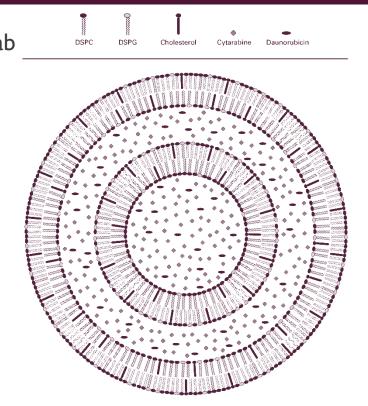
WHAT'S NEW IN UPFRONT TREATMENT IN AML

UPDATES FROM ASH 2021

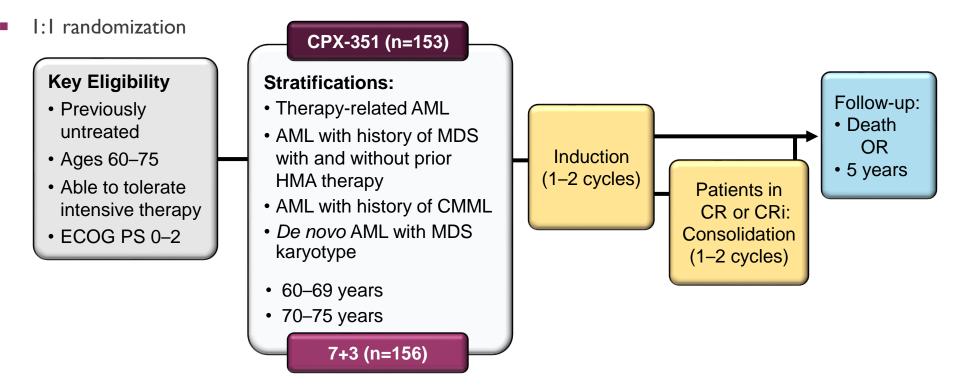

Selina Luger, MD, FRCPC Professor of Medicine Abramson Cancer Center University of Pennsylvania

PATIENT I

- 61 year old woman with history of myeloma, achieved a remission and underwent Mel auto transplant followed by lenalidomide maintenance
- Presented with pancytopenia, marrow with AML with complex monosomal karyotype, ASXLI mutated
- Normal organ function

CPX-351

- CPX-351 is a liposomal formulation of cytarab encapsulated at a 5:1 molar ratio
 - Fixed molar ratio maintained in human plasma for at least 24 hours after final dose¹
 - Drug exposure maintained for 7 days¹
 - Selective uptake by leukemic vs normal cells in bone marrow of leukemia-bearing mice²

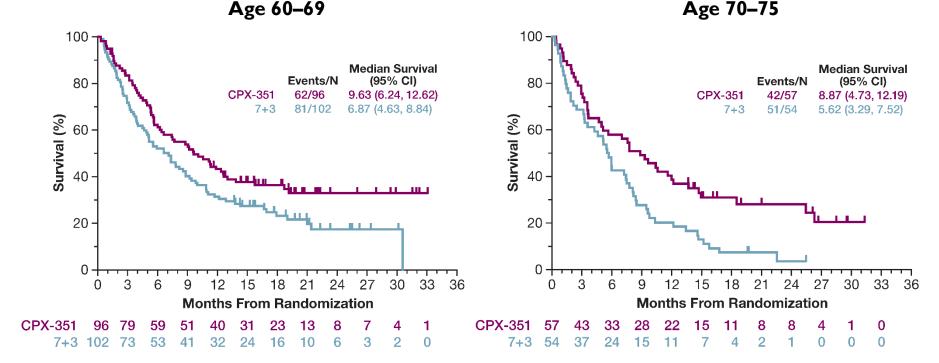

Reprinted with permission. © 2011 American Society of Clinical Oncology. All rights reserved. Feldman EJ et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. *J Clin Oncol.* 2011;29(8):979–985.

PHASE 2 DATA IN UNTREATED AML

	Overall (n=126)		Secondary (n=52)		
	CPX-351 7 + 3 (n=84) (n=41)		CPX-351 (n=33)	7 + 3 (n=19)	
MLFS Rate	84.5%	66.7%	81.8%	64.7%	
CR Rate	48.8%	48.8%	36.4%	31.6%	
CRi Rate	17.9%	2.4%	21.2%	0%	
Response Rate	66.7%	51.2%	57.5%	31.6%	
60-Day Mortality	4.7%	14.6%	6.1%	31.6%	
EFS (median)	6.5 months	2.0 months	4.5 months	1.3 months	
OS (median)	14.7 months	12.9 months	12.1 months	6.1 months	

CPX-351 PHASE III STUDY DESIGN

Randomized, open-label, parallel-arm, standard therapy–controlled



AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; CR, complete response; CRi, CR with incomplete platelet/neutrophil recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HMA, hypomethylating agents; MDS, myelodysplastic syndrome.

I. World Health Organization. WHO Classification of Tumours of Haematopoitic and Lymphoid Tissues. Swerdlow S et al (ed). Lyon, IRAC Press, 2008.

EXPLORATORY ANALYSIS BY AGE: OVERALL SURVIVAL

- Age 60–69 years, hazard ratio of 0.68 (95% CI: 0.49, 0.95)
- Age 70–75 years, hazard ratio of 0.55 (95% CI: 0.36, 0.84) Age 60–69

VENETOCLAX/DECITABINE IN YOUNG ADULTS WITH ADVERSE-RISK AML: CYCLE I RESPONSES

Response, n (%)	All Patients Venetoclax/Decitabine (N = 25)	Historical Controls Cytarabine/Idarubicin (N = 60)	P Value
Composite CR	19 (76)	23 (38.3)	.002
CR	13 (52)	16 (27)	
CRh	5 (20)	6 (10)	
 CRp 	1 (4)	O (O)	
MLFS	0 (0)	1 (2)	
Partial remission	6 (24)	17 (28)	
Induction failure	0 (0)	17 (28)	

Chen. ASH 2021. Abstr 35.

VENETOCLAX/DECITABINE IN YOUNG ADULTS WITH ADVERSE-RISK AML: COMPOSITE CR IN CYCLE I BY SUBGROUP

Response, %	All Patients Venetoclax/Decitabine (N = 25)	Historical Controls Cytarabine/Idarubicin (N = 60)
Composite CR	76	38
ASXL1	80	55
TP53	67	25
RUNX1	71	45
<i>FLT3</i> -ITD AR ≥0.5	80	27
Complex karyotype	83	25
11q23 rearrangement	80	40

VENETOCLAX/DECITABINE IN YOUNG ADULTS WITH ADVERSE-RISK AML: OTHER OUTCOMES

Response, %	All Patients Venetoclax/Decitabine (N = 25)	Historical Controls Cytarabine/Idarubicin (N = 60)	<i>P</i> Value
Composite CR at cycle 2	95.7	73.6	.044
MRD negative CR at cycle 2	73.9	43.4	.023

After median follow-up of 4.3 mo, median PFS and median OS not reached with venetoclax/decitabine

30-day and 60-day mortality: 0%

VENETOCLAX/DECITABINE IN YOUNG ADULTS WITH ADVERSE-RISK AML: SAFETY

Parameter	All Patients Venetoclax/Decitabine (N = 25)	Historical Controls Cytarabine/Idarubicin (N = 60)	<i>P</i> Value
Any grade ≥4 AE, %	96	100	
 Neutropenia 	93	97	
 Anemia 	72	93	.049
 Thrombocytopenia 	71	100	.004
 Mean duration of grade ≥4 AE, days (range) Neutropenia Thrombocytopenia Mean number transfusions, units (range) Platelets RBCs 	18.1 (2-35) 9.5 (0-37) 2.4 (0-12.5) 4.6 (0-12.5)	16.5 (0-32) 15.4 (6-38) 5.8 (0.5-17) 7.7 (0-17.5)	.517 .037 .003 .012
 Infection, % Febrile neutropenia Pneumonia Sepsis Intestinal infection Other infection 	48.0 20.0 8.0 0.0 0.0 20.0	66.7 15.0 26.7 15.0 5.0 5.0	.01

Chen. ASH 2021. Abstr 35.

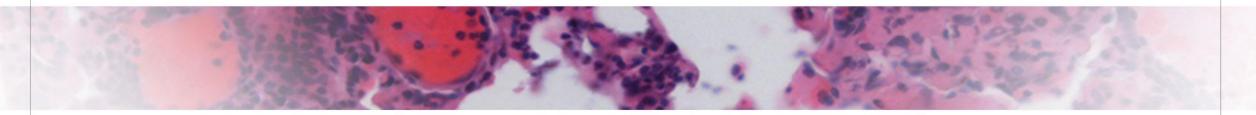
VENETOCLAX/DECITABINE IN YOUNG ADULTS WITH ADVERSE-RISK AML: CONCLUSIONS

In young adult patients with ELN adverse-risk AML, venetoclax/decitabine associated with 76% composite CR rate vs 38% for historical controls

MRD negativity rate after cycle 1: 64%

Compared with historical controls, venetoclax/decitabine had:

Lower rates of infections (48% vs 67%)

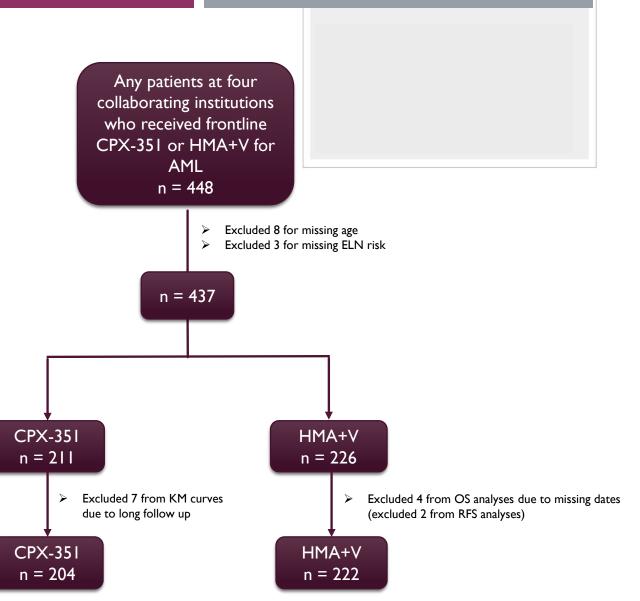

Reduced RBC and platelet transfusions

Median PFS and OS not reached for patients receiving venetoclax/decitabine

30-day and 60-day mortality rate: 0% Chen. ASH 2021. Abstr 35.

American Society of Hematology

Helping hematologists conquer blood diseases worldwide


COMPARING OUTCOMES BETWEEN LIPOSOMAL DAUNORUBICIN/CYTARABINE (CPX-351) AND HYPOMETHYLATING AGENT+VENETOCLAX (HMA+V) AS FRONTLINE THERAPY IN ACUTE MYELOID LEUKEMIA

Justin Grenet, MD¹, Akriti G Jain, MD², Madelyn Burkart, MD^{3*}, Julian Waksal, MD⁴, Christopher Famulare, MS^{5*}, Yazan Numan, MD³, Maximilian Stahl, MD⁴, Zoe Mckinnell, MD^{4*}, Brian Ball, MD⁴, Xiaoyue Ma, MS^{6*}, Paul J Christos, Dr.P.H., M.S.^{6*}, Ellen Ritchie, MD⁷, Michael B. Samuel, MD^{8*}, Justin D. Kaner, MD⁸, Sangmin Lee, MD⁹, Aaron D Goldberg, MD, PhD⁴, Shira Dinner, MD³, Kendra Sweet, MD², Gail J. Roboz, MD⁸ and Pinkal Desai, MD, MPH⁹

¹New York-Presbyterian/Weill Cornell Medical Center, New York, NY
 ²H. Lee Moffitt Cancer Center, Tampa, FL
 ³Division of Hematology Oncology, Northwestern University, Chicago, IL
 ⁴Memorial Sloan Kettering Cancer Center, New York, NY
 ⁵Department of Population Health Sciences, Weill Cornell Medical College, New York, NY
 ⁶Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY

REAL-WORLD, MULTICENTER RETROSPECTIVE CHART REVIEW

- Four large academic centers: MSKCC, Northwestern, Moffitt, Cornell
- A real-world analysis of patient characteristics and outcomes in older AML patients receiving either CPX-351 or HMA+V as frontline therapy
- Primary outcomes: response rate (CR+CRi), relapse free survival (RFS), and overall survival (OS)
- Analyses were conducted for overall population (ages 34-93 yrs) and ages 60-75 yrs
- 60-75 yrs was the age group where most overlap was seen between the two treatment groups
- Subgroup analyses: TP53, Adverse ELN Risk, Prior myeloid malignancy, prior HMA therapy

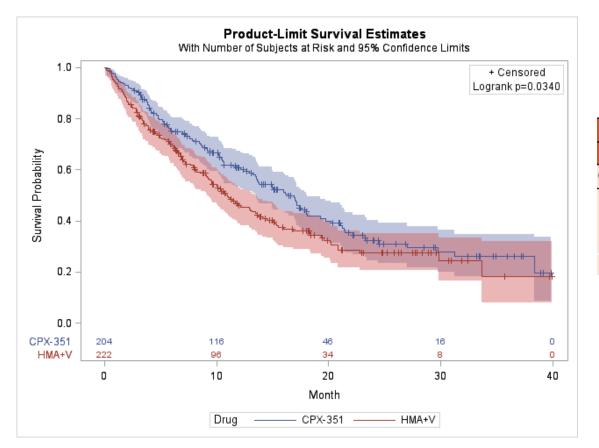
BASELINE CHARACTERISTICS: OVERALL POPULATION

	CPX-351 Frontline	HMA+V Frontline	p-value
n	211	226	
Demographics			
Age, Median (IQR)	66.8 (60.8, 71.6)	75.2 (69.7, 78.8)	<i>p</i> < 0.001
Male, N (%)	121 (57.4%)	138 (61.1%)	p = 0.430
AML ELN Risk, N (%)			<i>p</i> = 0.020
Favorable/Intermediate	82 (38.9)	64 (28.3)	
Adverse	129 (61.1)	162 (71.7)	
Mutations			
TP53 (n=411), N (%)	37 (19.1)	58 (26.7)	<i>p</i> = 0.066
FLT3 (n=413), N (%)	12 (6.10)	19 (8.87)	p = 0.311
NPM1 (n=412), N (%)	13 (6.63)	23 (10.7)	p = 0.150
RUNX1 (n=411), N (%)	44 (22.7)	54 (24.9)	<i>p</i> = 0.601
ASXL1 (n=412), N (%)	32 (16.5)	59 (27.1)	<i>p</i> = 0.010
IDH1/IDH2 (n=411), N (%)	38 (19.7)	40 (18.4)	p = 0.729
Antecedent Hematologic Malignancy			
Prior myeloid disorder, N (%)	114 (54.0)	92 (40.7)	p = 0.005
Prior HMA therapy			<i>p</i> = 0.001
Yes, N (%)	43 (20.4)	22 (9.73)	
No, N (%)	136 (64.5)	180 (79.7)	
Other, N (%)	32 (15.2)	24 (10.6)	

- Median age was higher in HMA+V (75.2 years vs.
 66.8 years)
- Adverse ELN Risk was higher in HMA+V (71.7% vs 61.1%)
- Prior myeloid malignancy was more common in CPX-351 (54% vs 40.7%)
- Prior HMA therapy was more common in CPX-351 (20.4% vs. 9.7%)
- No significant differences in mutations other than ASXLI, which was higher in HMA+V (27.1% vs 16.5%)

BASELINE CHARACTERISTICS: 60-75YO

	CPX-351 Frontline	HMA+V Frontline	p-value
n	152	100	
Demographics			
Age, Median (IQR)	68.5 (64.4, 71.7)	70.3 (67.5, 73.0)	p = 0.002
Male, N (%)	87 (57.2)	59 (59.0)	p = 0.782
AML ELN Risk, N (%)			p = 0.001
Favorable/Intermediate	67 (44.1)	23 (23.0)	
Adverse	85 (55.9)	77 (77.0)	
Mutations			
TP53 (n=252), N (%)	22 (14.5)	25 (25.0)	p = 0.036
FLT3 (n=235), N (%)	10 (7.19)	9 (9.38)	p = 0.547
NPM1 (n=235), N (%)	10 (7.19)	7 (7.29)	p = 0.977
RUNX1 (n=234), N (%)	27 (19.7)	32 (33.0)	p = 0.021
ASXL1 (n=233), N (%)	24 (17.5)	30 (31.3)	p = 0.015
IDH1/IDH2 (n=233), N (%)	32 (23.4)	18 (18.8)	p = 0.399
Antecedent Hematologic Malignancy			
Prior myeloid disorder, N (%)	80 (52.6)	41 (41.0)	p = 0.071
Prior HMA therapy			p = 0.127
Yes, N (%)	32 (21.1)	12 (12.0)	
No, N (%)	97 (63.8)	75 (75.0)	
Other, N (%)	23 (15.1)	13 (13.0)	

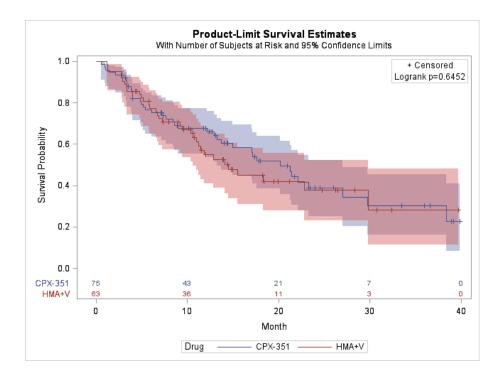

- Higher median age in HMA+V, 70.3 vs 68.5 yrs
- Higher rate of adverse ELN risk in HMA+V, 77% vs 56%
- Higher frequency of TP53, RUNX1, and ASXL1 in HMA+V
- No significant differences in frequency of prior myeloid disorder or prior HMA therapy

OVERALL POPULATION: CR/CRI RATES BETWEEN CPX-351 VS. HMA+V

CPX-351 Frontline	HMA+V Frontline	p-value
211	226	
122 (57.8)	128 (56.6)	p = 0.803
98 (46.4)	62 (27.4)	p < 0.001
24 (11.4)	66 (29.2)	p < 0.001
11 (29.7)	28 (48.3)	<i>p</i> = 0.073
9 (24.3)	16 (27.6)	p = 0.725
2 (5.4)	12 (20.7)	p = 0.072
57 (50.0)	38 (41.3)	p = 0.213
49 (43.0)	16 (17.4)	p < 0.001
8 (7.0)	22 (23.9)	p = 0.001
18 (41.9)	9 (40.9)	<i>p</i> = 0.941
16 (37.2)	2 (9.1)	p = 0.020
2 (4.7)	7 (31.8)	p = 0.005
65 (50.4)	85 (52.5)	<i>p</i> = 0.724
49 (38.0)	40 (24.7)	<i>p</i> = 0.015
16 (12.4)	45 (27.8)	<i>p</i> = 0.001
	211 122 (57.8) 98 (46.4) 24 (11.4) 11 (29.7) 9 (24.3) 2 (5.4) 57 (50.0) 49 (43.0) 8 (7.0) 18 (41.9) 16 (37.2) 2 (4.7) 65 (50.4) 49 (38.0)	211 226 $122 (57.8)$ $128 (56.6)$ $98 (46.4)$ $62 (27.4)$ $24 (11.4)$ $66 (29.2)$ $11 (29.7)$ $28 (48.3)$ $9 (24.3)$ $16 (27.6)$ $2 (5.4)$ $12 (20.7)$ $57 (50.0)$ $38 (41.3)$ $49 (43.0)$ $16 (17.4)$ $8 (7.0)$ $22 (23.9)$ $18 (41.9)$ $9 (40.9)$ $16 (37.2)$ $2 (9.1)$ $2 (4.7)$ $7 (31.8)$ $49 (38.0)$ $40 (24.7)$

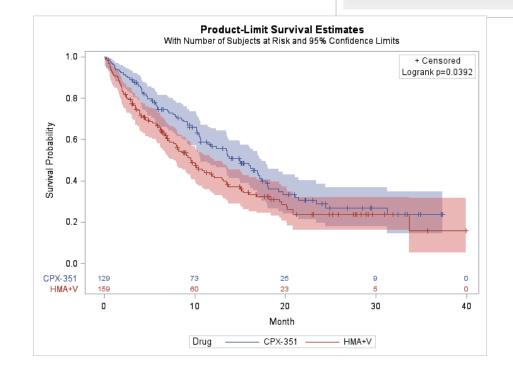
- No differences in combined CR/CRi rates between the two groups overall or in subgroup analyses
- Generally higher rates of CRi in HMA+V compared to CPX-351 in several subgroups consistent with clinical experience
- No differences in combined CR/CRi rates between the two groups among all mutation subgroups (TP53, FLT3, NPM1, RUNX1, ASXL1, IDH1/IDH2)

OVERALL POPULATION: MEDIAN OS IS HIGHER IN CPX-351 TREATED GROUP

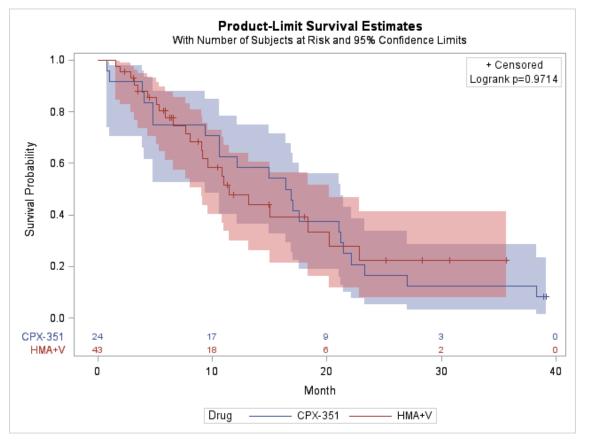

 Kaplan Meier curve for OS in overall cohort (excluded 7 patients from CPX-351 group due to long follow up >40mo; excluded 4 from HMA+V group due to missing dates)

		CPX-351 Frontline	HMA+V Frontline	p-value
	n	211	226	
Outcomes				
	CR/CRi, N (%)	122 (57.8)	128 (56.6)	p = 0.803
	Median survival time, months			
	RFS (95% CI)	33.7 (27.4 – NA)	15.8 (11.8 – NA)	p = 0.132
	OS (95% CI)	17.3 (13.8 - 20.5)	11.1 (9.3 - 13.6)	<i>p</i> = 0.007

- There are no significant differences in response rate (CR+CRi) or median RFS between the two cohorts
- Median overall survival was higher in the CPX-351 treatment group (17.3mo vs 11.1mo)


OVERALL POPULATION: OS ACCORDING TO ELN RISK

ELN favorable/intermediate


- Excluded 7 patients from CPX-351 group due to long follow up >40mo; excluded 1 from HMA+V group due to missing dates)
- No significant difference in OS

ELN adverse

- Excluded 3 from HMA+V group due to missing dates)
- Higher OS in CPX-351 cohort
- Maybe related to higher rates of transplant in the younger CPX351 group

60-75 YO: COMORBIDITY ANALYSES, PARTIAL DATA

Kaplan Meier curve for OS in patients with Ferrara comorbidity score 0 only (n = 68; excluded 5 patients from CPX-351 group due to long follow up >40mo; excluded 1 from HMA+V group due to missing data)

<u>CPX-351: n = 31; HMA+V: n = 58</u>

- Higher rates of nonzero Ferrara score in HMA+V cohort (24.1% vs. 6.45%, p = 0.045)
- No significant difference in total HCTCI score between patients who underwent HSCT and those who did not
- There is no difference in OS between the two cohorts in patients with pre-induction Ferrara comorbidity score 0

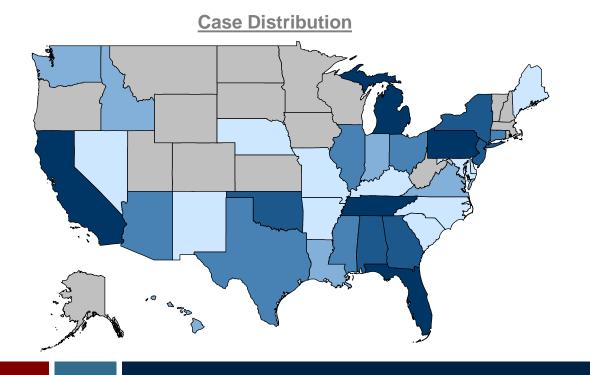
CONCLUSIONS FROM REAL WORLD ANALYSES OF CPX-351 AND HMA+V AS FRONTLINE AML THERAPY

- In the overall population, no significant difference in response rate (CR+CRi) between the 2 groups
- In patients aged 60-75 yrs, there was no significant difference in response rate (CR+CRi) between the 2 groups
- In overall population, CPX-351 treated patients had longer OS compared to HMA+V
- Among 60-75 yrs population, there was no significant difference in OS between the groups despite more than double the rate of HSCT in CPX-351 group
- Subgroup analyses in 60-75yo showed higher overall survival w/ CPX-351 for TP53 positive patients
- Among patients 60-75 yrs of age, there was no difference in survival after achieving CR between the two treatment groups
- There was no difference in post transplant survival between the two treatment groups
- Limitations: retrospective chart review, lack of MRD data; post-transplant analyses limited by small sample size
- Further investigation of preinduction fitness scores (Ferrara) and post-induction fitness scores (HCTCI) are pending

American Society of Hematology 2021

Real World Survival Outcomes of CPX-351 Versus Venetoclax and Azacitidine for Initial Therapy in Adult Acute Myeloid Leukemia

Andrew H. Matthews, MD¹; Alexander E. Perl, MD¹; Selina M. Luger, MD¹; Martin P. Carrol, MD¹; Daria V. Babushok MD, PhD¹; Noelle V. Frey, MD¹; Saar I. Gill, MD, PhD¹; Elizabeth O. Hexner, MD¹; Mary Ellen Martin MD¹; Shannon R. McCurdy, MD¹; David L. Porter, MD¹; Edward A. Stadtmauer MD¹; Alison W. Loren, MD¹; Vikram Paralkar, MD¹; Ivan P. Maillard, MD, PhD¹; Wei-Ting Hwang PhD²; David Margolis, MD², Keith W. Pratz, MD¹


December 13, 2021

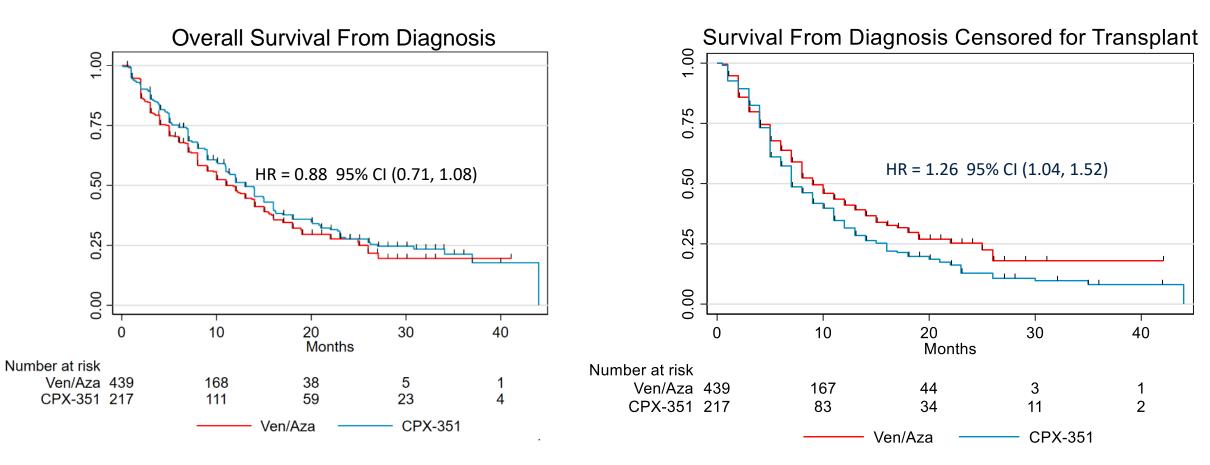
1. Division of Hematology-Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA.

2. Department of Biostatistics, Epidemiology and Informatics, Perlman School of Medicine, Philadelphia, PA.

Utilized Two Data Sources: UPHS EHR and Flatiron Database

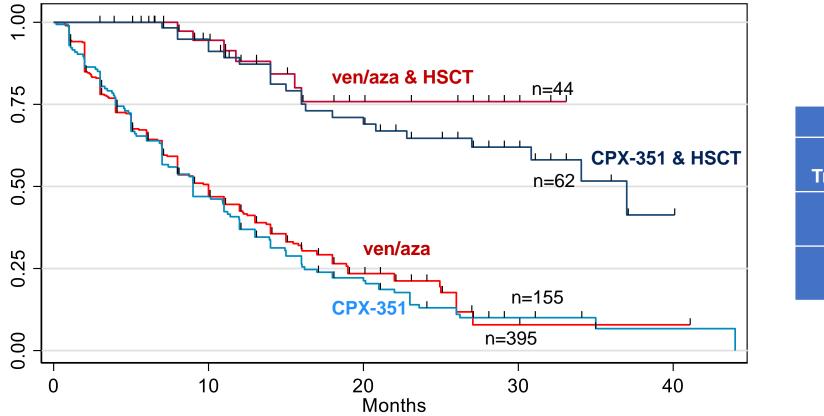
- UPHS (HUP) EHR: five hospitals system spanning inpatient and outpatient settings
- Flatiron Health database: a nationwide compilation of de-identified EHR-derived clinical, biomarker, treatment and mortality data for 2.2 million real-world oncology patients at 800 different sites of care
 - Longitudinal data spanning inpatient, outpatient visits with both structured and unstructured data sources

Patient Characteristics Show Some Imbalance at Baseline


	Ven/Aza	CPX-351	p-value
	N=439	N=217	
Age	75 (36-88)	67 (21-82)	<0.001
Gender			0.056
Female	191 (44%)	112 (52%)	
Male	248 (56%)	105 (48%)	
Practice Type			<0.001
Academic	149 (34%)	103 (47%)	
Community	290 (66%)	114 (53%)	
Туре			<0.001
De Novo	226 (51%)	63 (29%)	
History of MDS/MPN	150 (34%)	104 (48%)	
Therapy-Related	63 (14%)	50 (23%)	
ELN Risk Group			0.84
Favorable	34 (8%)	15 (7%)	
Intermediate	117 (27%)	64 (29%)	
Adverse	172 (39%)	92 (42%)	

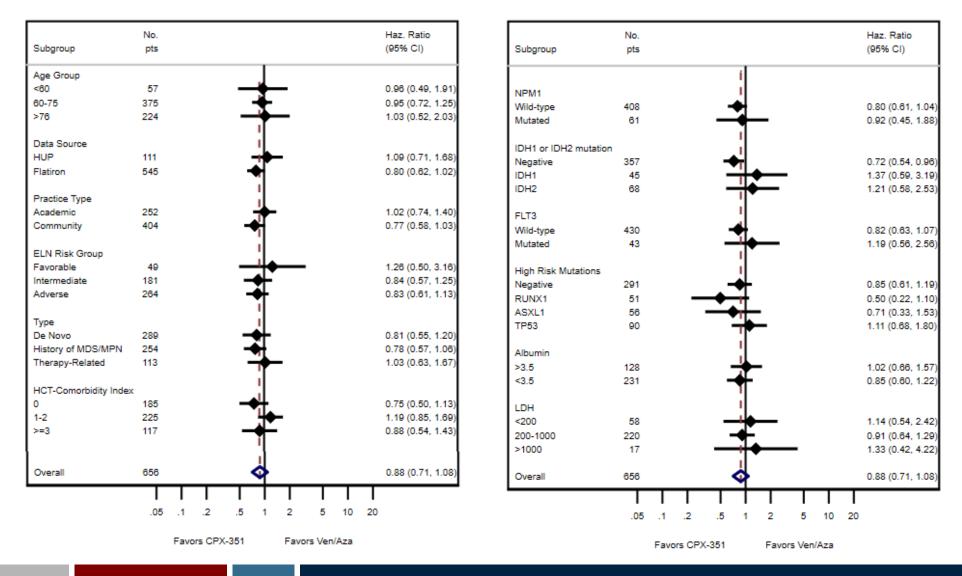
- No significant difference in risk groups, comorbidities, performance status or mutational status
- Expected differences in age, practice type and de novo vs secondary or therapy-related AML

Data are presented as median (range) for continuous measures, and n (%) for categorical measures.

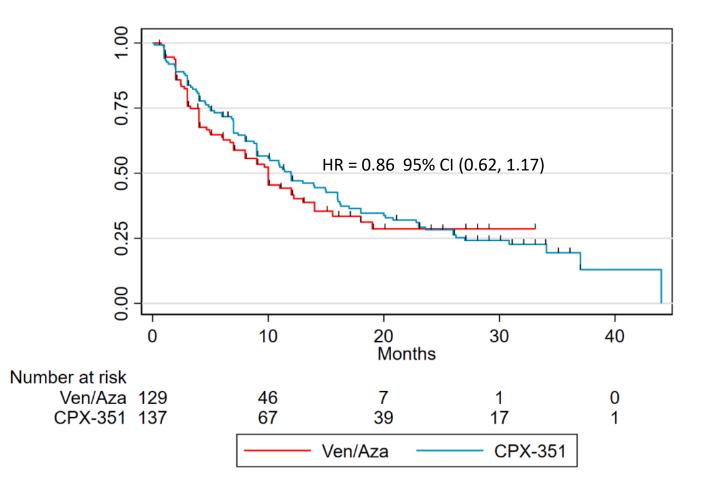


Ven/Aza and CPX-351 Showed Similar Overall Survival

Penn Medicine 24


Transplant is Critical for Survival Regardless of Initial Treatment

	Venetoclax / Azacitidine	CPX-351
Number (%)	44 (10%)	61 (28%)
Median Time to Transplant (range)	186 days (87 - 578)	171 days (34 - 903)
Median OS w/ HSCT	NR	37 mos
Median OS w/o HSCT	10 mos	9 mos



Key Sub-Groups Did Not Favor Ven/Aza or CPX-351

Restricting to CPX-351 Pivotal Trial Inclusion Criteria Also Showed No Significant Difference in Overall Survival

Population restricted to age 60-75 years-old with a history of a therapy-related myeloid neoplasm, myelodysplasia related cytogenetics or history of MDS/MPN (n=267). Overall survival from diagnosis to death or end of study period.

Early Mortality Similar but Febrile Neutropenia, Infections and Average Inpatient Length of Stay was Higher for CPX-351

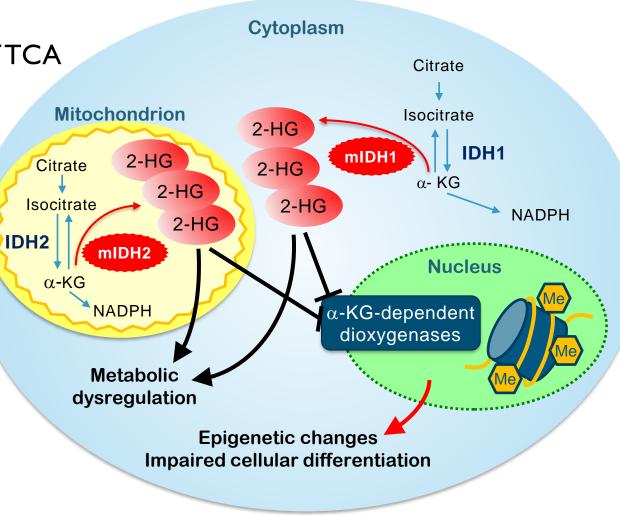
Flatiron & UPHS	CPX-351 n = 217	Venetoclax & Azacitidine n = 439	p-value
Median Cycles (range)	2 (1-5)	4 (1-28)	n/a
30 Day Mortality % (95% CI)	5% (2%-8%	5% (3%-7%)	0.51
60 Day Mortality % (95% CI)	10% (6%-14%	13% (10%-16%)	0.10
Diagnosis of Infection ¹ % (95% CI)	51% (42%-61%)	20% (15%-25%)	<0.00005

UPHS Only	CPX-351 Venetoclax & Azacitidine		p-value
	n = 52	n = 59	
Febrile Neutropenia % (95% CI)	90% (82%-98%)	54% (42%-67%)	<0.00005
Culture Positive Infection % (95% CI)	67% (55%-80%)	36% (23-48%)	0.0004
Mean Days of Inpatient Stays ² (95% CI)	41 (37-45)	15 (10-20)	<0.00005

1. Classified as having infection with documented ICD diagnosis code or intravenous antibiotic administration in Flatiron dataset. Culture results were available in University of Pennsylvania (HUP) cohort. 2 Includes readmission before second cycle of therapy. P-values by Fisher's exact test

Conclusions

- Overall survival similar for ven/aza and CPX-351
- CPX-351 and ven/aza had similar OS in all sub-groups and across sensitivity analyses
- Ven/aza and CPX-351 had similar early mortality
 - Ven/aza had lower rates of febrile neutropenia and documented infections
 - Ven/aza had shorter hospital length of stay
- Given similar efficacy, further work should confirm these findings and explore additional endpoints:
 - Prospective Trials (e.g., NCT04801797)
 - Additional Retrospective Replication^{1,2,3,4}

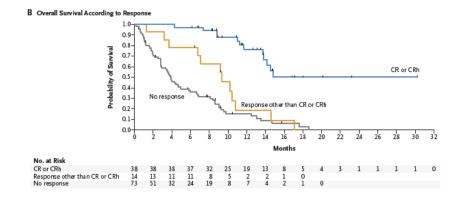


CASE 2

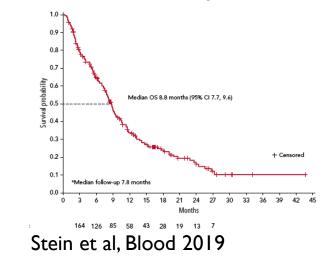
- 77 year old male
- History of mild anemia for 2 years
- Now with pancytopenia with wbc 11.3
- Marrow with 37% blasts, normal karyotype, IDH2 mutated, NPMI WT, FLT3 WT

IDHI and IDH2 mutations in AML

- Isocitrate Dehydrogenase I & 2 are members of TCA cycle
- Oncometabolite 2-HG in leukemias with IDH mutations(IDHI: Mardis et al, NEJM 2009, IDH2 et al Cancer Cell 2010)
- IDH mutations are found in ~16-20 % of AML c
 - IDHI mutations in ~7.5%
 - IDH2 mutations in ~8-10%
- IDH mutations associated with
 - High platelets
 - Normal Karyotype
 - NPMI mutations
 - Low WBC
 - Older age in IDH2 only



Stein et al, ASH abstract 2018


PHASE I/II IDH INHIBITOR STUDIES

Ivosidenib (IDHI RI32 mutation only)

- I25 pts relapsed or refractory AML
- Composite Response Rate (CR or CRh) 30.4% (38/125)
- Median time to response = 2.7 mo.
- Median duration of response = 8.2 mo.
- Differentiation syndrome 3.9%, Leukocytosis 1.7%

- Enasidenib (IDH2 RI40 & RI74 mutations only)
 - 214 pts relapsed or refractory AML
 - Composite Response Rate (CR or CRp) 29% (62/214)
 - Median time to best response = 3.7 mo.
 - Median duration of response = 5.6 mo.

AZAVEN IN IDH MUTANT PATIENTS Overall Survival by Subgroups

 Data on HMA/VEN in patients with IDH mutations very encouraging

	Aza+Ven	Aza+Pbo n/N(%)	HR	[95% CI] Aza+Ven vs. Aza+Pbo
All Su	bjects 161/286 (56.3)	109/145 (75.2)		0.64 (0.50, 0.82)
Gende	π			
Fe	male 61/114 (53.5)	41/58 (70.7)		0.68 (0.46, 1.02)
M	ale 100/172 (58.1)	68/87 (78.2)		0.62 (0.46, 0.85)
Age D	(ears)			
<1	5 66/112 (58.9)	36/58 (62.1)		0.89 (0.59, 1.33)
≥7	5 95/174 (54.6)	73/87 (83.9)		0.54 (0.39, 0.73)
Type	of AML			
De	Novo 120/214 (56.1)	80/110 (72.7)	H	0.67 (0.51, 0.90)
Se	condary 41/72 (56.9)	29/35 (82.9)	····•	0.56 (0.35, 0.91)
Cytog	enetic Risk			
Int	ermediate 84/182 (46.2)	62/89 (69.7)		0.57 (0.41, 0.79)
Po	or 77/104 (74.0)	47/ 56 (83.9)		0.78 (0.54, 1.12)
Molec	ular Marker			
FL	19/29 (65.5)	19/22 (86.4)		0.66 (0.35, 1.26)
IDI	1 15/23 (65.2)	11/11 (100.0)	H	0.28 (0.12, 0.65)
IDI	12 15/40 (37.5)	14/18(77.8)	· · · · · · · · · · · · · · · · · · ·	0.34 (0.16, 0.71)
IDI	11/2 29/61 (47.5)	24/28 (85.7)		0.34 (0.20, 0.60)
TP	53 34/38 (89.5)	13/ 14 (92.9)		0.76 (0.40, 1.45)
NP	M1 16/27 (59.3)	14/ 17 (82.4)		0.73 (0.36, 1.51)
			Favors Aza+Ven Favors Aza	*Pbo
			0.1 1	10

8

Mutation	#	CR/CRi %(N)	Duration of response	Overall Survival (mo)
FLT3	18	72 (13)	11(6.5,NR)	NR(8-NR)
IDH ½	35	71(25)	NR(6.8,NR)	24.4 (12.3-NR)
NPMI	23	91(21)	NR(6.8, NR)	NR (II-NR)
ТР53	36	47(17)	5.6(1.2,9.4)	7.2(3.7-NR)

Pollyea et al, ASH 2018

Adapted from DiNardo et al, Blood 2018

FRONTLINE IDH I OR IDH2 MUTANT AML

	Enasidenib (N=39)	Ivosidenib (N=34)	Venetoclax + Hypomethylator (N=25)
CR/CRi	21%	48% (CR30% CRi CRp I8%)	90% (N=20) 400mg & Azacitidine 100% (N=5) 400 mg & Decitabine *71%(N=35) all doses ven
Time to Best Response	3.7 months	2.8 months	1.3 (aza)*
DOR	Not reached	Not reported	Not Reached(6.8, NR)
Median EFS	5.7 months (2.8, 16.0)	Not reported	*Not reached(NR)
Median OS	11.3 months (5.7, 15.1)	12.6 mo	*24.4 m (12.3-NR) includes all dose levels
Grade 3/4 neutropenia	21%	Not reported	36%
Citation	Pollyea et al, Leukemia 2019	Roboz et al, ASH 2018, and Agios personal communication	*DiNardo et al Blood 2019, Pollyea et al,ASH 2018

AGILE: STUDY DESIGN

Multicenter, double-blind, randomized phase III trial

Patients with untreated AML (WHO criteria); centrally confirmed *IDH1* mutation status; ineligible for IC; ECOG PS 0-2 (planned N = 200) Ivosidenib 500 mg PO QD + Azacitidine 75 mg/m² SC or IV (n = 72)*

> Placebo PO QD + Azacitidine 75 mg/m² SC or IV (n = 74)*

- Enrollment halted based on efficacy as of May 12, 2021 (N = 148)
- Primary endpoint: EFS with ~173 events (52 mo)
- Secondary endpoints: CRR, OS, CR + CRh rate, ORR

AGILE: BASELINE CHARACTERISTICS

Characteristic	IVO + AZA (n = 72)	PBO + AZA (n = 74)
Median age, yr (range)	76.0 (58-84)	75.5 (45-94)
Sex, n (%) • Male • Female	42 (58.3) 30 (41.7)	38 (51.4) 36 (48.6)
ECOG PS, n (%) 0 1 2	14 (19.4) 32 (44.4) 26 (36.1)	10 (13.5) 40 (54.1) 24 (32.4)
Disease history, n (%) De novo AML Secondary AML	54 (75.0) 18 (25.0)	53 (71.6) 21 (28.4)

Characteristic	IVO + AZA (n = 72)	PBO + AZA (n = 74)
Median m <i>IDH1</i> VAF in BMA, % (range)	36.7 (3.1-50.5)	35.5 (3.0-48.6)
Cytogenetic risk, n (%) Favorable Intermediate Poor	3 (4.2) 48 (66.7) 16 (22.2)	7 (9.5) 44 (59.5) 20 (27.0)
Median bone marrow blasts, % (range)	54.0 (20-95)	48.0 (17-100)

AGILE: EFS AND OTHER EFFICACY OUTCOMES

Survival Outcome	IVO + AZA	PBO + AZA	HR (95% CI)	P Value
Median EFS in ITT population	NR	NR	0.33 (0.16-0.69)	.0011
Median EFS in patients achieving CR by Wk 24, mo (95% CI)	NE (14.8-NE)	17.8 (9.3-NE)	NR	NR
Median OS, mo	24.0	7.9	0.44 (0.27-0.73)	.0005

- EFS benefit associated with IVO consistent across subgroups: de novo status, region, age, ECOG PS at BL, sex, race, BL cytogenetic risk, WHO AML classification, WBC at BL, percentage of BM blasts at BL
- OS benefit associated with IVO consistent against same subgroups
- Change in markers of health-related QoL favored IVO + AZA over PBO + AZA

AGILE: RESPONSE

Response	IVO + AZA (n = 72)	PBO + AZA (n = 74)
CR rate, n (%) [95% CI] OR (95% CI); <i>P</i> value	34 (47.2) [35.3-59.3] 4.8 (2.2-10	11 (14.9) [7.7-25.0] 0.5); <.0001
 Median duration of CR, mo (95% CI) Median time to CR, mo (range) 	NE (13.0-NE) 4.3 (1.7-9.2) 5.0 (2.3	11.2 (3.2-NE) 3-10.8); <.0001 3.8 (1.9-8.5)
CR + CRh, n (%) [95% CI] OR (95% CI); <i>P</i> value	38 (52.8) [40.7-64.7]	13 (7.6) [9.7-28.2]
 Median duration of CR + CRh, mo (95% CI) Median time to CR + CRh, mo (range) 	NE (13.0-NE) 4.0 (1.7-8.6) 7.2 (3.3	9.2 (5.8-NE) 3-15.4); <.0001 3.9 (1.9-7.2)
ORR, n (%) [95% CI] OR (95% CI); <i>P</i> value	45 (62.5) [50.3-73.6]	14 (18.9) [10.7-29.7]
Median duration of response, mo (95% CI) Median time to response, mo (range)	22.1 (13.0-NE) 2.1 (1.7-7.5)	9.2 (6.6-14.1) 3.7 (1.9-9.4)
mIDH1 Clearance in BMMCs by Response, n/N (%)	IVO + AZA (n = 43)	PBO + AZA (n = 34)
CR + CRh CR CRh	17/33 (51.5) 14/29 (48.3) 3/4 (75)	3/11 (27.3) 2/10 (20) 1/1 (100)
Non-CR + CRh responders	2/4 (50)	0/2 (0)
Nonresponders	1/6 (16.7)	0/21 (0) Slide credit: clinical options

Slide credit: <u>clinicaloptions.com</u>

AGILE: TEAES

TEAEc = n (9/)	IVO + AZA	A (n = 71)	PBO + AZA (n = 73)		
TEAEs, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Any TEAE	70 (98.6)	66 (93.0)	73 (100)	69 (94.5)	
Any hematologic TEAE	55 (77.5)	50 (70.4)	48 (65.8)	47 (64.4)	
Most common hematologic TEAEs* Anemia Febrile neutropenia Neutropenia Thrombocytopenia 	22 (31.0) 20 (28.2) 20 (28.2) 20 (28.2)	18 (25.4) 20 (28.2) 19 (26.8) 17 (23.9)	21 (28.8) 25 (34.2) 12 (16.4) 15 (20.5)	19 (26.0) 25 (34.2) 12 (16.4) 15 (20.5)	
Most common TEAEs* Nausea Vomiting Diarrhea Pyrexia Constipation Pneumonia 	30 (42.3) 29 (40.8) 25 (35.2) 24 (33.8) 19 (26.8) 17 (23.9)	2 (3.8) 0 1 (1.4) 1 (1.4) 0 16 (22.5)	28 (38.4) 19 (36.0) 26 (35.6) 29 (39.7) 38 (52.1) 23 (31.5)	3 (4.1) 1 (1.4) 5 (6.8) 2 (2.7) 1 (1.4) 21 (28.8)	
Bleeding Infections	29 (40.8) 20 (28.2)	4 (5.6) 15 (21.1)	21 (28.8) 36 (49.3)	5 (6.8) 22 (30.1)	

- AEs of special interest (IVO + AZA vs PBO + AZA):
 - Grade ≥2 differentiation syndrome: 14.1% vs 8.2%
 - Grade ≥3 QT prolongation:
 9.9% vs 4.1%
- Fewer infections with
 IVO + AZA vs PBO + AZA
 (28.2% vs 49.3%)
- No treatment-related deaths

AGILE: INVESTIGATORS' CONCLUSIONS

- In patients with newly diagnosed IDHI-mutated AML ineligible for intensive CT, ivosidenib + azacitidine significantly extended EFS vs placebo + azacitidine
 - HR: 0.33 (95% CI: 0.16-0.69; P = .0011)
 - OS and clinical response also were significantly improved
- Overall frequency of TEAEs similar between arms
 - Fewer infections with ivosidenib + azacitidine treatment arm
- Change in markers of health-related QoL favored ivosidenib + azacitidine over placebo + azacitidine
- Investigators concluded study findings demonstrated that ivosidenib + azacitidine provides clinical benefit in this patient population

Montesinos. ASH 2021. Abstr 697.

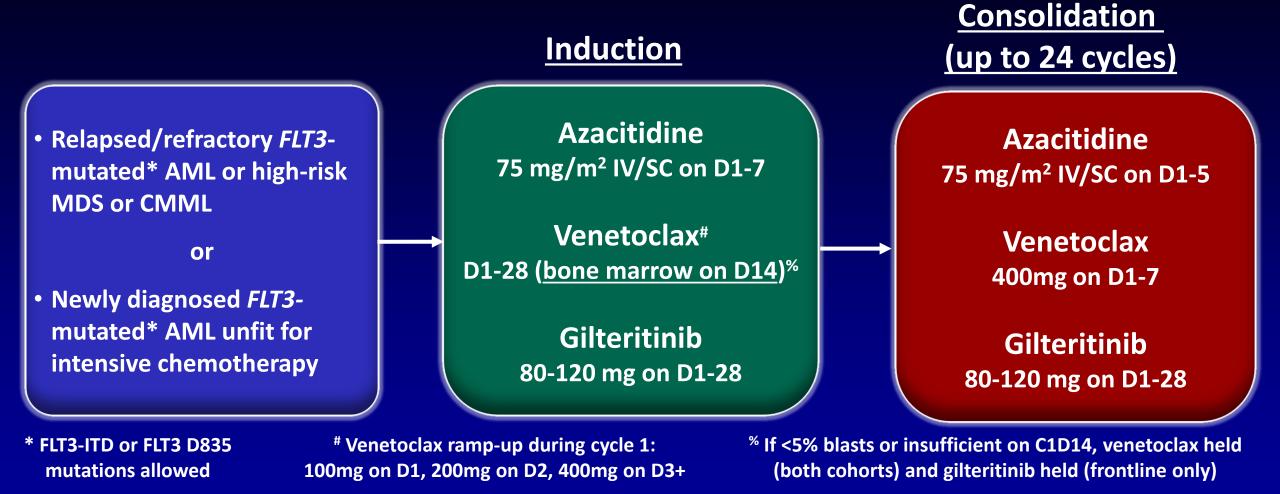
CASE 3

- 72 year old , history of CAD, EF 40%
- Presents with wbc 77000 and 80% blasts,
- FLT3 ITD mutated

A Triplet Combination of Azacitidine, Venetoclax and Gilteritinib for Patients with FLT3-mutated AML: Results from a Phase I/II Study

<u>NJ Short</u>, CD Dinardo, N Daver, D Nguyen, M Yilmaz, T Kadia, G Garcia-Manero, GC Issa, X Huang, W Qiao, K Sasaki, G Montalban-Bravo, K Chien, G Borthakur, R Delumpa, A Milton, S Pierce, E Jabbour, M Konopleva, H Kantarjian, F Ravandi Department of Leukemia

The University of Texas MD Anderson Cancer Center, Houston, TX


Aza+Ven+Gilteritnib in FLT3-mutated AML: Background

- FLT3 mutations detectable in ~1/3 of newly diagnosed AML
 - Prognostic impact: ITD mutations \rightarrow inferior survival (frontline and R/R)¹⁻²
 - Therapeutic impact: indication for HSCT in first remission, targetable with FLT3 inhibitors (both ITD and TKD mutations)
- Gilteritinib: potent FLT3 inhibitor shown to improve response rates and OS in R/R FLT3-mutated AML³
 - Preclinical and clinical evidence for synergy of gilteritinib and venetoclax⁴⁻⁵
- Azacitidine plus venetoclax: standard of care in older, unfit pts

Outcomes are suboptimal, especially for FLT3-ITD-mutated AML⁶

¹Frohling S et al. *Blood* 2002;100:4372-80 ⁴Mali RS et al. *Haematologica* 2021;106(4):1034-46 ²Ravandi F et al. *Leuk Res* 2010;34(6):752-6 ⁵Daver N et al. ASH 2020 (abstract #333) ³Perl AE et al. *N Engl J* Med 2019;381(18):728-40 ⁶Konopleva NY et al. ASH 2020 (abstract #1904)

Aza+Ven+Gilteritinib in FLT3-mutated AML: Regimen

- Primary endpoints: MTD of gilteritinib in combination (phase I), CR/CRi rate (phase II)
- <u>Secondary endpoints:</u> CR rate, MRD negativity rate, duration of response, OS, safety

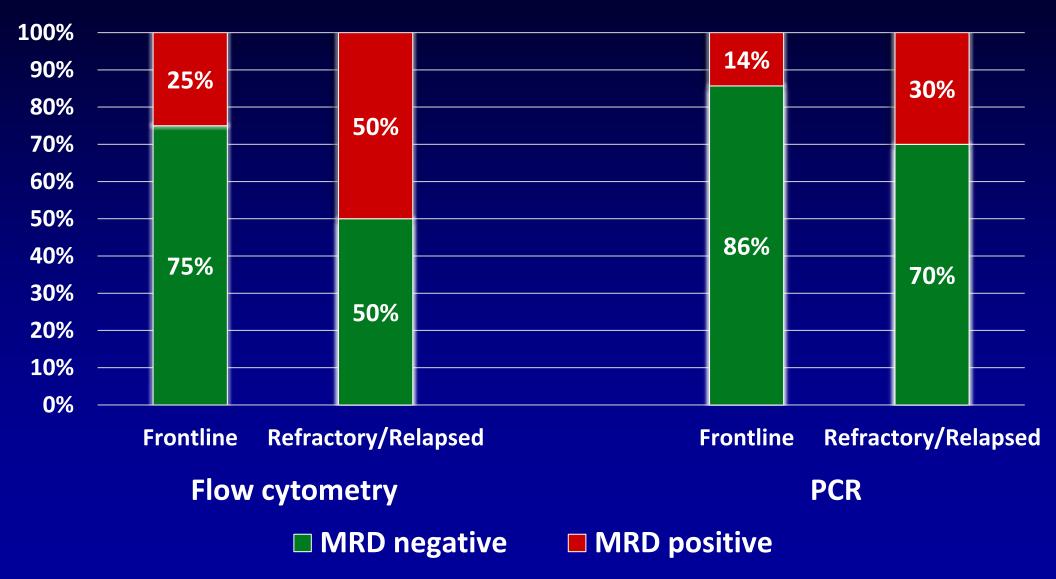
Aza+Ven+Gilteritinib in FLT3-mutated AML: Patients

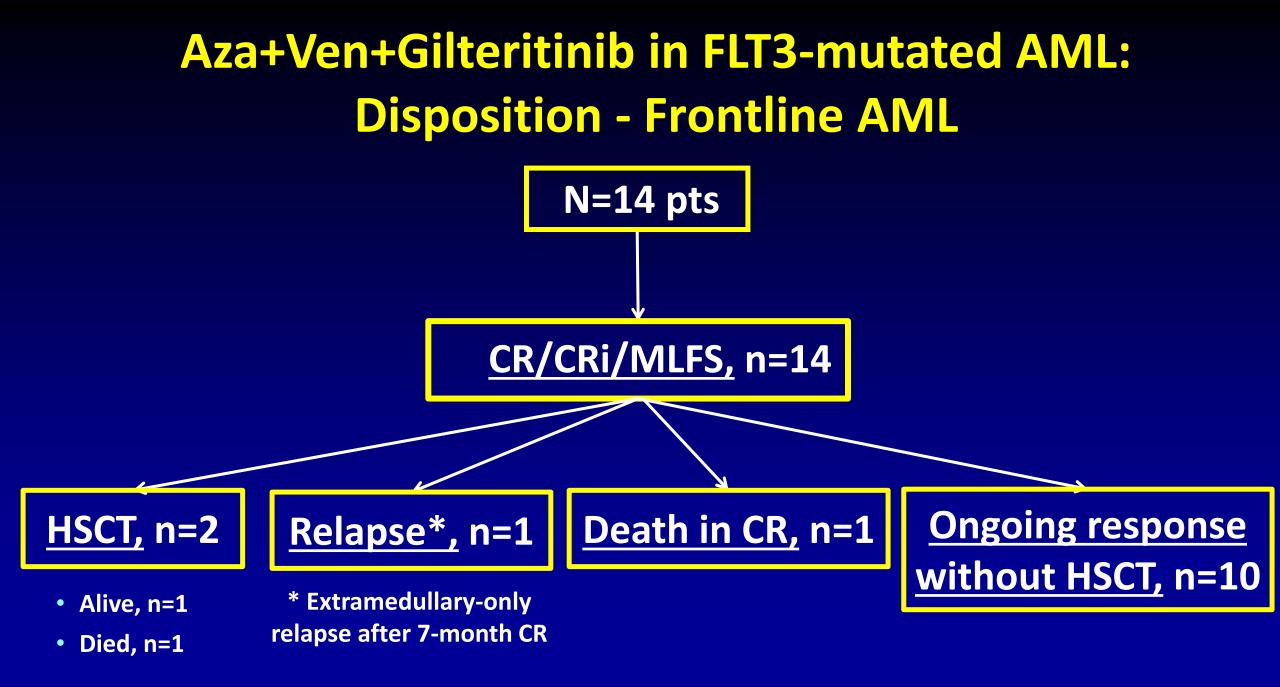
	Frontline	Relapsed/Refractory
	(N=14)	(N=16)
Category	N (%) / median [range]	N (%) / median [range]
	71 [61-82]	68 [19-90]
≥60 years	14 (100)	12 (75)
≥75 years	4 (29)	3 (19)
AML	14 (100)	15 (94)
MDS/CMML	0	1 (6)
Diploid	7 (50)	6 (37)
Adverse-risk	3 (21)	6 (37)
Others	4 (29)	4 (26)
ITD	11 (79)	7 (44)
TKD	3 (21)	6 (37)
ITD+TKD	0	3 (19)
ITD	0.29 [0.04-3.35]	0.61 [0.03-15.7]
TKD	0.85 [0.03-1.11]	0.59 [0.01-1.35]
		2 [1-5]
		5 (31)
		7 (44)
		5 (31)
	≥60 years ≥75 years AML MDS/CMML Diploid Adverse-risk Others ITD TKD ITD+TKD ITD+TKD	(N=14) Category N (%) / median [range] 71 [61-82] ≥60 years 14 (100) ≥75 years 4 (29) AML 14 (100) MDS/CMML 0 Diploid 7 (50) Adverse-risk 3 (21) Others 4 (29) ITD 11 (79) TKD 3 (21) ITD+TKD 0 ITD 0.29 [0.04-3.35] TKD 0.85 [0.03-1.11]

Aza+Ven+Gilteritinib in FLT3-mutated AML: Patients

	Frontline	Relapsed/Refractory
Mutations (detected in ≥2 pts)	(N=14) N (%) / median [range]	(N=16) N (%) / median [range]
DNMT3A	9 (73)	9 (56)
NPM1	6 (43)	7 (44)
RUNX1	3 (21)	5 (31)
TET2	5 (36)	3 (19)
WT1	1 (7)	6 (37)
BCOR	4 (29)	0
KRAS/NRAS	2 (14)	2 (13)
GATA2	1 (7)	2 (13)
TP53	1 (7)	2 (13)
ASXL1	0	2 (13)
ASXL2	0	2 (13)
BCORL1	2 (14)	0
CBL	0	2 (13)
SMC3	0	2 (13)
STAG2	0	2 (13)

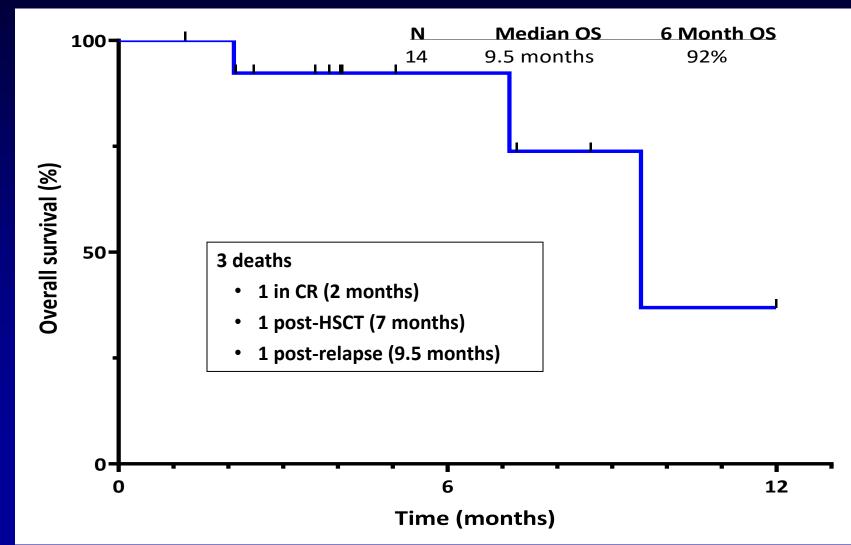
Aza+Ven+Gilteritinib in FLT3-mutated AML: Phase I Safety


- 10 pts treated in Phase I cohort
 - Gilteritinib 80mg daily in 6 pts
 - Gilteritinib 120mg daily in 4 pts (1 pt not evaluable for DLT)
- No non-hematologic DLTs observed
- Myelosuppression appeared greater with gilteritinib 120mg dosing
 - 1/3 DLT at 120mg (grade 4 myelosuppression); 0/6 DLTs at 80mg
 - Among 3/4 responding pts at 120mg dose, MLFS was best response
 - 3/6 pts (50%) at 80mg dose responded \rightarrow 1 CR and 2 CRi
 - Gilteritinib 80mg chosen as phase II expansion dose


Aza+Ven+Gilteritinib in FLT3-mutated AML: Responses

Response, n/N (%)	Frontline	R/R		
	N = 14	N = 16		
mCRc (CR/CRi/MLFS)	14 (100)	11 (69)		
CR	13 (93)	3 (19)		
CRi	0	2 (13)		
MLFS	1 (7)	6 (37)		
PR**	0	1 (6)		
No response	0	4 (25)		
Early death	0	0		

****** PR in 1 patient with extramedullary-only disease (assessed by PET scan)


Aza+Ven+Gilteritinib in FLT3-mutated AML: Best MRD Response

Aza+Ven+Gilteritinib in FLT3-mutated AML: OS in Frontline Cohort

Median follow-up: 4.1 months (range, 1.2-12.0+ months)

Aza+Ven+Gilteritnib in FLT3-mutated AML: Grade ≥3 Non-Hematologic Adverse Events

Adverse events	Frc	Frontline (N=14)			Refractory/Relapsed (N=16)			
	Grade 3, n (%)	Grade 4, n (%)	Grade 5, n (%)	Grade 3, n (%)	Grade 4, n (%)	Grade 5, n (%)		
Acute kidney injury	0	0	0	1 (6)	0	0		
Atrial fibrillation	0	0	0	1 (6)	0	0		
DIC	0	0	0	0	0	1 (6)		
Epistaxis	0	0	0	1 (6)	0	0		
Febrile neutropenia	0	0	0	5 (31)	0	0		
GI bleeding	0	0	0	0	1 (6)	0		
Hyponatremia	0	0	0	1 (6)	0	0		
Hypotension	0	0	0	2 (12)	1 (6)	0		
Infection	4 (29)	0	1 (7)	9 (56)	0	2 (12)		
Intracranial hemorrhage	0	0	0	0	0	1 (6)		
Nausea/vomiting	1 (7)	0	0	0	0	0		
QT prolongation	1 (7)	0	0	0	0	0		
Sepsis	0	0	0	3 (19)	1 (6)	0		
Tumor lysis syndrome	0	0	0	1 (6)	0	0		

Aza+Ven+Gilteritnib in FLT3-mutated AML: Hematologic Recovery in Cycle 1

	Fron	Frontline cohort		R/R cohort		
Hematologic parameter	Evaluable pts	Median [range]	Evaluable pts	Median [range]		
ANC >500	n=14	38 [28-117 days]	n=6	46 [35-63 days]		
ANC >1000	n=13	40 [32-53 days]	n=5	53 [46-77 days]		
Platelets >50K	n=14	20 [16-84 days]	n=5	26 [13-77 days]		
Platelets >100K	n=13	28 [18-43 days]	n=3	21 [17-82 days]		

Aza+Ven+Gilteritinib in FLT3-mutated AML: Conclusions

- Azacitidine + venetoclax + gilteritinib results in high rates of mCRc in newly diagnosed (100%) and R/R (69%) FLT3-mutated AML
 - CR rate 93% and FLT3 PCR negativity rate 86% in newly diagnosed pts
- Durability of responses encouraging in newly diagnosed pts
 - Only 1 relapse to date; 6-month OS rate: 92%
- Myelosuppression common but manageable with mitigation strategies
 - Use of gilteritinib 80mg
 - Day 14 bone marrow to determine course of venetoclax/gilteritinib
 - Attenuation of azacitidine/venetoclax in consolidation

CONCLUSION

2017 Approvals			-	2018 Appro	vals	
April 28August IAugust 3MidostaurinEnasidenibCPX-35 Inew dxrel/ref IDH2-new dx therapy-FLT3-mut AMLmut AMLrelated AML orAML with MRCAML with MRC	September 1 Gemtuzumab ozogamicin new dx CD33+ AML in adults and rel/ref CD33+ AML in adults and children	AML	0	November Glasdegib new dx AML Age 75+/unfit Azacitidine	<u>November</u> Gilteritinib rel/ref FLT3-mut AML	<u>December</u> Tagraxofusp BPDCN

Many new drugs for AML

Approved or shown to be of benefit in particular subsets and/or populations Now exploring new indications , broader subgroups and combinations Randomized trials needed to better define how to use these agents