

WINSHIP CANCER INSTITUTE

A Cancer Center Designated by the National Cancer Institute

EMORY UNIVERSITY SCHOOL OF MEDICINE

Beyond the Congress Induction Therapy

Sagar Lonial, MD Professor and Chair Department of Hematology and Medical Oncology Chief Medical Officer, Winship Cancer Institute Emory University School of Medicine

Outcomes from RVD 1000 series

Joseph et al, JCO 2020

Induction Principles

- Goals are to induce a rapid and deep response
- Do above without significant toxicity

- Current standard of care is IMID+PI+Dex
- Rapidly expanding towards IMID+PI+ Dex+ CD38 Moab

CASSIOPEIA Part 1 Study Design

• Part 1 compared D-VTd vs VTd as induction/consolidation

Presented By: Philippe Moreau

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

DARA Significantly Improved PFS vs OBS in Patients Treated With VTd Induction/Consolidation

- A prespecified analysis showed significant interaction between maintenance and induction/consolidation therapy
- A PFS benefit was observed for VTd/DARA vs VTd/OBS
- PFS was not different for D-VTd/DARA vs D-VTd/OBS

Presented By: Philippe Moreau

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

^{*}Nominal P value.
CI, confidence interval; D-VTd, daratumumab, bortezomib, thalidomide, and dexamethasone; DARA, daratumumab;
HR, hazard ratio; OBS, observation; PFS, progression-free survival; VTd, bortezomib, thalidomide, and dexamethasone

CASSIOPEIA: Induction/Consolidation

 Analyses in Part 1 were conducted in the ITT population (N=1085), which included all first-randomization patients

PR, partial response or better; IV, intravenous; Q8W, every 8 weeks; OBS, observation; ECOG, Eastern Cooperative Oncology Group; QW, every week; Q2W, every 2 weeks; SC, subcutaneous; PO, oral; IFM, Intergroupe Francophone du Myélome; HOVON, the Dutch-Belgian Cooperative Trial Group for Hematology-Oncology; ISS, International Staging System; PD, progressive disease; >VGPR, very good partial response or better.
^aMRD analyses were performed at predefined timepoints for all patients, regardless of response. ^bMRD analyses were performed in patients with >VGPR at Weeks 25, 52, and 105.

CASSIOPEIA: D-VTd Improved Rates of ≥CR + MRD Negativity (MFC; 10⁻⁵) Versus VTd Following Induction and Consolidation

 Post-consolidation MRD-negativity rates among patients who achieved ≥CR were consistent across subgroups, including ISS disease stage and high-risk cytogenetics

MFC, multiparametric flow cytometry.

^aCochran-Mantel-Haenszel estimate of the common odds ratio for stratified tables was used. The stratification factors were study site affiliation, ISS disease stage, and cytogenetics. *P* value was calculated based on a stratified Cochran-Mantel-Haenszel chi-squared test.

CASSIOPEIA: Landmark PFS Analysis From Post-induction ≥CR + MRD-negativity (MFC; 10⁻⁵) Status By Treatment Group

MFC, multiparametric flow cytometry.

CASSIOPEIA: Maintenance

 Analyses in Part 2 were conducted in the maintenance ITT population (N=886), which included all re-randomized patients

PR, partial response or better; IV, intravenous; Q8W, every 8 weeks; OBS, observation; ECOG, Eastern Cooperative Oncology Group; QW, every week; Q2W, every 2 weeks; SC, subcutaneous; PO, oral; IFM, Intergroupe Francophone du Myélome; HOVON, the Dutch-Belgian Cooperative Trial Group for Hematology-Oncology; ISS, International Staging System; PD, progressive disease; VGPR, very 8 weeks; OBS, observation; ECOG, Eastern Cooperative Oncology Group; QW, every week; Q2W, every 2 weeks; SC, subcutaneous; PO, oral; IFM, Intergroupe Francophone du Myélome; HOVON, the Dutch-Belgian Cooperative Trial Group for Hematology-Oncology; ISS, International Staging System; PD, progressive disease; VGPR, very good partial response or better.
^aMRD analyses were performed at predefined timepoints for all patients, regardless of response. ^bMRD analyses were performed in patients with VGPR at Weeks 25, 52, and 105.

CASSIOPEIA: Rates of 2-year Sustained ≥CR + MRD Negativity at 10⁻⁵ and 10⁻⁶ (NGS) at Any Timepoint During Maintenance^a

^aPost-consolidation after the second randomization. ^bOdds ratio for 10⁻⁵ MRD-negativity rates. ^c*P* value was calculated based on a stratified Cochran-Mantel-Haenszel chi-squared test. Daratumumab (DARA) Plus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Patients (Pts) With Transplant-eligible Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of GRIFFIN After 24 Months of Maintenance

Jacob Laubach,^{1,*} Jonathan L. Kaufman,² Douglas W. Sborov,³ Brandi Reeves,⁴ Cesar Rodriguez,⁵ Ajai Chari,⁶ Rebecca Silbermann,⁷ Luciano J. Costa,⁸ Larry D. Anderson Jr,⁹ Nitya Nathwani,¹⁰ Nina Shah,¹¹ Naresh Bumma,¹² Yvonne A. Efebera,¹³ Sarah A. Holstein,¹⁴ Caitlin Costello,¹⁵ Andrzej Jakubowiak,¹⁶ Tanya M. Wildes,¹⁷ Robert Z. Orlowski,¹⁸ Kenneth H. Shain,¹⁹ Andrew J. Cowan,²⁰ Huiling Pei,²¹ Annelore Cortoos,²² Sharmila Patel,²² J. Blake Bartlett,²³ Jessica Vermeulen,²⁴ Thomas S. Lin,²² Paul G. Richardson,¹ Peter M. Voorhees²⁵

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Winship Cancer Institute, Emory University, Atlanta, GA, USA; ³Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; ⁴University of North Carolina – Chapel Hill, Chapel Hill, NC, USA; ⁵Wake Forest University School of Medicine, Winston-Salem, NC, USA; ⁶Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA; ⁷Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; ⁸University of Alabama at Birmingham, AL, USA; ⁹Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ¹⁰Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ¹¹Department of Medicine, University of California San Francisco, San Francisco, CA, USA; ¹²Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ¹³OhioHealth, Columbus, OH, USA; ¹⁴Division of Oncology & Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; ¹⁵Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; ¹⁶University of Chicago Medical Center, Chicago, IL, USA; ¹⁷Cancer & Aging Research Group, St. Louis, MO, USA; ¹⁸Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁹Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; ²⁰Division of Medical Oncology, University of Washington, Seattle, WA, USA; ²¹Janssen Research & Development, LLC, Raritan, NJ, USA; ²⁴Janssen Research & Development, LLC, Leiden, The Netherlands; ²⁵Levine Cancer Institute, Atrium Health, Charlotte, NC, USA.

Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual

GRIFFIN: Responses Deepened Over Time^a

Response rates for sCR and ≥CR were greater for D-RVd versus RVd at all time points, with the deepest responses occurring after 2 years of maintenance therapy

PR, partial response; SD/PD/NE, stable disease/progressive disease/not evaluable. ^aData are shown for the response-evaluable population. ^b*P* values (2-sided) were calculated using the Cochran–Mantel–Haenszel chi-square test. ^cResponse rates are from the primary analysis cutoff (median follow-up: 13.5 mo), and the response-evaluable population included 196 patients (D-RVd, n = 97); RVd, n = 97). ^dResponse rates for the maintenance phase have longer follow-up (median: 38.6 mo), and the response-evaluable population included 197 patients (D-RVd, n = 100; RVd, n = 97). Percentages may not add up due to rounding.

GRIFFIN: MRD-negativity^a Rates Improved Throughout the DR Maintenance Period

MRD-negative (10⁻⁵) conversion rate

 29% (15/52) of D-RVd patients and 12% (10/82) of RVd patients who were MRD positive at the end of consolidation became MRD negative after 2 years of DR or R maintenance

^aThe threshold of MRD negativity was defined as 1 tumor cell per 10⁵ white cells. MRD status is based on the assessment of bone marrow aspirates by NGS in accordance with International Myeloma Working Group criteria. Bone marrow aspirates were assessed at baseline, at first evidence of suspected CR or sCR (including patients with VGPR or better and suspected DARA interference), at the end of induction and consolidation, and after 1 and 2 years of maintenance, regardless of response. Median follow-up was 38.6 months, and MRD-negativity rates are among the ITT population (D-RVd, n = 104; RVd, n = 103).

GRIFFIN: D-RVd Improved Rates of Durable MRD Negativity^a (10^{-5}) Lasting ≥ 6 Months or ≥ 12 Months Versus RVd

^aThe threshold of MRD negativity was defined as 1 tumor cell per 10⁵ white cells. MRD status is based on the assessment of bone marrow aspirates by NGS in accordance with International Myeloma Working Group criteria. Median follow-up was 38.6 months, and MRD-negativity rates are among the ITT population (D-RVd, n = 104; RVd, n = 103). Bone marrow aspirates were assessed at baseline, at first evidence of suspected CR or sCR (including patients with VGPR or better and suspected DARA interference), at the end of induction and consolidation, and after 1 and 2 years of maintenance, regardless of response. ^bP values were calculated using the Fisher's exact test.

GRIFFIN: PFS in the ITT Population

- Median follow-up: 38.6 months
- Median PFS was not reached in either group
- There is a positive trend toward improved PFS for D-RVd/DR versus RVd/R
- The separation of the PFS curves begins beyond
 1 year of maintenance and suggests a benefit of prolonged DR therapy

UNIVERSITÄTS KLINIKUM **HEIDELBERG**

Addition of Isatuximab to Lenalidomide, Bortezomib and Dexamethasone as Induction Therapy for Newly-Diagnosed, Transplant-Eligible Multiple Myeloma: The Phase III GMMG-HD7 Trial

Hartmut Goldschmidt^{1,2}, Elias K. Mai¹, Eva Nievergall¹, Roland Fenk³, Uta Bertsch^{1,2}, Diana Tichy⁴, Britta Besemer⁵, Jan Dürig⁶, Roland Schroers⁷, Ivana von Metzler⁸, Mathias Hänel⁹, Christoph Mann¹⁰, Anne Marie Asemissen¹¹, Bernhard Heilmeier¹², Stefanie Huhn¹, Katharina Kriegsmann¹, Niels Weinhold¹, Steffen Luntz¹³, Tobias A. W. Holderried¹⁴, Karolin Trautmann-Grill¹⁵, Deniz Gezer¹⁶, Maika Klaiber-Hakimi¹⁷, Martin Müller¹⁸, Cyrus Khandanpour¹⁹, Wolfgang Knauf²⁰, Markus Munder²¹, Thomas Geer²², Hendrik Riesenberg²³, Jörg Thomalla²⁴, Martin Hoffmann²⁵, Marc-Steffen Raab¹, Hans J. Salwender²⁶, Katja C. Weisel¹¹ for the German-speaking Myeloma Multicenter Group (GMMG)

¹Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany; ²National Center for Tumor Diseases Heidelberg, Heidelberg, Germany;
 ³Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany; ⁴Division of Biostatistics, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany;
 ⁵Department of Internal Medicine II, University Hospital Tübingen, Germany; ⁶Department for Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany;
 ⁷Medical Clinic, University Hospital Bochum, Bochum, Germany; ⁸Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany;
 ⁹Department of Internal Medicine III, Clinic Chemitz, Chemintz, Germany; ¹⁰Department for Hematology, Oncology and Immunology, University Hospital Barnherzige Brueder Regensburg, Germany; ¹³Department of Oncology, Hematology and BMT, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ¹²Clinic for Oncology and Rheumatology, University Hospital Bonn, Bonn, Germany; ¹³Coordination Centre for Clinical Trails (KKS) Heidelberg, Heidelberg, Germany; ¹⁴Department of Oncology, Hematology, Juniversity Hospital Disseldorf, Düsseldorf, Düsseldorf, Düsseldorf, Germany; ¹³Clinic for Hematology, Oncology and Immunology, University Hospital Bonn, Bonn, Germany; ¹⁵Department of Internal Medicine I, University Hospital Dresden, Dresden, Germany; ¹⁶Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; ¹⁹Medical Clinic A, University Hospital Münster, Münster, Germany; ²⁰Center for Hematology and Oncology Bethanien, Frankfurt am Main, Germany; ²¹Department of Internal Medicine III, University Hospital Mainz, Germany; ²²Department of Internal Medicine III, University Hospital Minz, Germany; ²²Department of Internal Medicin

Primary endpoint: MRD negativity at the end of induction phase

GMMG and Heidelberg University Hospital | ASH 2021

ASCT, autologous stem cell transplant; CR, complete response; d, dexamethasone; HDT, high-dose therapy; Isa, isatuximab; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; NGF, next-generation flow; PD, progressive disease; R, lenalidomide; R-ISS, Revised International Staging System; Te, transplant eligible; V, bortezomib 1. ClinicalTrials.gov: NCT03617731

First primary endpoint, end of induction MRD negativity by NGF (10⁻⁵), was met in ITT analysis

Patients with MRD negativity at the end of induction therapy

Low number of not assessable/missing[†] MRD status: Isa-RVd (10.6%) and RVd (15.2%)

Isa-RVd is the first regimen to demonstrate a rapid and statistically significant benefit from treatment by reaching a MRD negativity of 50.1% at the end of induction and to show superiority vs. RVd in a Phase 3 trial

*P value derived from stratified conditional logistic regression analysis

GMMG and Heidelberg University Hospital ASH 2021 ⁺Missing NGF-MRD values were due to either patients⁻ loss to follow-up during induction therapy or to missing bone marrow samples or technical failures in measurement counted as non-responders, i.e. NGF-MRD positive

CI, confidence interval; d, dexamethasone; Isa, isatuximab; ITT, intent-to-treat; MRD, minimal residual disease; NGF, next-generation flow; OR, odds ratio; R, lenalidomide; V, bortezomib

Response rates after induction therapy

Although the rates of CR after induction therapy did not differ between the Isa-RVd and RVd arms, there was a significant increase in ≥VGPR rates and ORR with Isa-RVd

*P values derived from Fisher's exact test

CR, complete response: d, dexamethasone: Isa, isatuximab; nCR; near-complete response; ORR, overall response rate; PR, partial response; R. lenalidomide: V. bortezomib: VGPR, very good partial response

Addition of Isa to RVd had limited impact on safety profile

AEs CTCAE grade ≥3, n (%)	Isa-RVd (n=330)	RVd (n=328)	AEs CTCAE grade ≥3, n (%)	lsa-RVd (n=330)	RVd (n=328)
Any AE	210 (63.6)	201 (61.3)	Specific hematologic AE (PT)		
Any serious AE (any grade)	115 (34.8)	119 (36.3)	Leukocytopenia/Neutropenia ⁺	87 (26.4)	30 (9.1)
Deaths	4 (1.2)	8 (2.4)	Lymphopenia	48 (14.5)	65 (19.8)
Investigations* (SOC)	79 (23.9)	77 (23.5)	Anemia	13 (3.9)	20 (6.1)
Blood and lymphatic system disorders (SOC)	85 (25.8)	55 (16.8)	Thrombocytopenia	21 (6.4)	15 (4.6)
Infections and infestations (SOC)	43 (13.0)	34 (10.4)	Specific non-hematologic AE (PT)		
Nervous system disorders (SOC)	28 (8.5)	33 (10.1)	Peripheral neuropathy	25 (7.6)	22 (6.7)
Gastrointestinal disorders (SOC)	27 (8.2)	31 (9.5)	Thromboembolic events	5 (1.5)	9 (2.7)
Metabolism and nutrition disorders (SOC)	12 (3.6)	26 (7.9)	Infusion-related reactions [‡]	4 (1.2)	NA

A comparable number of patients discontinued induction therapy due to AEs in the Isa-RVd arm vs. RVd arm

GMMG and Heidelberg University Hospital | ASH 2021 [†]Includes five episodes of febrile neutropenia during induction: Isa-VRd (n=3) vs. VRd (n=2)

*SOC considered as "Investigations" as defined by the CTCAE

*Infusion-related reactions of CTCAE grade 2 or higher in the Isa-RVd arm were n=42 (12.7%)

AE, adverse event; CTCAE, Common Terminology Criteria for Adverse Events; d, dexamethasone; Isa, isatuximab; NA, not applicable; PT, preferred term: R. lenalidomide: SOC. system organ class: V. bortezomib

Daratumumab, Carfilzomib, Lenalidomide and Dexamethasone (Dara-KRd), Autologous Transplantation and MRD Response-Adapted Consolidation and Treatment Cessation-Final Primary Endpoint Analysis of the MASTER Trial

<u>Luciano J. Costa¹</u>, Saurabh Chhabra², Natalie S. Callander, MD³, Eva Medvedova⁴, Bhagirathbhai Dholaria⁵, Rebecca Silbermann⁴, Kelly Godby¹, Binod Dhakal², Susan Bal¹, Smith Giri¹, Anita D'Souza², Timothy Schmidt³, Aric Hall³, Pamela Hardwick¹, Robert F. Cornell⁵, Parameswaran Hari²

1- University of Alabama at Birmingham; 2- Medical College of Wisconsin; 3- University of Wisconsin at Madison;
 4- Oregon Health and Science University; 5- Vanderbilt University

COMMIT- Academic Consortium to Overcome Multiple Myeloma through Innovative Trials

Treatment

Dara-KRd

- Daratumumab 16 mg/m² days 1,8,15,22 (days 1,15 C 3-6; day 1 C >6)
- Carfilzomib (20) 56 mg/m² Days 1,8,15
- Lenalidomide 25 mg Days 1-21
- Dexamethasone 40mg PO Days 1,8,15,22

- 123 patients enrolled across 5 sites
- 118 (96%) with MRD trackable by ClonoSEQ[®]
- Median follow-up of 23.8 months

*24 and 72 weeks after completion of therapy

MASTER trial

Best IMWG response by phase of therapy (ITT)

N=123

MASTER trial

Progression-Free and Overall Survival

- 84 patients achieved MRD-SURE
 0 HRCA 62%
 1 HRCA- 78%
 2+ HRCA 63%
- Median follow up in MRD-SURE: 14.2 mo.
- Risk of MRD resurgence or progression 12 months after treatment cessation

0 HRCA – 4% 1 HRCA- 0% 2+ HRCA – 27%

 None of patients entering MRD-SURE died from MM progression

MASTER trial

Cumulative incidence of MRD resurgence or progression

HRCA = gain/amp 1q, t(4;14), t(14;16), t(14;20) or del(17p)

MAIA: Study Design

Multicenter, open-label, randomized phase III trial

Dosing: daratumumab, 16 mg/kg IV (QW cycles 1-2, Q2W cycles 3-6, Q4W cycle 7+); lenalidomide, 25 mg QD PO on Days 1-21; dexamethasone 40 mg QW PO or IV.

- Primary endpoint: PFS
- Secondary endpoints: TTP, CR/sCR, MRD by NGS (10⁻⁵), PFS2, OS, ORR, safety

MAIA: OS and PFS with D-Rd and Rd

D-Rd, daratumumab plus lenalidomide and Dexamethasone; Rd, lenalidomide and Dexamethasone; HR, hazard ration; CI, confidence interval; NR, not reached.

STUDY SCHEME

INDUCTION

9 cycles of 4 weeks

Ixazomib 4 mg day 1, 8, 15 Daratumumab 16 mg/kg cycle 1-2 day 1, 8, 15, 22 cycle 3-6 day 1, 15 cycle 7-9 day 1 Dexamethasone cycle 1-2 20 mg day 1, 8, 15, 22 cycle 3-6 10 mg day 1, 15 cycle 7-9 10 mg day 1

MAINTENANCE

8-week cycles (until progression for a maximum of 2 years)

 Ixazomib 4 mg
 day 1, 8, 15, 29, 36, 43

 Daratumumab 16 mg/kg
 day 1

 Dexamethasone 10 mg
 day 1

Antibiotic and -viral prophylaxis: Cotrimoxazole 480 mg/day, Valaciclovir 500 mg twice daily Vaccinations according to local policy

DEMOGRAPHICS – PATIENT CHARACTERISTICS

	n=65 (%)	n=65 (%)
Male	35 (54)	Activity of Daily Living (ADL)
Median age (years) [range]	76 [65-80]	≥ 5 65 (100)
≤75 years	28 (43)	≤4 -
76-80 years	37 (57)	Instrumental ADL (IADL)
WHO performance status (%)		≥6 56 (86)
0	25 (38)	≤5 9 (14)
1	28 (43)	
2	6 (9)	Charlson Comorbidity Index (CCI)
3	3 (5)	≤1 46 (71)
unknown	3 (5)	≥ 2 19 (29)

EFFICACY

BEST RESPONSE ON INDUCTION TREATMENT

Response rate (%)	INT-FIT n=65 (%)
ORR	46 (71)
(s)CR	1 (2)
VGPR	23 (35)
PR	22 (34)
MR	11 (17)
SD	7 (11)
Not evaluable	1 (2)

EFFICACY - PROGRESSION FREE SURVIVAL

MEDIAN FOLLOW UP 18.1 MONTHS (RANGE 9.4-27.8)

MEDIAN PFS: 17.4 MONTHS

MEDIAN PFS:

- AGE: 16.6 MONTHS
- CCI/IADL: 18.2 MONTHS

TOLERABILITY NON-HEMATOLOGIC TOXICITY

CTCAE grade	П	III	IV
NON-HEMATOLOGIC n (%)	28 (43)	30 (46)	3 (5)
Gastro-intestinal	14 (22)	9 (14)	-
Infections	18 (28)	6 (9)	-
Peripheral neuropathy*	10 (15)	5 (8)	-
Pain	14 (22)	4 (6)	-
Secondary primary malignancy	3 (5)	2 (3)	1 (2)
Cardiac	3 (5)	1 (2)	2 (4)
Infusion related reactions	2 (3)	2 (3)	-

* Grade 1 PNP observed in 12 (18%) patients

_____ VMP: bortezomib/melphalan/prednisone

Emory Algorithm for newly diagnosed patients

Conclusions

- CD38 based induction clearly adds value in the induction setting
- Role in the maintenance setting remains unclear given the very long outcomes for standard risk with len alone.
- May be more exciting if addition of a second agent to Len allows one to shorten maintenance duration
- <u>**Do Not**</u> yet use MRD to define duration of maintenance

Thanks to:

Jonathan Kaufman Ajay Nooka **Craig Hofmeister** Madhav Dhodapkar L.T. Heffner Vikas Gupta Nisha Joseph Leon Bernal **Charise Gleason Donald Harvey Colleen Lewis** Amelia Langston Y. Gu S-Y Sun Jing Chen Mala Shanmugan Larry Boise **Cathy Sharp**

Patients and Families

American Cancer

Society®

OUNDATIO

sloni01@emory.edu

And the Clinical Research Team

IMS

Golfers Against Cancer T.J. Martell Foundation

And Many Others who are part of the B-cell Team

