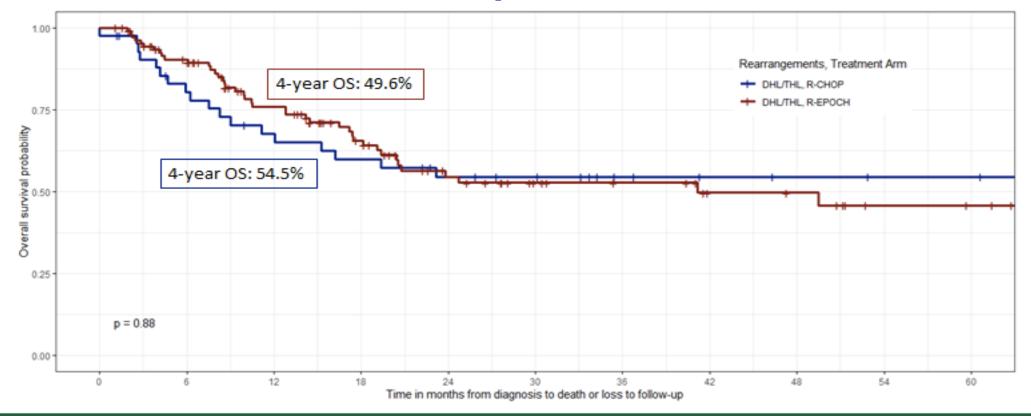
- 12% harbour MYC rearrangements (> in GCB)
- ~7% are MYC/BCL2 DHIT or MYC/BCL2/BCL6 THIT
 All cases are GCB
- ~1-2% are *MYC/BCL6* GCB or ABC
- ~8% total incidence double/triple-hit

The "Double-Hit Gene Signature"

- Unique gene-expression signature identifies Double/Triple-Hit DLBCL
- Identifies an additional subset not detected by FISH


Ennishi et al J Clin Oncol 2019

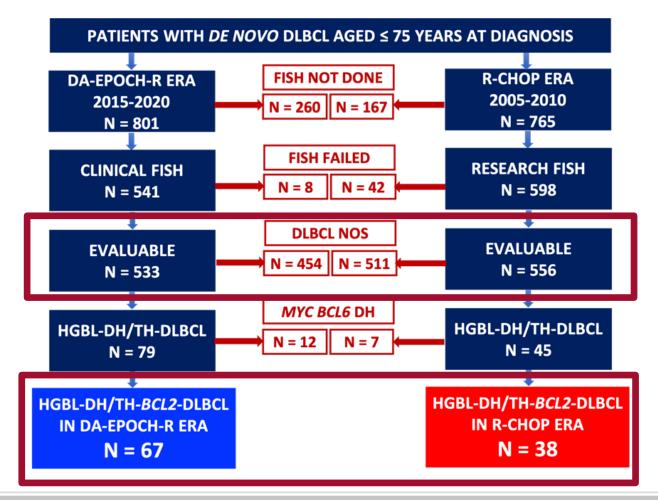
PFS in Patients with DLBCL Morphology Treated with R-CHOP According to FISH


Rosenwald, et al JCO 2019

Outcome According to Induction Regimen in Double-Hit Lymphoma

Petrich A et al, Blood 2014

Retrospective Review Of R-EPOCH vs R-CHOP in Double/Triple-Hit DLBCL



LABAMA AT BIRMINGHAM

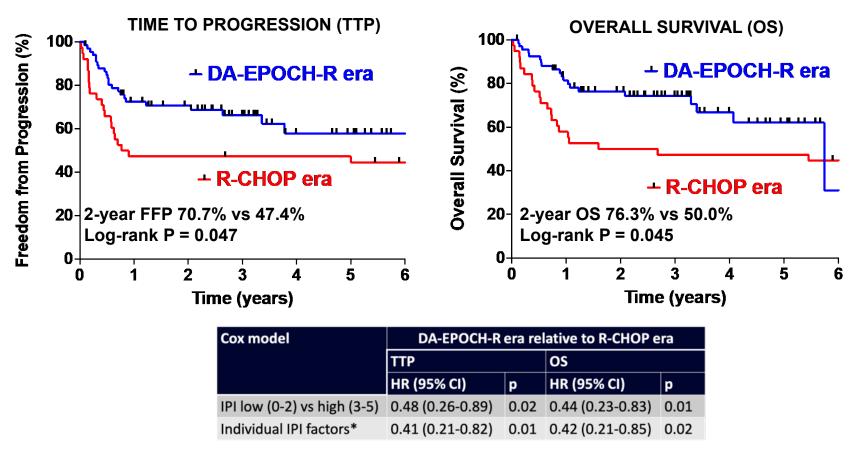
© UAB. All Rights Recorved.

Magnusson T et al, EHA 2021

Population Analysis: DA-EPOCH-R Era (Routine FISH) vs Historic Control

Alduaij W et al, ASH 2021

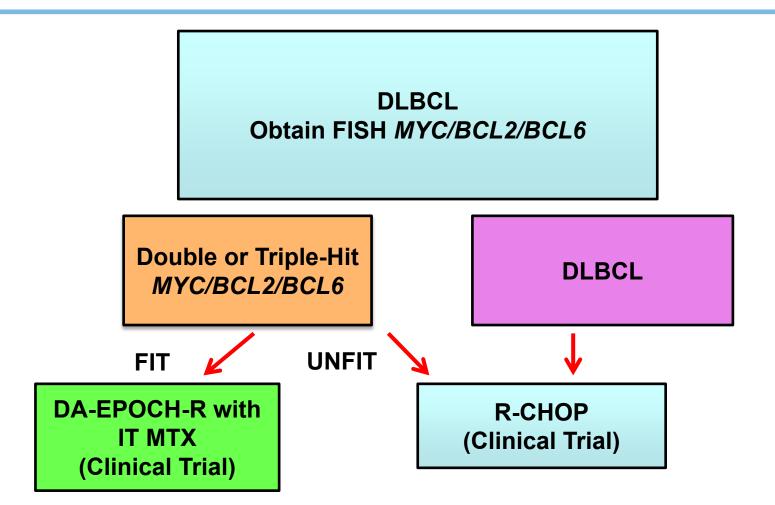
Baseline characteristics


Characteristic	DA-EPOCH-R era 2015-2020 (n = 67)	R-CHOP era 2005-2010 (n = 38)	p
Age, Median (range, years)	64 (30-75)	63 (28-75)	0.89
Female (n, %)	24 (36)	14 (37)	1
Gene Rearrangements (n, %) MYC and BCL2 (double-hit) MYC, BCL2 and BCL6 (triple-hit)	52 (78) 15 (22)	29 (76) 9 (24)	1
Stage III/IV (n, %)	57 (85)	27 (71)	0.13
PS > 1 (n, %)	27 (40)	15 (39)	1
LDH > normal (n, %)	42 (63)	23 (61)	1
Extranodal sites >1 (n, %)	33 (49)	12 (32)	0.10
B symptoms (n, %)	31 (46)	16 (42)	0.84
Bulky disease ≥ 10 cm (n, %)	35 (52)	14 (37)	0.30
IPI risk group (n, %) Low (0-2) High (3-5) Missing	22 (33) 42 (63) 3 (4)	18 (47) 20 (53) 0	0.15
Treatment regimen (n, %) DA-EPOCH-R R-CHOP Highly Intensive [*] Palliative	47 (69) 16 (26) 3 (4) 1 (1.4)	0 32 (84) 4 (10) 2 (5)	

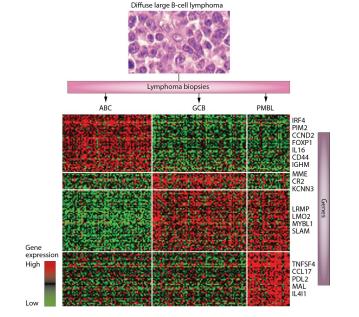
* CODOXMR/IVACR with consolidative autologous hematopoeitic cell transplant. PS: ECOG perfomance status, IPI: International Prognostic Index.

Alduaij W et al, ASH 2021

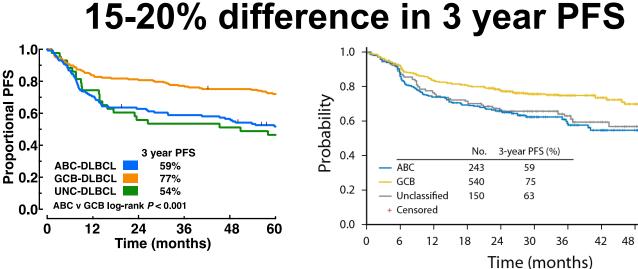
Era-on-era comparison: clinical outcomes



* Age >60 years, Stage III/IV, LDH>normal, PS>1 and extranodal sites>1. HR: adjusted Hazard Ratio, CI: Confidence iInterval



Alduaij W et al, ASH 2021

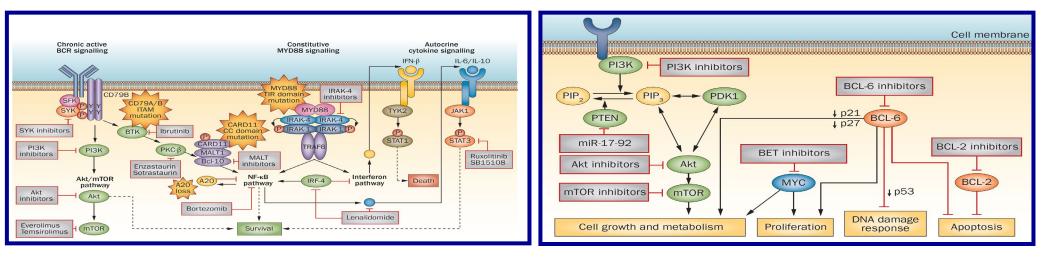

Treatment Algorithm for DLBCL

Prognosis According to Cell-of-Origin (ABC vs GCB) by GEP

Alizadeh et al Nature 2000 Rosenwald et al, NEJM 2002 Lenz et al, NEJM 2008

BC Cancer 2005 – 2010 R-CHOP treated

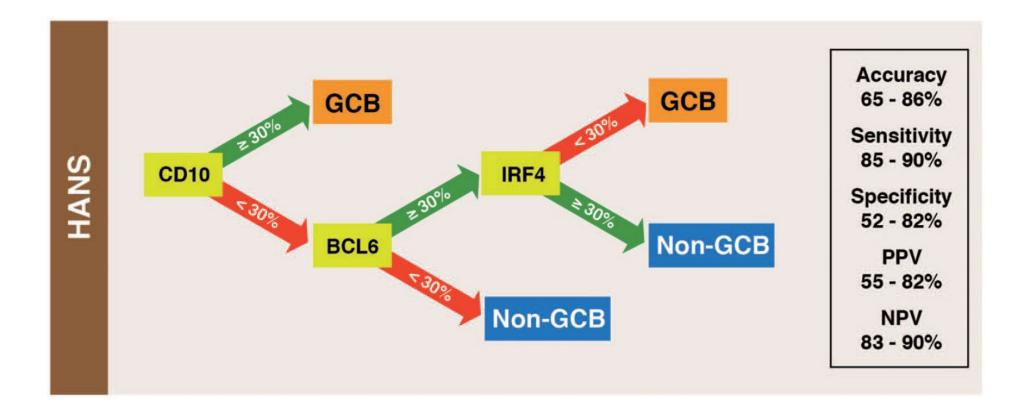
Unpublished Data


GOYA Trial R-CHOP v G-CHOP PFS including both arms 54

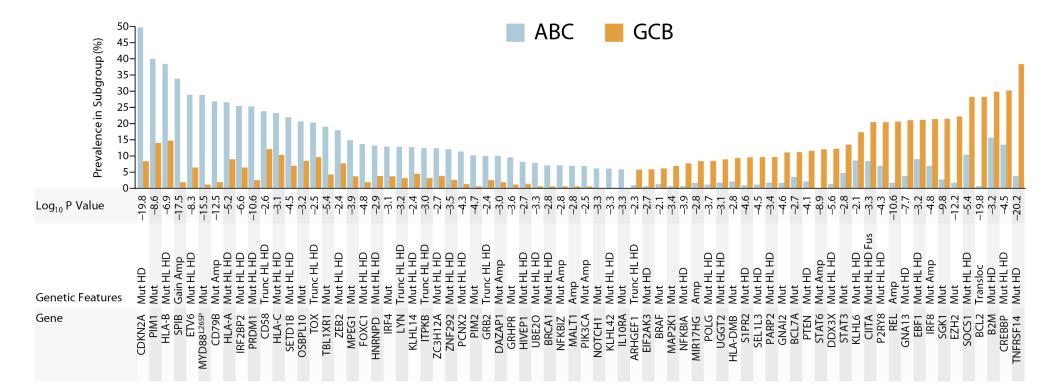
60

Vitolo et al J Clin Oncol 2017

Distinct Signaling Pathways According to Cell-of-Origin & Potential Agents

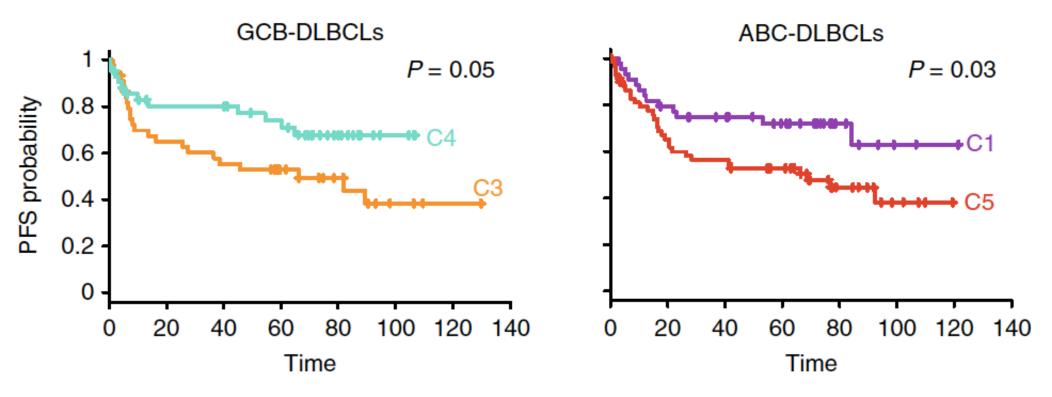


Roschewski, et al Nat Rev Clin Oncol 2014

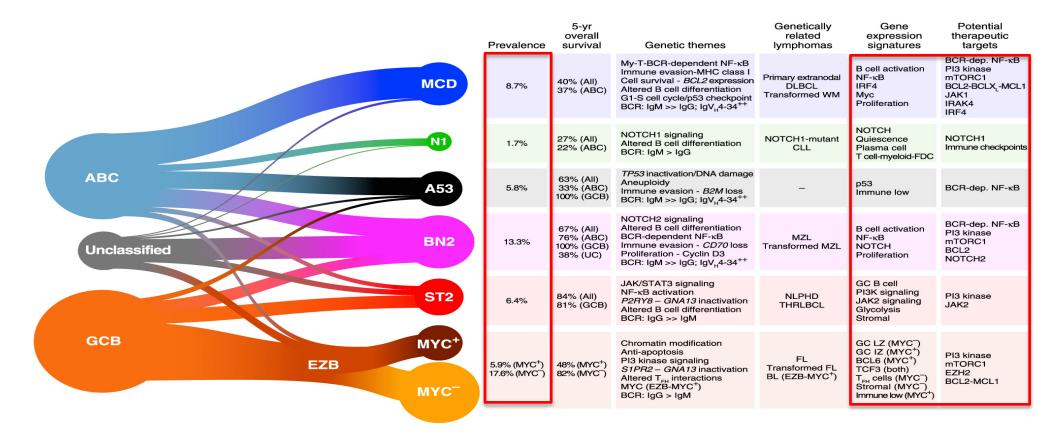

GCB

Using Immunohistochemistry to Assign COO

Scott DW. ASCO Education Book 2015

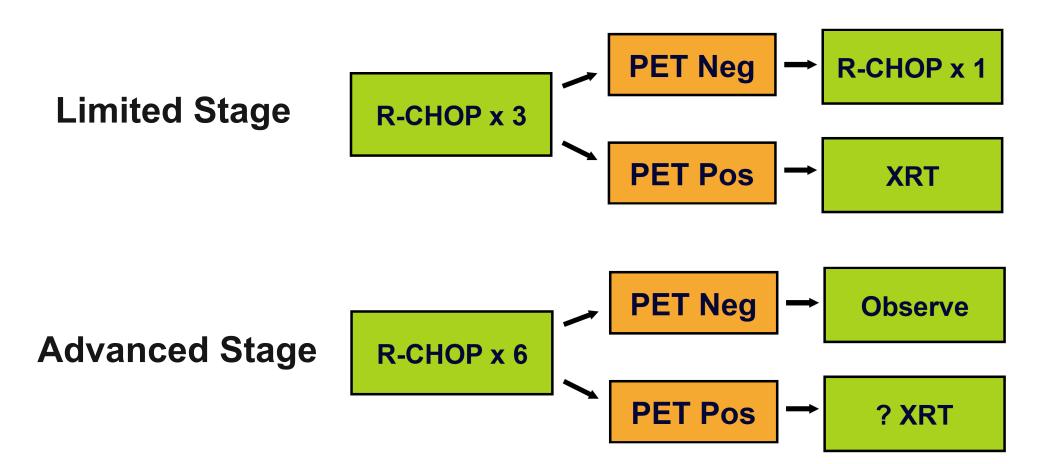

Cell-of-Origin – Distinct Mutational Landscapes

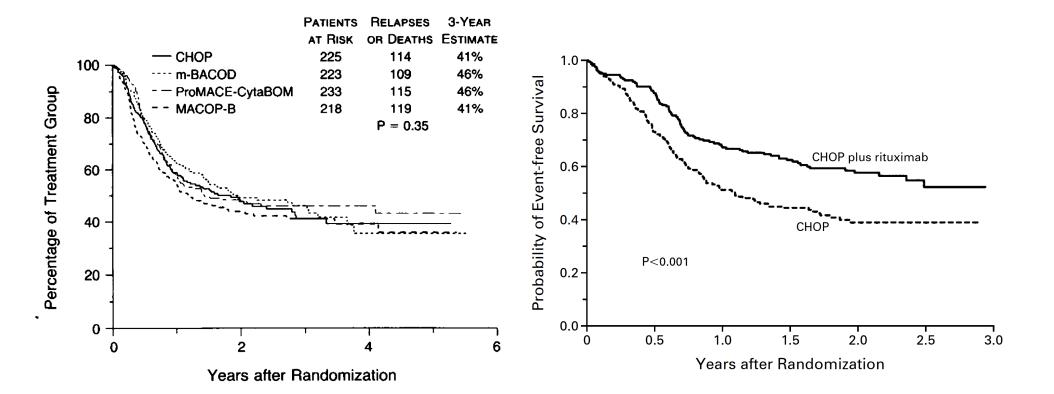
Heterogeneity within the COO subtypes is the likely explanation for variability in prognosis across populations


Schmitz et al N Eng J Med 2018

Novel Molecular Taxonomies of DLBCL Reveal Heterogeneity within COO Subtypes

Chapuy B et al., Nature Medicine, 2018


Novel subtypes within ABC and GCB DLBCL have been Identified


Wright et al., Cancer Cell, 2020

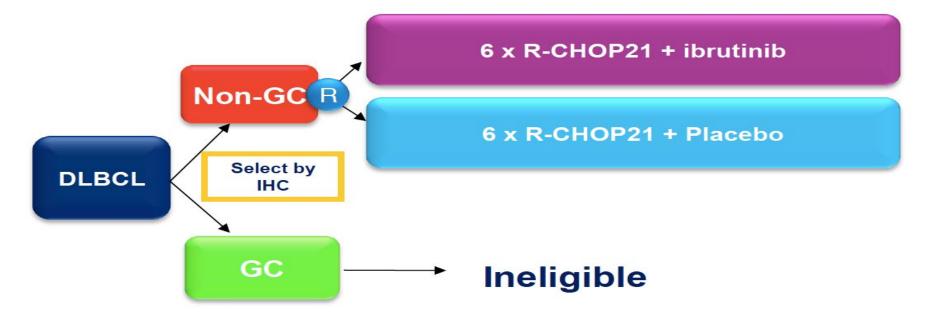
Despite our growing understanding of biology...we continue to treat patients with DLBCL the same

BC Cancer DLBCL Treatment Algorithm

R-CHOP Established as Standard of Care

Fisher et al, NEJM 1993

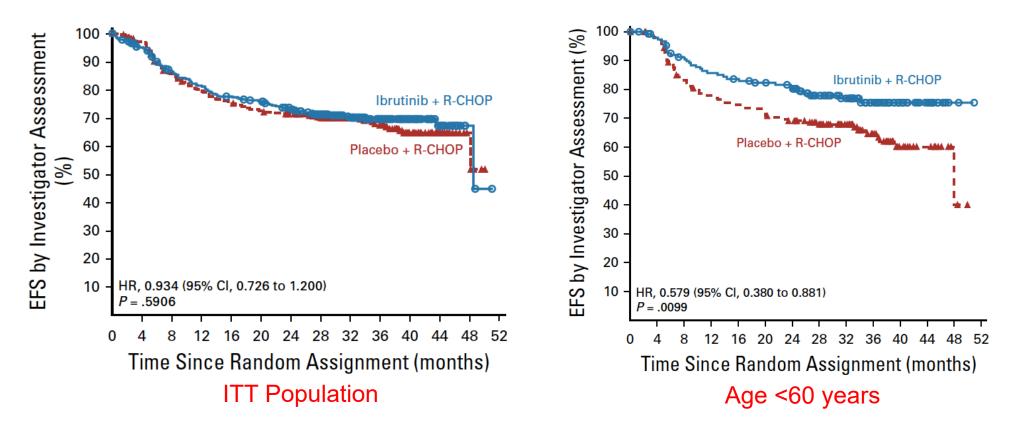
Coiffier, NEJM 2002


The Limit of Chemotherapy

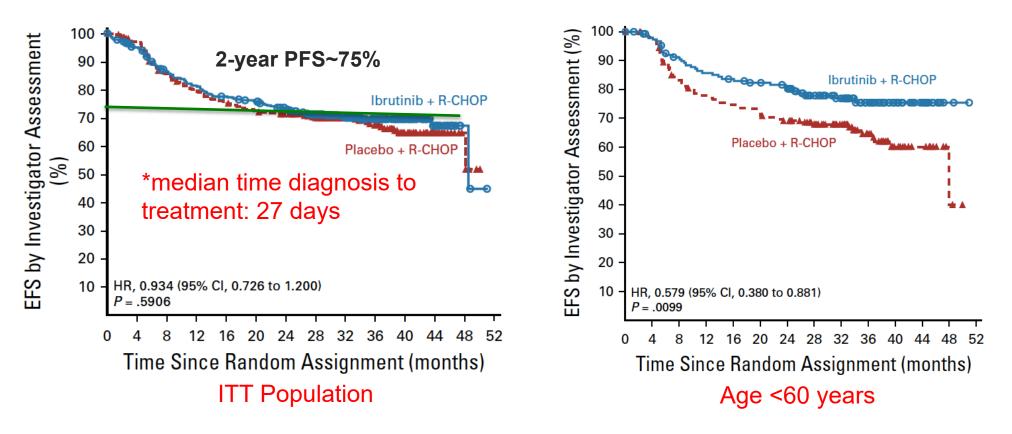
Author	Therapy	Better than R-CHOP?
Cunningham, Lancet 2013	R-CHOP-14	Νο
Delarue, Lancet Oncol 2013	R-CHOP-14	Νο
Pfreundshuh, Lancet Oncol 2011	R-CHOEP	Νο
Recher, Lancet 2011	R-ACVBP	Yes (Age <60 y, IPI 1)
Wilson ASH 2016, Bartlett JCO 2019	DA-EPOCH-R	No
Le Gouill, ASCO 2011	ASCT v R-CHOP-14	No
Schmitz, Lancet Oncol 2012	R-Mega-CHOEP <i>v</i> R-CHOEP- 14	No
Vitolo, ASH 2012 (#688)	ASCT v R-dose dense chemo	PFS Only
Stiff, NEJM 2013	ASCT v (R)-CHOP-21	PFS Only

Randomized Trials of Novel Agents

Author	Therapy	Better than R-CHOP	
Leonard, JCO 2017	R-CHOP- Bortezomib	Νο	
Davies, Lancet 2019	R-CHOP- Bortezomib	Νο	
Vitolo, JCO 2017	Obinutuzumab-CHOP	Νο	
Younes, JCO 2019	R-CHOP-Ibrutinib	? No	
Nowakowski, JCO 2021	Lenalidomide-R-CHOP	? Yes (Phase II)	
Nowakowski, JCO 2021	Lenalidomide-R-CHOP	Νο	

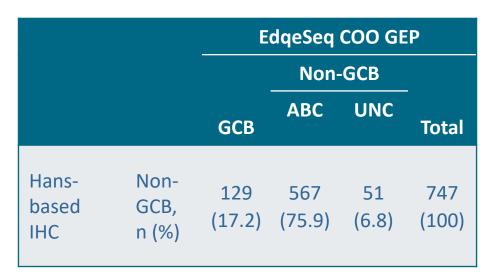

Phoenix Study: R-CHOP +/- Ibrutinib in Newly Diagnosed non-GCB DLBCL

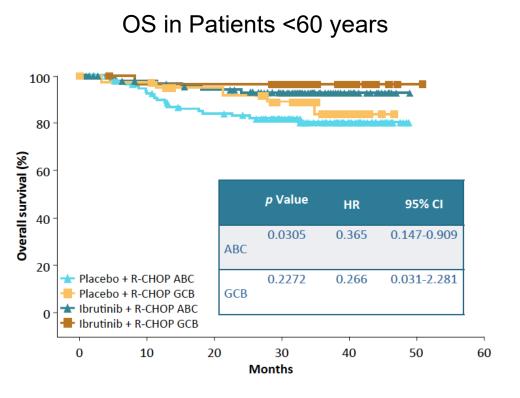
- Newly diagnosed DLBCL of non-GC
- ECOG PS ≤ 2; Age 18–80
- Primary Endpoint = EFS
- N = 800


* Ibrutinib 560 mg daily x 6 cycles or placebo

Phoenix Study: R-CHOP +/- Ibrutinib in Newly Diagnosed non-GCB DLBCL

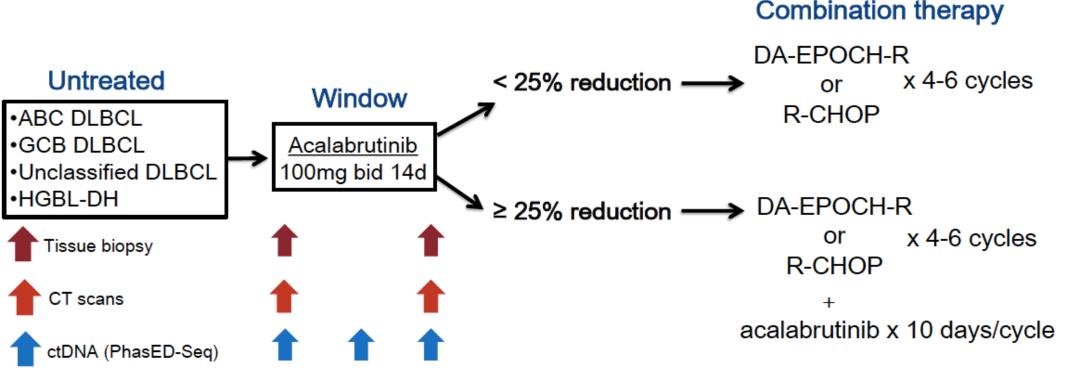
Younes, A et al, JCO 2019

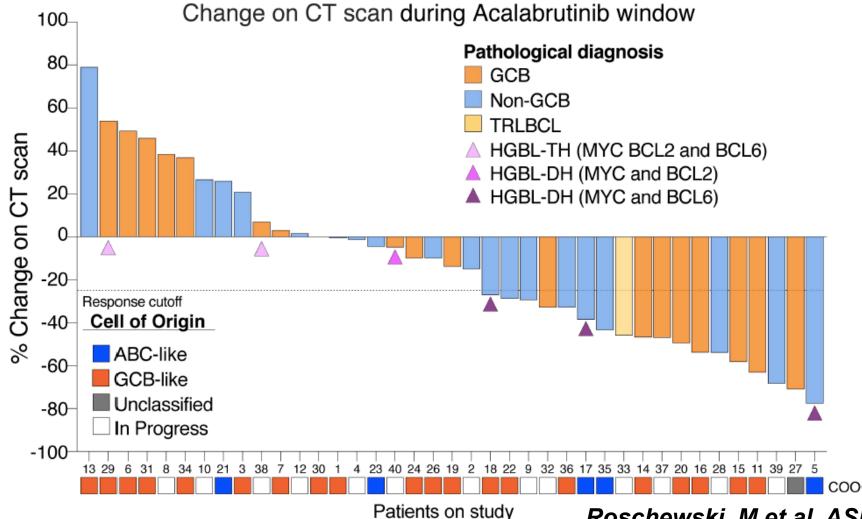

Phoenix Study: R-CHOP +/- Ibrutinib in Newly Diagnosed non-GCB DLBCL



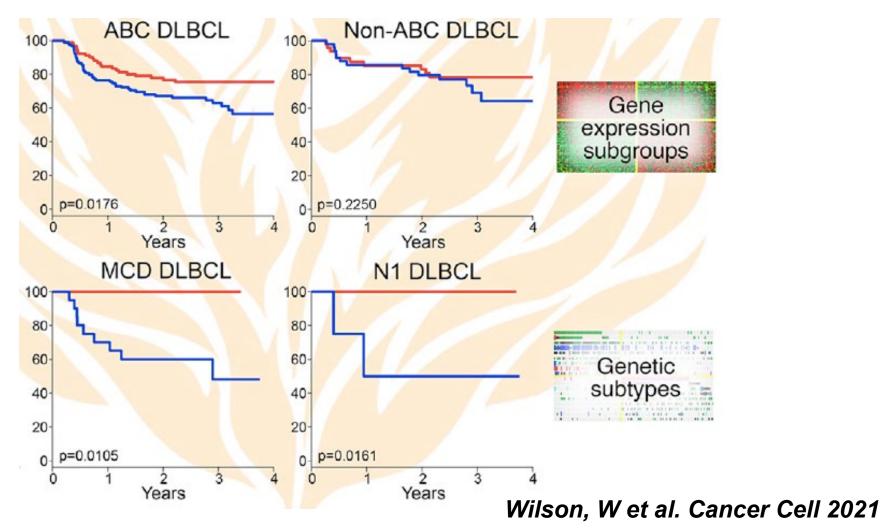
Younes, A et al, JCO 2019

Concordance Between IHC and GEP

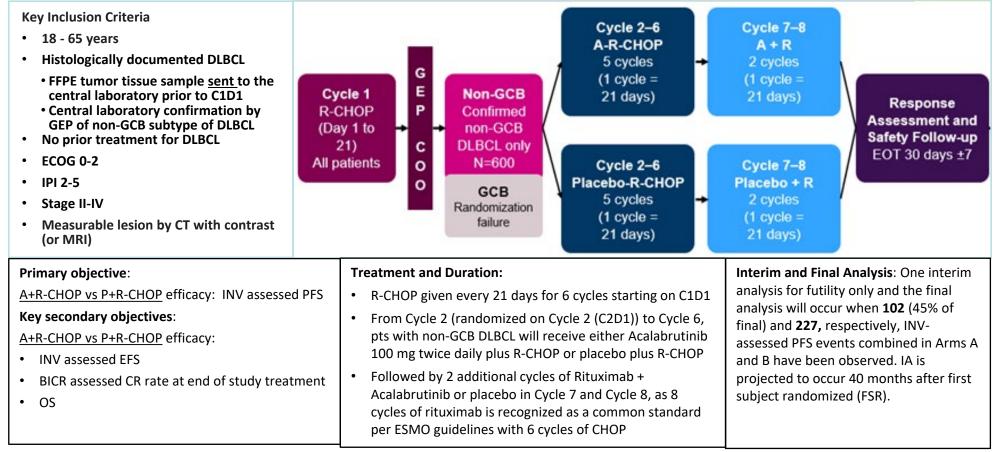

- 747 samples were evaluable from 838 enrolled patients
- 75.9% of enrolled (non-GCB by IHC) patients were ABC by GEP
- Non-GCB concordance = 82.7%


Balasubramanian, S et al, ICML 2019

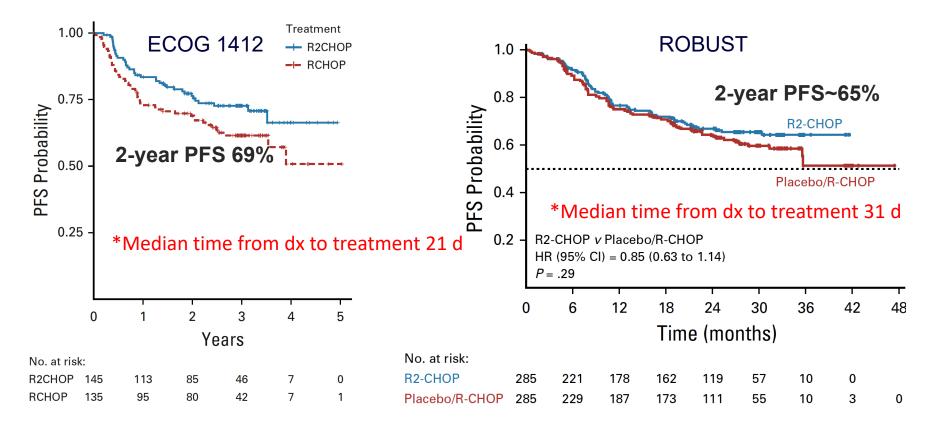
Response-Adapted Acalabrutinib Window Study Design


Roschewski, M et al. ASH 2021

Acalabrutinib has Activity Across DLBCL Subtypes


Roschewski, M et al. ASH 2021

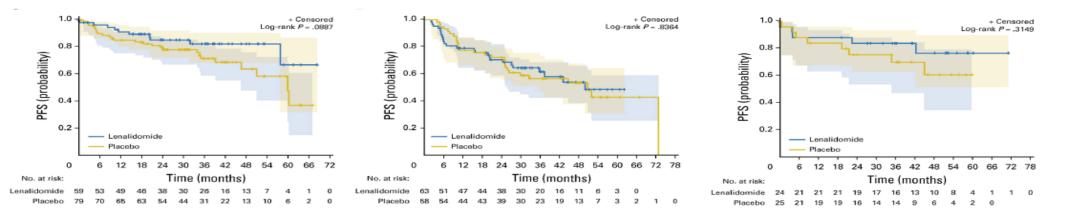
EFS According to GEP and Genetic Subtype



Learnings from PHOENIX informed the ESCALADE design

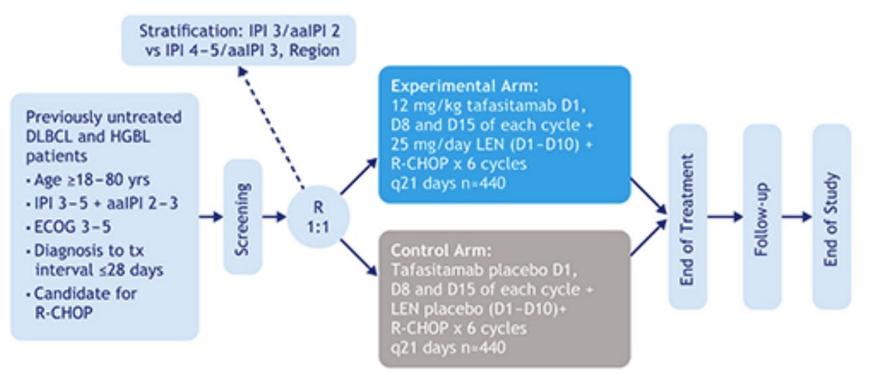
- Age ≤ 65 yo instead of age-all comers
- COO by GEP instead of IHC
- G-CSF mandatory
- 1st R-CHOP cycle prior to randomization

Lenalidomide-R-CHOP: ECOG 1412 Phase II and ROBUST Phase III


Nowakowski, G et al, JCO 2021 x 2

REMARC Trial: R-CHOP followed by Lenalidomide Maintenance in DLBCL

ABC


Unclassified

Thieblemont C et al, JCO 2017

Front-MIND Trial: Tafa-Len-R-CHOP vs R-CHOP in DLBCL

Study Design

Challenges with Recent Phase 3 Trials

- High bar to beat with R-CHOP
- Large patient numbers required
- Biomarker requirement caused delay in treatment leading to patient selection
- Highest risk patients excluded
- Biological heterogeneity despite patient enrichment

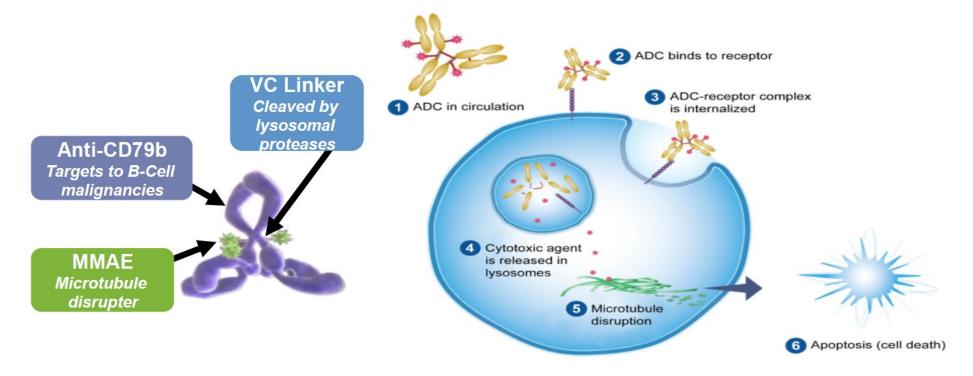
Treatment Resistance in DLBCL

Genetic and/or epigenetic alterations in cancer cells generate spatial Impaired immune function and supportive stromal cells promote a pro-tumor and temporal diversity to confer treatment resistance environment to mediate treatment resistance Deficiency in tumor-Upregulation of inhibitory Inhibition of apoptosis by cell infiltrating immune cells checkpoint molecules adhesion-mediated resistance NK cells T-cells Follicular BMSC dendritic-like cell TCR Macrophage Treatment Expansion of pre-existing - MHC **rrDLBCL** resistant clones and those Less with acquired resistance B-cell-activating infiltration PD-L1 factors Impaired turnor immune Examples of genetic and/or epigenetic nadequate apoptosi Protection from apoptosis microenvironment modifications in rrDLBCL DLBCL **Host Variabilities** Genetic modifications Interpatient variabilities represented from several host-specific factors Immune surveillance result in highly variable treatment responses B2M, CD58, HLA-A, MS4A1 Epigenetic regulation EZH2, CREBBP, MEF2B, KMT2C, KMT2D Demographic and physical factors Pharmocokinetics DNA damage response TP53 Sex Absorption Plasma drug concentration Cell cycle regulation Age Distribution CCND3, CDKN2A, CDKN2B Body weight Metabolism Signaling pathway activation Excretion STAT6, SOCS1, FOXO1, MYD88, CD79B, NFKBIE, NFKBIZ Single nucleotide polymorphisms Oncogenes MYC. PIM1. PRKCO, GATA3. MLLT10. ABI1 £ Epigenetic modifications DNA methylation a first first ind to be the first fi Histone methylation/acetylation 0 1 0 0 Chromosome

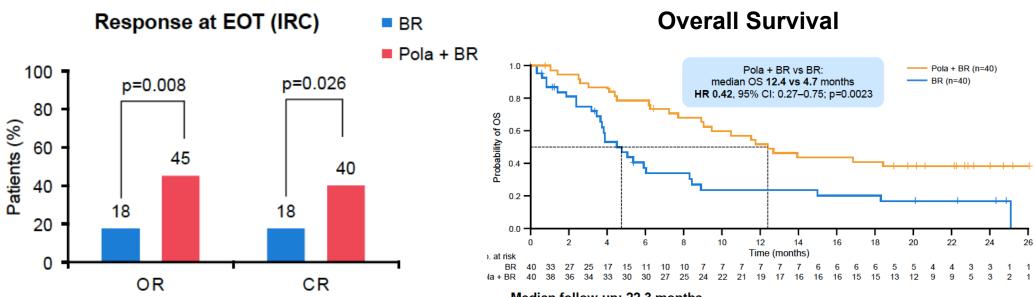
Tumor Microenvironment

Tumor Heterogeneity

He and Kridel, Leukemia 2021


Novel Agents have Emerged Allowing Durable Disease Control

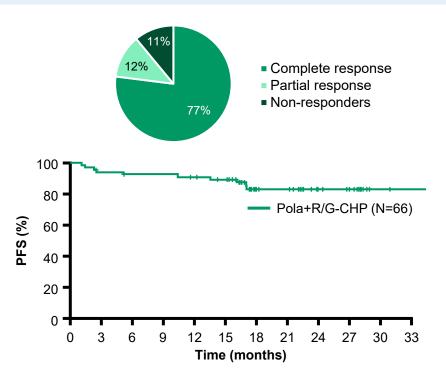
Novel Agents Recently Approved in R/R DLBCL


	Pola-BR	Selinexor	Tafasitamab/Lenali domide	Loncastuximab Tesirine
MOA	Anti-CD79b ADC	XPO-1 inhibitor	Anti-CD19 MAb/Immunomodulat or	Anti-CD19 ADC
ORR	45%	28%	58%	48%
CR rate	40%	10%	40%	24%
PFS	9.2m	2.6m	11.6m	4.9m
DOR	12.6m	9.3m	43.9m	10.3m
OS	12.4m	NR	33.5m	9.9m

Polatuzumab Vedotin: Anti-CD79b Drug Conjugate

 Microtubule inhibitor MMAE conjugated to CD79b monoclonal antibody via a protease-cleavable peptide linker

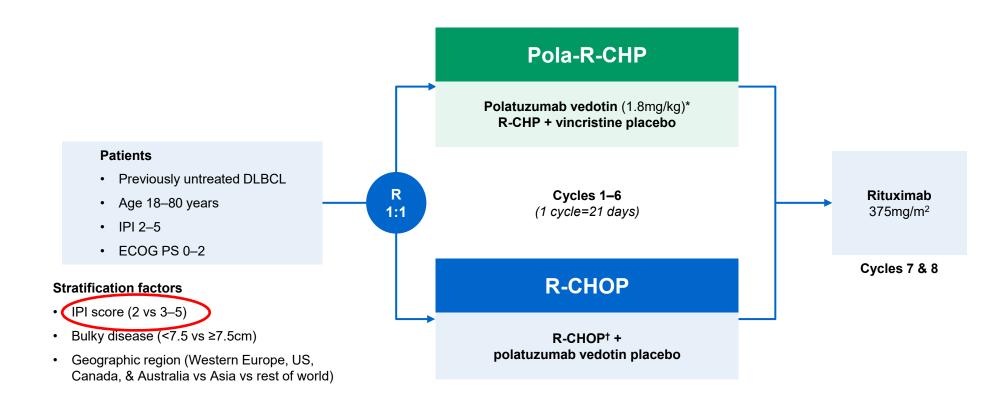
Randomized Phase II: Pola-BR vs BR



Median follow-up: 22.3 months

Sehn et al, JCO 2020

Pola + R/G-CHP in First-line DLBCL


- Open-label phase1b/2 study
- Phase 2 population: DLBCL, $IPI \ge 2$
- ORR: 89%; CR 77%
- Median f/up: 21.5 months
- 2-yr PFS: 83%

Pola+R/G-CHP demonstrated activity in first-line DLBCL

Tilly H, et al. Lancet Oncol 2019;20:998–1010.

POLARIX: A randomized double-blinded study

*IV on Day 1; [†]R-CHOP: IV rituximab 375mg/m², cyclophosphamide 750mg/m², doxorubicin 50mg/m², and vincristine 1.4mg/m² (max. 2mg) on Day 1, plus oral prednisone 100mg once daily on Days 1–5.

IPI, International prognostic index; ECOG PS, Eastern Cooperative Oncology Group performance status; R, randomized.

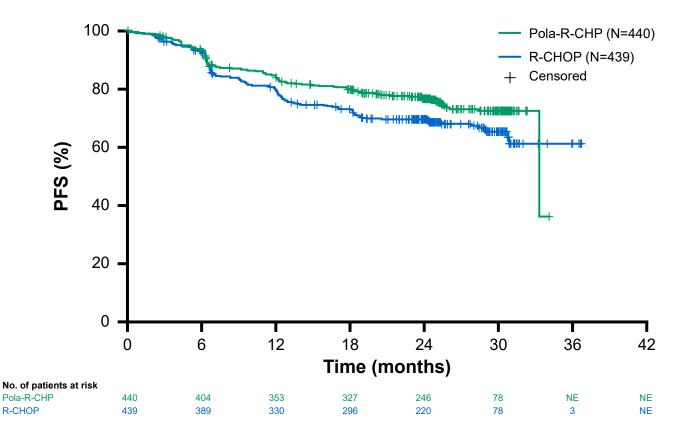
Tilly H et al, NEJM 2021

POLARIX: Key endpoints and analysis timing

Key endpoints	
Primary endpoint	Progression-free survival (Investigator-assessed)
Secondary endpoints	Event-free survival Complete response rate at end of treatment (PET/CT, IRC-assessed) Disease-free survival Overall survival
Safety endpoints	Incidence, nature, and severity of adverse events

Statistical design and timing of primary analysis:

- 875 patients, all on study for ≥24 months with approximately 228 PFS events, were required for the primary analysis. This occurred on June 28, 2021 (clinical cut-off date)
- Median follow up at the primary analysis was **28.2 months**

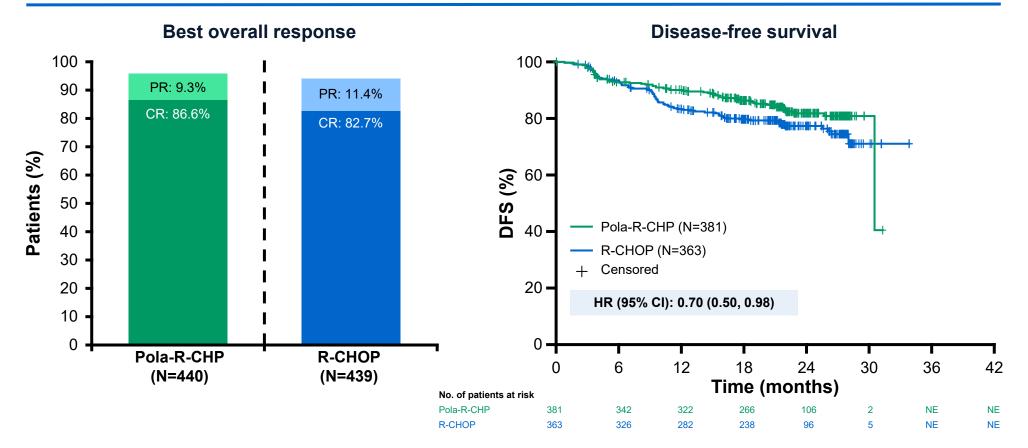

Baseline characteristics

ITT population		Pola-R-CHP (N=440)	R-CHOP (N=439)	
Age	Median (range), years	65.0 (19–80)	66.0 (19–80)	
Sex, n (%)	Male	239 (54)	234 (53)	
ECOG PS, n (%)	0–1	374 (85)	363 (83)	
	2	66 (15)	75 (17)	
Bulky disease (≥7.5cm), n (%)	Present	193 (44)	192 (44)	
Elevated LDH, n (%)	Yes	291 (66)	284 (65)	
Time from diagnosis to treatment initiation	Median, days	26	27	
Ann Arbor Stage, n (%)	III–IV	393 (89)	387 (88)	
Extranodal sites, n (%)	≥2	213 (48)	213 (49)	
IPI score, n (%)	2	167 (38)	167 (38)	
	3–5	273 (62)	272 (62)	
	ABC	102 (31)	119 (35)	
Cell-of-origin, (%)*	GCB	184 (56)	168 (50)	
	Unclassified	44 (13)	51 (15)	
MYC/BCL2 expression, n (%)*	Double expression	139 (38)	151 (41)	
MYC/BCL2/BCL6 rearrangement, n (%)*	Double-/triple-hit	26 (8)	19 (6)	

*In the Pola-R-CHP and R-CHOP groups, respectively, the numbers of patients evaluable for cell-of-origin were 330 and 338, with IHC for MYC/BCL2 expression were 362 and 366, and with FISH for MYC/BCL2/BCL6 rearrangements were 331 and 334.

ABC, activated B-cell; FISH, fluorescence in situ hybridization; GCB, germinal center B-cell; LDH, lactate dehydrogenase.

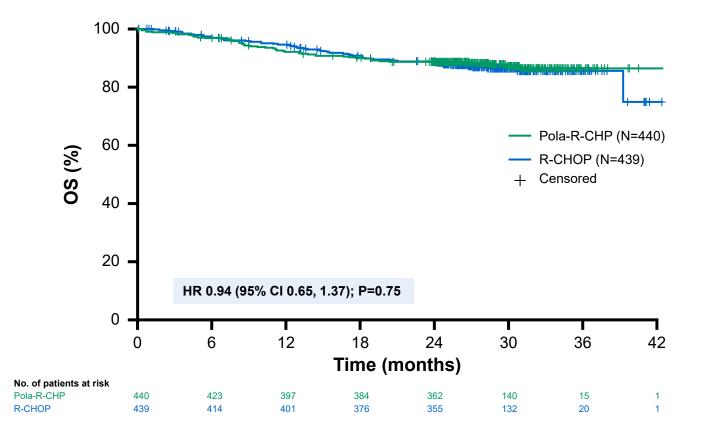
Primary endpoint: Progression-free survival Pola-R-CHP significantly improved PFS versus R-CHOP


- Pola-R-CHP demonstrated a 27% reduction in the relative risk of disease progression, relapse, or death versus R-CHOP
- 24-month PFS: 76.7% with Pola-R-CHP versus

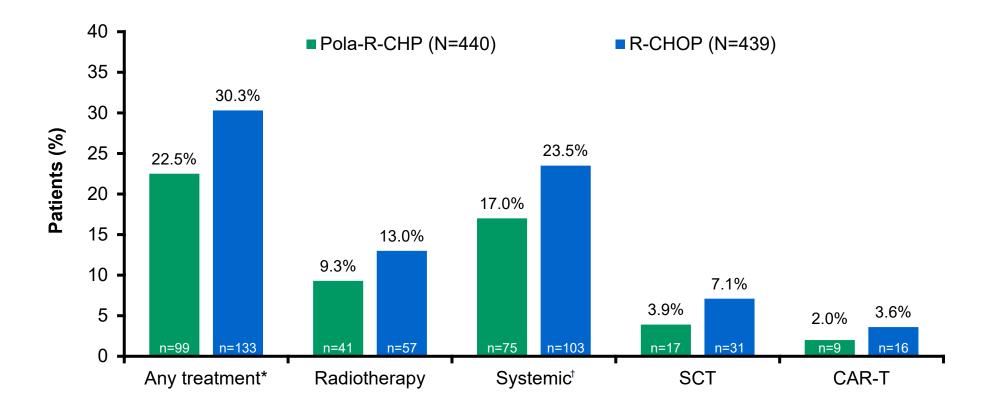
70.2% with R-CHOP (∆**=6.5%**)

ITT population. Data cut-off: June 28, 2021; median 28.2 months' follow-up. NE, not evaluable.

HR 0.73 (P<0.02) 95% CI: 0.57, 0.95


Response rates and disease-free survival

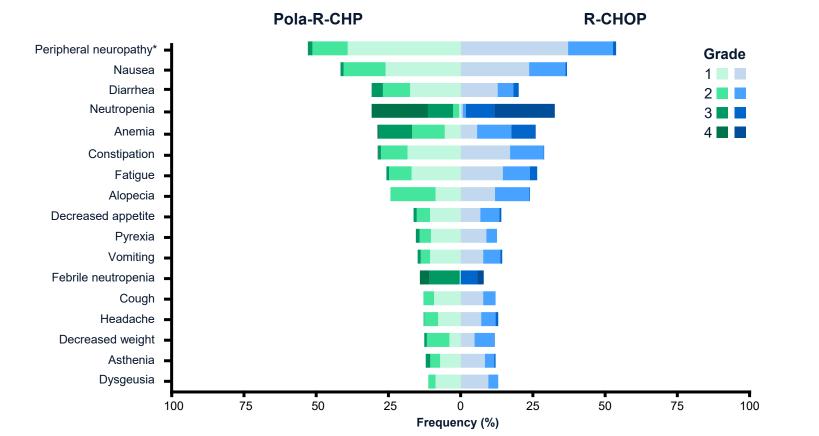
ITT population. Data cut-off: June 28, 2021; median 28.2 months' follow-up. Disease-free survival (DFS) defined as the time from the date of the first occurrence of a documented complete response to the date of progression, relapse, or death from any cause for the subgroup of patients with a best overall response of CR.


			a-R-CHP I=440)		CHOP (=439)					
Baseline Risk Factors	Total N	n	2-year Rate	n	2-year Rate	Hazard Ratio	95% Wald Cl	Pola-R-CHP Better	R-CHOP Better	? Benefit
Age group ≤60 >60	271 608	140 300	74·1 77·9	131 308	71-9 69-5	0-9 0-7	(0-6 to 1-5) (0-5 to 0-9)		I	Younger ≤ 60y
Sex Male Female	473 406	239 201	75-9 77-7	234 205	65·9 75·2	0.7 0.9	(0·5 to 0·9) (0·6 to 1·4)	-		Females
ECOG PS 0-1 2	737 141	374 66	78·4 67·2	363 75	71·2 65·0	0-8 0-8	(0.6 to 1.0) (0.5 to 1.4)			
IPI score IPI 2 IPI 3–5	334 545	167 273	79-3 75-2	167 272	78-5 65-1	1.0 0.7	(0.6 to 1.6) (0.5 to 0.9)		 i	IPI = 2
Bulky disease Absent Present	494 385	247 193	82·7 69·0	247 192	70·7 69·7	0·6 1·0	(0·4 to 0·8) (0·7 to 1·5)			Bulk ≥ 7.5 cm
Geographic region Western Europe, United States, Canada, and Australia	603	302	78.6	301	72.0	0.8	(0·6 to 1·1)		н	
Asia Rest of world	160 116	81 57	74.3 70.8	79 59	65.6 67.3	0.6 0.9	(0.4 to 1.5) (0.6 to 1.5)		4	
Ann Arbor stage I–II III IV	99 232 548	47 124 269	89·1 80·7 72·6	52 108 279	85∙5 73∙6 66∙1	0.6 0.8 0.8	(0.2 to 1.8) (0.5 to 1.3) (0.6 to 1.1)			
Baseline LDH ≤ULN >ULN	300 575	146 291	78·9 75·4	154 284	75∙6 67∙2	0·8 0·7	(0.5 to 1.3) (0.5 to 1.0)			
No. of extranodal sites 0–1 ≥2	453 426	227 213	80·2 73·0	226 213	74-5 65∙8	0·8 0·7	(0·5 to 1·1) (0·5 to 1·0)		1	
Cell-of-origin GCB ABC Unclassified Unknown	352 221 95 211	184 102 44 110	75-1 83-9 73-0 73-8	168 119 51 101	76-9 58-8 86-2 64-3	1.0 0.4 1.9 0.7	(0.7 to 1.5) (0.2 to 0.6) (0.8 to 4.5) (0.4 to 1.2)			GCB Subtype
Double expressor by IHC DEL Non DEL Unknown	290 438 151	139 223 78	75·5 77·7 76·0	151 215 73	63·1 75·7 69·8	0·6 0·9 0·8	(0·4 to 1·0) (0·6 to 1·3) (0·4 to 1·5)		ſ	
Double- or triple-hit lymphoma Yes No Unknown	45 620 214	26 305 109	69·0 76·8 78·5	19 315 105	88-9 70-3 66-4	3·8 0·7 0·6	(0·8 to 17·6) (0·5 to 1·0) (0·4 to 1·1)		+	DH/TH lymphoma
							C	r ⊡25	1 5	

Overall survival

ITT population. Data cut-off: June 28, 2021; median 28.2 months' follow-up.

Patients receiving subsequent treatments


Data cut-off: June 28, 2021. *Subsequent lymphoma treatment was defined as non-protocol anti-lymphoma therapy; †Includes any monotherapy, multi-drug, or cell-based regimen. CAR-T, chimeric antigen receptor T-cell therapy; SCT, stem cell transplant.

Safety summary

Safety profiles were similar with Pola-R-CHP and R-CHOP

n (%)	Pola-R-CHP (N=435)	R-CHOP (N=438)
Any-grade adverse events	426 (97.9)	431 (98.4)
Grade 3–4	251 (57.7)	252 (57.5)
Grade 5	13 (3.0)	10 (2.3)
Serious adverse events	148 (34.0)	134 (30.6)
Adverse events leading to:		
Discontinuation of any study drug	27 (6.2)	29 (6.6)
Polatuzumab vedotin / vincristine	19 (4.4)	22 (5.0)
Dose reduction of any study drug	40 (9.2)	57 (13.0)

Common adverse events

Data cut-off: June 28, 2021. Adverse events are Medical Dictionary for Regulatory Activities version 24.0 preferred terms; shown are all-grade adverse events occurring in ≥12% of patients in any treatment arm. *Peripheral neuropathy is defined by standard organ class group of preferred terms.

What will be Required to Replace R-CHOP

Phase III trial confirming better efficacy or lower toxicity

- Must be tolerable in the majority of patients
 - Increase in toxicity must be offset by greater increase in benefit
- Must be broadly deliverable and affordable
- If targeted to a molecular subgroup, require a validated biomarker to identify appropriate patients

Questions

- Is pola-R-CHP the new standard of care?
- Should it be used in all patients?
 - Regardless of IPI, COO?
 - What about limited stage protocols?

Should pola-R-CHP be the comparator in all clinical trials?

Future Trial Design

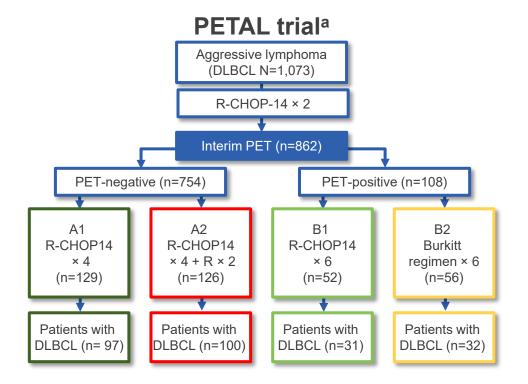
- Require adaptive designs to capture higher risk population
 - Limit exclusion criteria (lab restrictions, ECOG PS)
 - Decentralize biomarker testing
 - Allow initial cycle of therapy prior to randomization
 - Allow initial cycle prior to enrollment (retrospective screening)
 - Statistical power for realistic expectation of outcomes

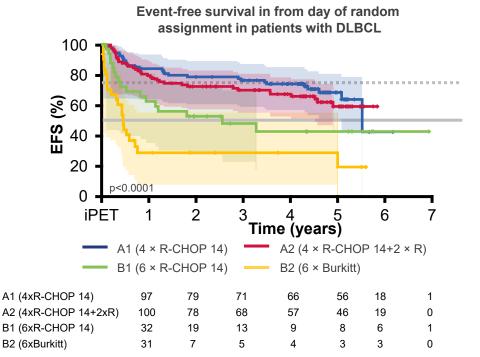
Alternative Approaches

R-CHOP + X

 $\mathsf{R}\text{-}\mathsf{CHOP} \xrightarrow{} \mathsf{X}$

Negative trials:

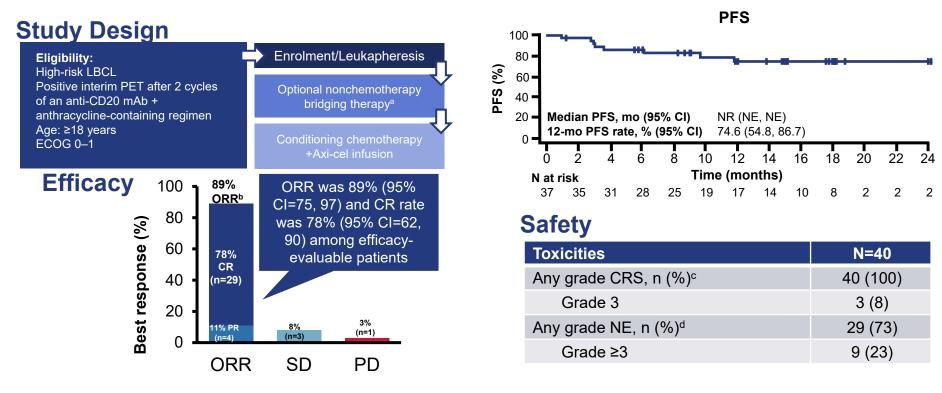

rituximab, enzastaurin, lenalidomide, everolimus


Response Adapted R-CHOP

Negative trials:

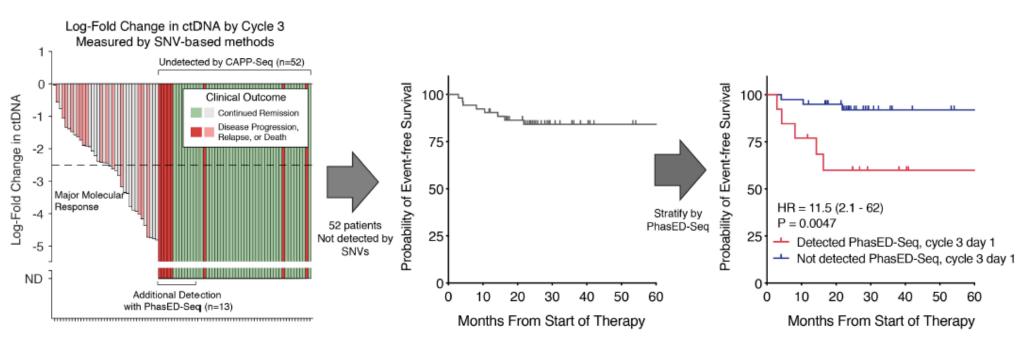
PET-adapted intensification ? PET-adapted CAR T-cell ? ctDNA response adapted

PETAL trial: Intensification of therapy based on interim PET status does not improve outcomes

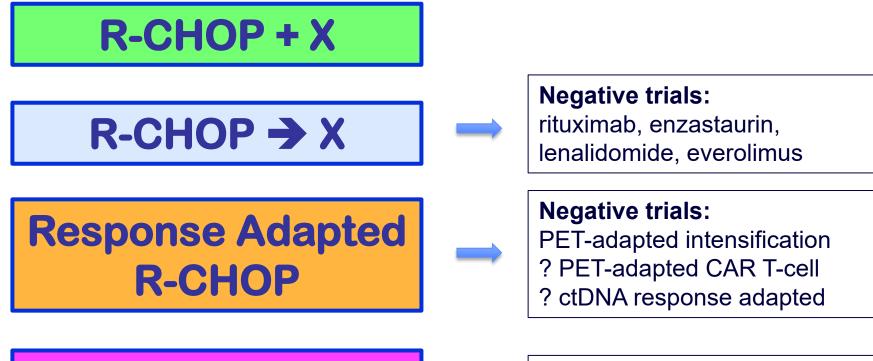


Interim PET

Dührsen U, et al. J Clin Oncol 2018; 36:2024–2034. 58


ZUMA-12: Phase II study using axi-cel as 1L therapy in patients positive PET after 2 cycles

Neelapu SS, et al. ASH 2021 (Abstract 739; oral).


ctDNA detection by PhasED-Seq improves outcome prediction at interim time-points

- 88 patients with DLBCL undergoing first-line treatment with cycle 3, day 1 samples available
 - ctDNA by CAPP-Seq stratifies patients based on Major Molecular Response (Kurtz et al, JCO 2018)
 - 52 patients undetectable at cycle 3, day 1 by SNV-based CAPP-Seq
- PhasED-Seq further stratifies patients who have undetectable ctDNA by CAPP-Seq

Kurtz, DM et al. Nat Biotechnol 2021.

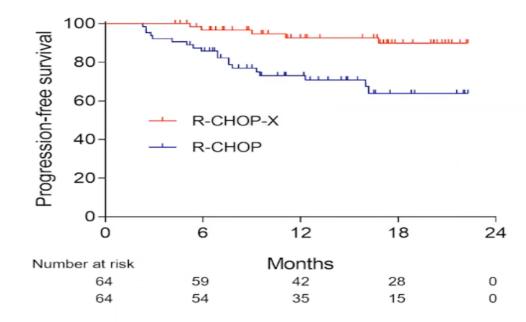
Alternative Approaches

Replace R-CHOP

? Novel agents (Bispecific Abs)?CAR T-cell therapy

Guidance-01: Randomized Phase 2 Trial of Genetic Subtype Guided Immunochemotherapy

Study Design (NCT04025593)


- The study started from July, 2019.
- All patients were treated with ONE cycle of standard R-CHOP immediately at diagnosis.
- Patients were randomly assigned 1:1 and stratified by genetic subtype.
- Using targeted sequencing and FISH for BCL2, MYC translocation and BCL6 fusion to classify patients into six genetic subtypes MCD like, BN2 like, N1 like, EZB like, according to NEJM classification (2018), TP53 mutation, and others.

	r	MCD like: Ibrutinib+R-CHOP×5		
Untreated DLBCL	R	BN2 like: Ibrutinib+R-CHOP ×5	Ibrutinib ¹	420mg po qd
	OP×1	N4 like Levelidenide D CUODUS	Lenalidomide ²	25mg d1-10 po
 IPI ≥ 2 		N1 like: Lenalidomide+R-CHOP×5	Tucidinostat ³	20mg d1, 4, 8, 11 po
Stratified by K-medoids algorithm (PAM) simul subtyping using targeted sequencing panel or		EZB like: Tucidinostat+R-CHOP×5	Decitabine ⁴	10 mg/m² d1-5
BTG1, CD70, CD79B, CREBBP, DTX1, EP30 MPEG1, MTOR, MYD88, NOTCH1, NOTCH	00, EZH2,	TP53 mutated: Decitabine+R-CHOP×5	R-CHOP	Standard dose
STAT6, TBL1XR1, TNFAIP3, TNFRSF14, at		Others: Lenalidomide+R-CHOP×5		was given from the second py if grade \geq 3 neutropenia st cycle.

1. Younes et al., J Clin Oncol 2019. 2. Nowakowski et al., J Clin Oncol 2021. 3. Zhang et al., Clin Epigenet 2020. 4. Zhang et al., ICML 2019 abstract (NCT02951728)

Zhang et al., ICML 2021, #026

Secondary Endpoint: PFS

Median follow-up 16.1 months

	R-CHOP-X	R-CHOP
1-year PFS	93%	73%
(95%CI)	(81%-97%)	(60%-83%)

Zhang et al., ICML 2021, #026

Ongoing/Planned Trials in Upfront DLBCL

BTK-inhibitor R-CHOP trials

- Escalade (acala); UK trial; zanabrutinib

• First-Mind Trial

- Tafasitamab/Lenalidomide + R-CHOP
- Bispecific antibodies + R-CHOP
- Biology-driven trials
- Response-adapted trials (ctDNA, quantitative PET/CT)

Summary

- Moving beyond R-CHOP has been a challenge
- Pola-R-CHP results in improved PFS with similar toxicity
- Improving the cure rate in frontline setting is important as secondary therapies associated with higher toxicity, cost and poor outcomes
- Further improvement needed and trials of novel therapies remain important
- Identification of predictive biomarkers (using validated tools) will be essential to optimize outcome in individual patients