Cellular Therapy in Lymphoma: Where are we now?

Peter Riedell, MD Assistant Professor Director of Clinical Research Hematopoietic Cellular Therapy Program University of Chicago

Disclosures

 Peter Riedell has served as a consultant and/or advisory board member for AbbVie, Bayer, BeiGene, BMS, Janssen, Karyopharm, Kite/Gilead, Novartis, Nurix, and Takeda. He has served as a speaker for Kite Pharma and has received honoraria from Novartis. Research support from BMS, Calibr, CRISPR Therapeutics, Fate Therapeutics, Kite Pharma, MorphoSys, Novartis, Tessa Therapeutics, and Xencor.

 I will discuss drugs and indications currently under investigation and/or that have not been approved by regulatory authorities.

Development Timeline of Cellular Therapy

CAR T-cell Therapy

Anatomy of a Chimeric Antigen Receptor (CAR)

<u>scFv</u>

Single-chain variable fragment (scFv) allows direct activation of T cell by cancer cell antigens

Hinge region

Allows optimal antigen binding

Costimulatory Domain: CD28 or 4-1BB

Enhances CAR T cell proliferation, cytotoxicity and persistence

Signaling Domain: CD3-zeta chain

Proliferation & activation of CAR T cells CAR T cell-mediated killing of tumor cells

Adapted from Park JH, et al. *Discov Med.* 2010;9:277-88.

CAR T-cell Clinical Process

Frey, et al. *Am J Hem*. 2016. Slaney CY, *Cancer Discov*. 2018;8:924

CD19 Directed CAR T-cell Products

Adapted from van der Steegan et al. Nat Rev Drug Discov, 2015.

CAR T-cell Workflow

There are nearly 100 types of lymphoma

Goals of therapy vary by histology and expected clinical behavior: Curative intent Palliative intent

Approved CAR T-cell Therapy in Lymphoma

- Axicabtagene ciloleucel (axi-cel)
 - Aggressive large B-cell lymphoma
 - 2^{nd} line for primary refractory or early relapse (≤ 12 months)-4/1/22
 - 3rd line and beyond—*10/18/17*
 - Follicular lymphoma
 - 3^{rd} line and beyond -3/5/21
- Tisagenlecleucel (tisa-cel)
 - Aggressive large B-cell lymphoma
 - 3^{rd} line and beyond -5/1/18
- Lisocabtagene maraleucel (liso-cel)
 - Aggressive large B-cell lymphoma
 - 3rd line and beyond—2/5/21
- Brexucabtagene autoleucel (brexu-cel)
 - Mantle cell lymphoma
 - 2nd line and beyond—7/24/20

CAR T-cell Therapy in R/R DLBCL—3rd Line

	The NEW ENGLAND JOURNAL of MEDICINE
The NEW ENGLAND JOURNAL of MEDICINE	ORIGINAL ARTICLE
Axicabtagene Ciloleucel CAR T-Cell Therapy	Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma
in Refractory Large B-Cell Lymphoma S.S. Neelapu, F.L. Locke, N.L. Bartlett, L.J. Lekakis, D.B. Miklos, C.A. Jacobson, I. Braunschweig, O.O. Oluwole, T. Siddiqi, Y. Lin, J.M. Timmerman, P.J. Stiff, J.W. Friedberg, I.W. Flinn, A. Goy, B.T. Hill, M.R. Smith, A. Deol, U. Farooq, P. McSweeney, J. Munoz, I. Avivi, J.E. Castro, J.R. Westin, J.C. Chavez, A. Ghobadi, K.V. Komanduri, R. Levy, E.D. Jacobsen, T.E. Witzig, P. Reagan, A. Bot, J. Rossi, L. Navale, Y. Jiang, J. Aycock, M. Elias, D. Chang, J. Wiezorek, and W.Y. Go	 Stephen J. Schuster, M.D., Michael R. Bishop, M.D., Constantine S. Tam, M.D., Edmund K. Waller, M.D., Ph.D., Peter Borchmann, M.D., Joseph P. McGuirk, D.O., Ulrich Jäger, M.D., Samantha Jaglowski, M.D., Charalambos Andreadis, M.D., Jason R. Westin, M.D., Isabelle Fleury, M.D., Veronika Bachanova, M.D., Ph.D., S. Ronan Foley, M.D., P. Joy Ho, M.B., B.S., D.Phil., Stephan Mielke, M.D., John M. Magenau, M.D., Harald Holte, M.D., Jufen Chu, Ph.D., Özlem Anak, M.D., Lida B. Pacaud, M.D., Ph.D., and Richard T. Maziarz, M.D., for the JULIET Investigators*

Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study

Jeremy S Abramson, M Lia Palomba, Leo I Gordon, Matthew A Lunning, Michael Wang, Jon Arnason, Amitkumar Mehta, Enkhtsetseg Purev, David G Maloney, Charalambos Andreadis, Alison Sehgal, Scott R Solomon, Nilanjan Ghosh, Tina M Albertson, Jacob Garcia, Ana Kostic, Mary Mallaney, Ken Ogasawara, Kathryn Newhall, Yeonhee Kim, Daniel Li, Tanya Siddiqi

11

19th International Ultmann Chicago Lymphoma Symposium

CAR T-cell Therapy in R/R DLBCL—3rd Line

Characteristic	ZUMA-1	JULIET	TRANSCEND
Cellular therapy	Axi-cel	Tisa-cel	Liso-cel
 Co-stimulatory domain	CD28	4-1BB	4-1BB
 Number (enrolled/treated)	119/108	165/111	342/268
Median age (range), yr	58 (23-76)	56 (22-76)	63 (18-86)
Prior autoSCT	21%	49%	33%
Bridging therapy	0%	92%	59%
Median turnaround time, d	17	54	24
 Best response (ORR/CR) rate	83%/58%	52%/40%	73%/53%
1-yr PFS (of infused patients)	44%	35%	44%
1-yr OS (of infused patients)	59%	49%	58%

CAR T-cell Therapy in R/R DLBCL—3rd Line

19th International Ultmann Chicago Lymphoma Symposium

Neelapu SS, et al. *N Engl J Med.* 2017;377:2531. Schuster SJ, et al. *N Engl J Med.* 2019;380:45. Abramson JS, et al. *Lancet.* 2019;396:839.

CAR T-cell Therapy in R/R DLBCL—2nd Line

	Trial	Median EFS, m		CR rate		2-yr OS		Median f/u, m
		CAR-T	SOC	CAR-T	SOC	CAR-T	SOC	
-	BELINDA	3	3	28%	28%	Not rea	ched	10
F	ZUMA-7	8.3	2	65%	32%	61%	52%	24.9
F	TRANSFORM	10.1	2.3	66%	39%	Not rea	ched	6.2

Locke FL, et al. *N Engl J Med*. 2021; Dec 11. Kamdar M, et al. *Blood*. 2021;138(suppl 1):91. ¹⁴ Bishop MR, et al. *N Engl J Med*. 2021;Dec 14.

19th International Ultmann Chicago Lymphoma Symposium

CAR T-cell approval in 2nd line R/R DLBCL

FDA approves axicabtagene ciloleucel for second-line treatment of large B-cell lymphoma

f Share 🍤	Tweet in Linkedin	🗲 Email	🔒 Print
------------------	--------------------------	---------	---------

On April 1, 2022, the Food and Drug Administration approved axicabtagene ciloleucel (Yescarta, Kite Pharma, Inc.) for adult patients with large B-cell lymphoma (LBCL) that is refractory to first-line chemoimmunotherapy or relapses within 12 months of first-line chemoimmunotherapy. It is not indicated for the treatment of patients with primary central nervous system lymphoma.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-axicabtagene-ciloleucel-second-line-treatment-large-b-cell-lymphoma

Treatment Algorithm for DLBCL in 2022

Treatment Algorithm for DLBCL in 2022

CAR-T in MCL: ZUMA-2 Study of Brexucabtagene autoleucel (brexu-cel) in R/R MCL

Table 1. Baseline Characteristics of All 68 Treated Patients.*	
Characteristic	Patients
Median age (range) — yr	65 (38–79)
Intermediate or high risk according to Simplified MIPI — no. (%)†‡	38 (56)
Blastoid or pleomorphic morphologic characteristics of MCL — no. (%)	21 (31)
Ki-67 proliferation index ≥30% — no./total no. (%)‡	40/49 (82)
<i>TP53</i> mutation — no. (%)	6/36 (17)
Positive CD19 status — no./total no. (%)	47/51 (92)
Median no. of previous therapies (range)§	3 (1-5)
≥3 Previous lines of therapy — no. (%)	55 (81)
Previous autologous stem-cell transplantation — no. (%)	29 (43)
Previous BTK inhibitor therapy — no. (%)∬	68 (100)
Ibrutinib	58 (85)
Acalabrutinib	16 (24)
Both	6 (9)
Relapsed or refractory disease — no. (%)	
Relapse after autologous stem-cell transplantation	29 (43)
Refractory to most recent previous therapy	27 (40)
Relapse after most recent previous therapy	12 (18)
Disease that relapsed or was refractory to BTK inhibitor therapy — no. (%)	68 (100)
Refractory to BTK inhibitor therapy	42 (62)
Relapse during BTK inhibitor therapy	18 (26)
Relapse after BTK inhibitor therapy	5 (7)
Could not take BTK inhibitor therapy because of adverse events¶	3 (4)

Wang M, et al. N Engl J Med. 2020;382:1331

19th International Ultmann Chicago Lymphoma Symposium

CAR-T in MCL: ZUMA-2 Study of Brexucabtagene autoleucel (brexu-cel) in R/R MCL

• Median follow-up: 12.3m

Wang M, et al. N Engl J Med. 2020;382:1331

CAR-T in Indolent NHL: ZUMA-5 Study of Axi-cel

Key ZUMA-5 Eligibility Criteria

- R/R FL (Grades 1–3a) or MZL (nodal or extranodal)^a
- ≥2 Prior lines of therapy that must have included an anti-CD20 mAb combined with an alkylating agent^b

Primary Endpoint

 ORR (IRRC assessed per the Lugano classification¹)

Key Secondary Endpoints

- CR rate (IRRC assessed)
- Investigator-assessed ORR^a
- DOR, PFS, OS
- AEs
- CAR T-cell and cytokine levels

CAR-T in Indolent NHL: ZUMA-5 Study of Axi-cel

• In iNHL, efficacy evaluable population: ORR 92% (CR 75%)

Neelapu et al, #93 ASH 2021

CAR-T in Indolent NHL: ZUMA-5 Study of Axi-cel

- Median OS not reached in FL or MZL
- Among patients with FL, 3 deaths occurred after Month 24; no PD observed after Month 24

Neelapu et al, #93 ASH 2021

CAR-T in CLL/SLL: TRANSCEND CLL 004 Phase 1/2 Study with liso-cel

CAR-T in CLL/SLL: TRANSCEND CLL 004 Phase 1/2 Study with liso-cel

Characteristic	Monotherapy Cohort (N = 23)	BTKi Progression/Venetoclax Failure Subgroup ^c (n = 11)
Median age, y (range)	66 (50–80)	68 (59–76)
Male, n (%)	11 (48)	6 (55)
Median time since diagnosis, mo (range)	87.5 (30–209)	106 (30–209)
Bulky disease ≥5 cm, n (%)ª	8 (35)	4 (36)
Median SPD, cm ² (range)	25 (2–197)	41 (2—197)
Median BALL risk score ¹ (range)	2 (0–3)	2 (0–3)
Median LDH, U/L (range)	235 (1–1956)	240 (1–1956)
Stage, n (%)		
Rai stage III/IV	15 (65)	7 (64)
Binet stage C	16 (70)	8 (73)
· High-risk feature (any), n (%)	19 (83)	10 (91)
Del(17p)	8 (35)	4 (36)
TP53 mutated	14 (61)	8 (73)
Complex karyotype ^b	11 (48)	5 (45)
Median no. of lines of prior therapy (range)	4 (2–11)	5 (4–10)
Ibrutinib progression, n (%)	17 (74)	11 (100)
Ibrutinib intolerant, n (%)	6 (26)	0
Received bridging therapy, n (%)	17 (74)	8 (73)

Siddiqi et al, #546 ASH 2020

CAR-T in CLL/SLL: TRANSCEND CLL 004 Phase 1/2 Study with liso-cel

- ORR: 82% (CR/CRi 46%)
- 27% had a deepening of response
- At 12m, 50% were in response, only 2 pts progressed beyond 12m

Bispecific Antibody Therapy

Bispecific Antibodies

- Engineered antibodies to prolong half-life
- Targets CD3 (on T-cells) and CD20 (on B-cells)
- Induces T-cell mediated cytotoxic activity against CD20 expressing B-cells

CD3/CD20 Bispecific Antibodies in B-NHL

- "Off the shelf" therapy
- Route of administration: IV or SC
- Being explored in various subtypes of B-NHL

Mosunetuzumab in R/R B-NHL

Administration Schedule

- IV outpatient administration
- Cycle 1 step-up dosing followed by fixed dosing
- Key inclusion:
 - R/R B-NHL after \geq 1 prior regimen
 - ECOG 0-1
 - No viable therapeutic options

• Initial treatment= 8 cycles; if CR then d/c

• If PR/SD then continue up to 17 cycles

Characteristic	Aggressive NHL ^a (n = 129)	Indolent NHL ^b $(n = 68)$
Age, years		
Median	63.0	60.5
Range	19-91	27-85
Prior systemic therapies, No.		
Median	3	3
Range	1-14	1-11
Prior CAR-T therapy, No. (%)	15 (11.6)	4 (5.9)
Prior autologous stem-cell transplant, No. (%)	44 (34.1)	12 (17.6)
Refractory to last therapy, No. (%)	^d 106 (82.2)	43 (63.2)
Refractory to prior anti-CD20 therapy, No. (%) ^d	100 (77.5)	51 (75.0)

Budd LE, *J Clin Oncol*. 2022;40:481 ²⁹

Mosunetuzumab in R/R B-NHL

No. of Patients

aNHL

n = 4

n = 12

n = 1

n = 4

n = 19

n = 2

n = 10

n = 26

n = 4

Budd LE, J Clin Oncol. 2022:40:481

19th International Ultmann Chicago Lymphoma Symposium

Mosunetuzumab in R/R B-NHL

- CRS:
 - All Grade: 27%
 - Grade 1: 21%
 - Grade 2: 6%
 - Grade 3: 1%
- Tocilizumab used in 3 patients
- Neurologic toxicity:
 - Headache: 18%
 - Insomnia: 11%
 - Dizziness: 10%
 - Grade 3: 1%

Single-Agent Mosunetuzumab a Chemotherapy-Free Regimen for Elderly/Unfit Patients with Previously Untreated DLBCL

- Key Inclusion Criteria
 - Treatment naïve DLBCL or HGBL
 - Age \geq 80 yrs or 60-79 yrs w/ impairment in $\geq \! 1$ of the following:
 - ADL
 - Instrumental ADL
 - Inability to tolerate full dose chemoimmunotherapy
- Study Design
 - Optional pre-phase prednisone +/- vincristine
 - Response assessment: at cycle 4, cycle 8, every 6 months

- Primary Objectives
 - PET/CT CR rate
 - Safety/tolerability
 - PK
- N=29
 - 2 dosing cohorts
 - 22 efficacy evaluable

Single-Agent Mosunetuzumab a Chemotherapy-Free Regimen for Elderly/Unfit Patients with Previously Untreated DLBCL

Low rates of neutropenia (n=2; 7%) and Grade 3–4 infections (n=2; 7%) were observed

• Manageable safety profile in elderly/unfit patients

• No G3-4 CRS

Olszewski et al #401 ASH 2020

Early durable CRs with mosunetuzumab in elderly/unfit 1L DLBCL

• No PD in patients achieving CR

Epcoritamab in R/R B-NHL

- Subcutaneous step-up administration
- DLBCL ORR: 68% (CR 45%)
- FL ORR: 90% (CR 50%)

	Grade 1–2	Grade 3	Grade 4
Pyrexia*	43 (63%)	4 (6%)	0
Cytokine release syndrome	40 (59%)	0	0
Injection site reaction	32 (47%)	0	0
Fatigue	26 (38%)	4 (6%)	0
Diarrhoea	18 (26%)	0	0
Hypotension*	17 (25%)	4 (6%)	0
Dyspnoea	16 (24%)	0	1 (1%)
Tachycardia*	14 (21%)	0	0
Anaemia	7 (10%)	9 (13%)	0

*Most pyrexia, hypotension, and tachycardia events were associated with cytokine release syndrome.

Table 2: Treatment-emergent adverse events that occurred in at least20% of the full analysis population (n=68)

Epcoritamab + Lenalidomide and Rituximab (R²) in R/R FL

Arm 2 of EPCORE NHL-2, a phase 1b/2, open-label, multicenter trial, is evaluating the safety and antitumor activity of SC epcoritamab + standard R² for 12 cycles of 28 days, followed by epcoritamab monotherapy for a total of 2 years, in adults with R/R FL^a

Epcoritamab + R² in R/R FL

Treatment-Related Adverse Events

		Total N=29			
TEAE ≥15%, n (%)	Grade 1–2	Grade 3	Grade 4	Any grade	
CRS	12 (41)	2 (7)	0	14 (48)	
Injection-site reaction ^a	12 (41)	0	0	12 (41)	
All infections ^b	9 (31)	2 (7)	0	11 (38)	
Constipation	8 (28)	0	0	8 (28)	
Cough	8 (28)	0	0	8 (28)	
Fatigue	6 (21)	1 (3)	0	7 (24)	
Nausea	7 (24)	0	0	7 (24)	
Muscle spasms	6 (21)	0	0	6 (21)	
Neutropenia ^c	1 (3)	4 (14)	1 (3)	6 (21)	
Tremor	5 (17)	0	0	5 (17)	

Data cutoff: September 16, 2021. «Combined term includes injection-site reaction, erythema, pain, and rash. ^IIncludes all events under the System Organ Class of infections and infestations; cellulitis, conjunctivitis, device-related infection, infection, mucosal infection, nasopharyngitis, neuroborreliosis, oral fungal infection, oral herpes, pneumonia, rhinovirus infection, sinusitis, staphylococcal infection, tinea pedis, and urinary tract infection (each n=1 [3%]). Three grade 3 infections were observed in a total of 2 patients overall: cellulitis, neuroborreliosis, and pneumonia. "Combined term includes neutropenia and neutrophil count decreased; 1 patient (3%) had febrile neutropenia.

- No DLTs reported for epcoritamab
- No ICANS or clinical TLS

 95% of responders remained in response

Bispecific Antibody combinations in B-NHL

- Immunomodulatory drugs
 - Lenalidomide
- Targeted agents
 - BTKi
- Antibody-drug conjugates
 - Polatuzumab Vedotin
- Standard chemoimmunotherapy
 - Front-line: Bispecific + R-CHOP
 - Salvage therapy: Platinum-based salvage therapy

CAR T-cell Therapy vs. Bispecific Antibodies

	CAR T-cell Therapy	BiTE Therapy
Lead Time	~4-8 weeks	Immediate use
Access	Specialized/Academic centers	Scalable. Maybe more conducive for treatment in community setting
Need for ongoing treatment	No	Yes
Treatment setting	Typically inpatient	Potentially inpatient for initial dose/cycle(s)
Lymphodepleting chemotherapy	Yes	No
CRS	++++	++
ICANS	+++	+
Cytopenias	+++	++
Less fit patients	Challenging	More feasible
Clinical Experience	+++	+

Adapted from Patel A, et al. Br J Haemat. 2021;195:689

Conclusions

The future is bright!

CAR T-cell therapy

- Emerged as a SOC in B-NHL
 - DLBCL: 2nd line primary refractory/early relapse (≤12m), and in 3rd line
 - FL: 3rd line
 - MCL: 2nd line
- Longer term follow-up and more clinical experience
- Drive to expand treatment landscape of CD19-directed CAR Tcell therapy in B-NHL

Bispecific antibody therapy

- CD20/CD3 bispecific antibody therapy is highly active in B-NHL
 - Impressive ORRs and CR rates, but longer f/u needed
 - Efficacy approaching results seen w/ CAR T
 - Favorable safety profile
 - Lower incidence/severity of CRS/ICANS vs CAR T

Unanswered Questions

- 1) How to approach patient selection for CAR-T vs bispecifics?
- 2) How do we best administer bispecific therapies?
 - IV vs SQ?
 - Optimal step-up dosing?
 - Combinations?
- 3) What duration of bispecific therapy is needed?
- 4) How do you sequence these therapies?
- 5) What are the mechanisms of relapse/resistance?