

ASH 2021 Update Novel Agents in CLL

Nitin Jain, MD Associate Professor Department of Leukemia MD Anderson Cancer Center Houston, TX

BioAscend Meeting February 4, 2022

Financial Disclosures

Research Funding

Pharmacyclics, AbbVie, Genentech, AstraZeneca, BMS, Pfizer, Servier, ADC Therapeutics, Cellectis, Adaptive Biotechnologies, Incyte, Precision Biosciences, Aprea Therapeutics, Fate Therapeutics, Mingsight, Takeda, Medisix, Loxo Oncology, Novalgen

Advisory Board / Honoraria

Pharmacyclics, Janssen, AbbVie, Genentech, AstraZeneca, BMS, Adaptive Biotechnologies, Servier, Precision Biosciences, Beigene, Cellectis, TG Therapeutics, ADC Therapeutics, MEI Pharma, Ipsen, CareDX

Treatment Evolution for CLL

2014-

Novel CD20 mAb (Obinutuzumab)

BTK inhibitors (Zanubrutinib, Pirtobrutinib) PI3K inhibitor (Umbralisib) CAR-T

Novel Agents in CLL

- Non Covalent BTKi
 - Pirtobrutinib (LOXO-305)
 - Nemtabrutinib (MK-1026, ARQ 531)
- Covalent BTKi Zanubrutinib
- Novel PI3Ki Umbralisib
- Novel BCL2i
 - Lisaftoclax (APG-2575)
 - BGB-11417
 - LP-118 (dual BCL2/Bcl-xl inhibitor)

- PKCβ inhibitor MS553
- BTK degrader NX-2127
- CAR-T Liso-cel (CD19 CAR)
- CD20 BiTEs

Pirtobrutinib, A Highly Selective, Non-covalent (Reversible) BTK Inhibitor In Previously Treated CLL/SLL: Updated Results From The Phase 1/2 BRUIN Study

<u>Anthony R. Mato¹</u>, John M. Pagel², Catherine C. Coombs³, Nirav N. Shah⁴, Nicole Lamanna⁵, Talha Munir⁶, Ewa Lech-Maranda⁷, Toby A. Eyre⁸, Jennifer A. Woyach⁹, William G. Wierda¹⁰, Chan Y. Cheah¹¹, Jonathan B. Cohen¹², Lindsey E. Roeker¹, Manish R. Patel¹³, Bita Fakhri¹⁴, Minal A. Barve¹⁵, Constantine S. Tam¹⁶, David J. Lewis¹⁷, James N. Gerson¹⁸, Alvaro J. Alencar¹⁹, Chaitra S. Ujjani²⁰, Ian W. Flinn²¹, Suchitra Sundaram²², Shuo Ma²³, Deepa Jagadeesh²⁴, Joanna M. Rhodes²⁵, Justin Taylor¹⁹, Omar Abdel-Wahab¹, Paolo Ghia²⁶, Stephen J. Schuster¹⁸, Denise Wang²⁷, Binoj Nair²⁷, Edward Zhu²⁷, Donald E. Tsai²⁷, Matthew S. Davids²⁸, Jennifer R. Brown²⁸, Wojciech Jurczak²⁹

¹Memorial Sloan Kettering Cancer Center, New York, USA; ³Swedish Cancer Institute, Seattle, USA; ³University of North Carolina at Chapel Hill, USA; ⁴Medical College of Wisconsin, Milwaukee, USA; ⁵Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA; ⁶Department of Haematology, St. James's University Hospital, Leeds, UK; ⁷Institute of Hematology and Transfusion Medicine, Warsaw, Poland; ⁸Oxford University Hospitals NHS Foundation Trust, Churchill Cancer Center, Oxford, UK; ⁹The Ohio State University Comprehensive Cancer Center, Columbus, USA; ¹⁰MD Anderson Cancer Center, Houston, USA; ¹¹Linear Clinical Research and Sir Charles Gairdner Hospital, Perth, Australia; ¹²Winship Cancer Institute, Emory University, Atlanta, GA, USA; ¹³Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, USA; ¹⁴University of California San Francisco, San Francisco, USA; ¹⁵Mary Crowley Cancer Research, Dallas, USA; ¹⁶Peter MacCallum Cancer Center, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Australia; ¹⁷Plymouth Hospitals NHS Trust - Derriford Hospital, Plymouth, UK; ¹⁸Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA; ¹⁹University of Maimi Miller School of Medicine, Miami, USA; ²⁰Fred Hutchinson Cancer Research Center, ²¹Sarah Cannon Research Institute, Nashville, USA; ²²Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, ²³Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; ²⁴Cleveland Clinic, Cleveland, OH, USA; ²⁵Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY; ²⁶Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy; ²⁷Loxo Oncology at Lilly, Stamford, CT, USA; ²⁸Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA; ²⁹Maria Sklodowska-Curie Nati

Pirtobrutinib is a Highly Potent and Selective Non-Covalent (Reversible) BTK Inhibitor

Highly selective for BTK CMGC

Kinome selectivity¹

Xenograft models *In vivo* activity similarly efficacious as ibrutinib in WT; superior in C481S

- >300-fold selectivity for BTK vs 370 other kinases²
- Favorable pharmacologic properties allow sustained BTK inhibition throughout dosing interval²
- Nanomolar potency against WT & C481-mutant BTK in cell and enzyme assays²
- Due to reversible binding mode, BTK inhibition not impacted by a high intrinsic rate of BTK turnover²

BID, twice-daily; BTK, Bruton tyrosine kinase. ¹Mato et al, *Lancet*, 2021:397:892-901. ²Brandhuber BJ, et al. *Clin. Lymphoma Myeloma Leuk*. 2018.18:S216. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).

Phase 1/2 BRUIN Study: Design, Eligibility and Enrollment

Data cutoff date of 16 July 2021. ^aEfficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ^bOther includes DLBCL, WM, FL, MZL, Richter's transformation, B-PLL, Hairy Cell Leukemia, PCNSL, and other transformation.

BTK Pre-treated CLL/SLL Patient Characteristics

Characteristics	N = 261
Median age, years (range)	69 (36-88)
Female, n (%) Male, n (%)	84 (32) 177 (68)
ECOG PS ^a , n (%) 0 1 2	138 (53) 104 (40) 19 (7)
Median number of prior lines of systemic therapy (range)	3 (1-11)
Prior therapy, n (%)	
BTK inhibitor	261 (100)
Anti-CD20 antibody Chemotherapy	230 (88) 207 (79)
BCL2 inhibitor	108 (41)
PI3K inhibitor CAR-T Stem cell transplant Allogeneic stem cell transplant Autologous stem cell transplant	51 (20) 15 (6) 6 (2) 5 (2) 1 (<1)
Reason discontinued prior BTKi, n (%) Progressive disease Toxicity/Other	196 (75) 65 (25)

Baseline Molecular Characteristics ^a							
Mutation status, n (%)							
BTK C481-mutant	89 (43)						
BTK C481-wildtype	118 (57)						
PLCG2-mutant	33 (16)						
High Risk Molecular Features, n (%)							
17p deletion	51 (28)						
TP53 mutation	64 (37)						
17p deletion or TP53 mutation	77 (36)						
Both 17p deletion and TP53 mutation	38 (27)						
IGHV unmutated	168 (84)						
11q deletion	45 (25)						

Data cutoff date of 16 July 2021. Total % may be different than the sum of the individual components due to rounding. ^aMolecular characteristics were determined centrally, in those patients with sufficient sample to pass assay quality control. 207 patients were tested for BTK and PLCG2, 180 patients for 17p deletion, 175 patients for TP53, 143 patients for 17p deletion + TP53, 200 patients for IGHV and 180 patients for 11q deletion.

Pirtobrutinib Efficacy in BTK Pre-treated CLL/SLL Patients

Data cutoff date of 16 July 2021. *Patients with >100% increase in SPD. Data for 30 patients are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. ^aEfficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ^bORR includes patients with a best response of CR, PR, and PR-L. Response status per iwCLL 2018 according to investigator assessment. Total % may be different than the sum of the individual components due to rounding.

Progression-free Survival in BTK Pre-treated CLL/SLL Patients

Median PFS: Not Estimable (95% CI: 17.0 months – Not Estimable)

Median PFS: 18 months (95% CI: 10.7 months – Not Estimable)

PFS in at least BTK and BCL2 pre-treated patients

- 74% (194/261) of BTK pre-treated patients remain on pirtobrutinib
- Median follow-up of 9.4 months (range, 0.3 27.4) for all BTK pre-treated patients

Data cutoff date of 16 July 2021. Response status per iwCLL 2018 according to investigator assessment.

PFS in at least BTK pre-treated patients

Pirtobrutinib Safety Profile

		All doses a					
		Treatment-e	Treatment-related AEs				
Adverse Event	Grade 1	Grade 2	Grades 3/4	Any Grade			
Fatigue	13%	8%	1%	-	23%	1%	9%
Diarrhea	15%	4%	<1%	<1%	19%	<1%	8%
Neutropeniaª	1%	2%	8%	6%	18%	8%	10%
Contusion	15%	2%	-	-	17%	-	12%
AEs of special interest ^b							
Bruising ^c	20%	2%	-	-	22%	-	15%
Rash ^d	9%	2%	<1%	-	11%	<1%	5%
Arthralgia	8%	3%	<1%	-	11%	-	3%
Hemorrhage ^e	5%	2%	1% ^g	-	8%	<1%	2%
Hypertension	1%	4%	2%	-	7%	<1%	2%
Atrial fibrillation/flutter ^f	-	1%	<1%	<1%	2% ^h	-	<1%

No DLTs reported and MTD not reached 96% of patients received ≥1 pirtobrutinib dose at or above RP2D of 200 mg daily 1% (n=6) of patients permanently discontinued due to treatment-related AEs

Data cutoff date of 16 July 2021. Total % may be different than the sum of the individual components due to rounding. ^aAggregate of neutropenia and neutrophil count decreased. ^bAEs of special interest are those that were previously associated with covalent BTK inhibitors. ^cAggregate of contusion, petechiae, ecchymosis, and increased tendency to bruise. ^dAggregate of all preferred terms including rash. ^eAggregate of atrial fibrillation and atrial flutter. ^gRepresents 6 events (all grade 3), including 2 cases of post-operative bleeding, 1 case each of GI hemorrhage in the setting of sepsis, NSAID use, chronic peptic ulcer disease, and one case of subarachnoid hemorrhage in setting of traumatic bike accident. ^hOf 10 total afib/aflutter TEAEs, 3 occurred in patients with a prior medical history of atrial fibrillation, 2 in patients presenting with concurrent systemic infection, and 2 in patients with both.

Conclusions

- Pirtobrutinib demonstrates promising efficacy in CLL/SLL patients previously treated with BTK inhibitors
 - Efficacy was independent of BTK C481 mutation status, the reason for prior BTKi discontinuation (i.e. progression vs intolerance), or other classes of prior therapy received (including covalent BTK inhibitors, BCL2 inhibitors, and PI3K-delta inhibitors)
- Favorable safety and tolerability are consistent with the design of pirtobrutinib as a highly selective and non-covalent reversible BTK inhibitor
- Randomized, global, phase 3 trials evaluating pirtobrutinib in CLL/SLL ongoing:
 - BRUIN CLL-321 Pirtobrutinib vs Investigator's Choice of IdelaR or BendaR, requires prior BTK treatment (NCT04666038)
 - BRUIN CLL-322 Pirtobrutinib + VenR vs VenR, permits prior BTK treatment (NCT04965493)
 - BRUIN CLL-313 Pirtobrutinib vs BendaR in treatment naïve patients (NCT05023980)

IdelaR: Idelalisib and Rituximab; BendaR: Bendamustine and Rituximab; VenR: Venetoclax and Rituximab.

Preliminary Efficacy and Safety of MK-1026, a Non-Covalent Inhibitor of Wild-type and C481S Mutated Bruton Tyrosine Kinase, in B-cell Malignancies: A Phase 2 Dose Expansion Study

Jennifer Woyach,¹ Ian W. Flinn,² Farrukh Awan,³ Herbert Eradat,⁴ Danielle M. Brander,⁵ Michael Tees,⁶ Sameer A. Parikh,⁷ Tycel Phillips,⁸ Wayne Wang,⁹ Nishitha M. Reddy,¹⁰ Mohammed Z.H Farooqui,¹⁰ John C. Byrd,¹¹ Deborah M. Stephens¹²

¹Division of Hematology, The Ohio State University, Columbus, OH, USA; ²Sarah Cannon Center Research Institute, Nashville, TN, USA; ³Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁴Department of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ⁵Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA; ⁶Colorado Blood Cancer Institute, Denver, CO; ⁷Division of Hematology, Mayo Clinic, Rochester, MN, USA; ⁸Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; ⁹Veristat, LLC, Southborough, MA, USA; ¹⁰Merck & Co., Inc., Kenilworth, NJ, USA; ¹¹Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA; ¹²Division of Hematology and Hematologic Malignancies, University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA

MK-1026-001 Study Design (NCT03162536)

^aCohort A: patients with rr CLL/SLL with ≥2 prior therapies including covalent BTKi, with C481S mutation; ^bCohort B includes patients with rrCLL/SLL recall with ≥2 prior therapies, progressed /intolerant to BTKi, no C481S mutation

Baseline Characteristics

Characteristic, n (%)	Overall Population N = 118	Characteristic, n (%)	CLL/SLL 65 mg QD N = 51
Age, median (range),	66.0 (38-86)	Prior lines, median (range)	4 (1-18)
years		Prior BTK inhibitor therapy	43 (84.3)
Male	91 (77.1)	ECOG PS 0	14 (27.5)
White	105 (89.0)	1	32 (62.7)
CLL/SLL	68 (57.6)	2	5 (9.8)
WM	4 (3.4)	IGHV Unmutated	30 (58.8)
B-cell NHL	44 (37.3)	Mutated	2 (3.9)
RT	16 (13.3)	Unknown	19 (37.3)
FL	11 (9.3)	Del (17p) Present	12 (23.5)
DLBCL	6 (5.1)	Absent	33 (64.7)
MCL	6 (5.1)	Missing	6 (11.8)
High-grade BCL	3 (2.5)	BTK C481S Present	32 (62.7)
MZL	2 (1.7)	Absent	12 (23.5)
MK-1026 65 mg QD	94 (79.7)	Unknown/Missing	7 (13.7)

Data cut-off: April 7, 2021.

Summary of Response (CLL/SLL), Efficacy Evaluable Population

^aEfficacy evaluable patients with CLL/SLL who received at least one cycle of MK-1026 at preliminary RP2D of 65 mg QD and had ≥1 post-baseline assessment; Response assessed per iwCLL criteria Data cut-off: April 7, 2021.

Percent Change From Baseline in SPD (CLL/SLL), Efficacy Evaluable Population

a33 of 38 patients with ≥1 assessment post-baseline were evaluable for change from baseline in sum of product of diameters (SPD); Data cut-off: April 7, 2021.

Treatment-Emergent AEs

Events, n (%)		All Patients N = 118
All TEAEs		114 (96.6)
Grade ≥3 TEAEs ^a		80 (68.0)
MK-1026-related TEAE		78 (66.1)
Grade ≥3 related TEAEs ^b		31 (26.3)
Related TEAEs leading to discontinue	ation	9 (7.6)
TEAEs ≥20%	All	Grade ≥3
Fatigue	33.1%	3.4%
Constipation	31.4%	0.8%
Dysgeusia	28.0%	0
Cough	24.6%	0
Nausea	24.6%	0.8%
Pyrexia	24.6%	0
Dizziness	22.9%	0
Hypertension	22.9%	9.3%
Peripheral edema	22.0%	0
Diarrhea	21.2%	0.8%
Arthralgia	20.3%	0

Data cut-off: April 7, 2021; *8 patients had grade 5 TEAEs including death after PD (n=3), sepsis (n=1), dyspnea (n=1), and respiratory failure (n=2); *No grade 5 drug-related TEAEs were reported.

First-in-Human Study of Lisaftoclax (APG-2575), a Novel BCL-2 Inhibitor (BCL-2i), in Patients (pts) with Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL) and Other Hematologic Malignancies (HMs)

Sikander Ailawadhi,¹ Asher Alban Akmal Chanan-Khan,¹ Aneel Paulus,¹ Zi Chen,² Bo Huang,² Marina Konopleva,³ Danielle M. Brander,⁴ David Rizzieri,⁴ Masa Lasica,⁵ Constantine Si Lun Tam,⁵ Costas K. Yannakou,⁶ H. Miles Prince,⁶ Matthew Steven Davids,⁷ Zhicong He,⁸ Ming Lu,⁹ Mohammad Ahmad,³ Mingyu Li,⁹ Eric Liang,⁹ Boyd Mudenda,⁹ Dajun Yang,²¹⁰ and Yifan Zhai⁹

¹Mayo Clinic, Jacksonville, FL; ²Ascentage Pharma (Suzhou) Co. Ltd., Suzhou, China; ⁴Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston; ⁴Duke University School of Medicine, Durham, NC; ⁶St. Vincent's Hospital and University of Melbourne, Victoria, Australia; ⁴Epworth HealthCare, East Melbourne, Australia; ⁷Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; ⁸Jiangsu Ascentage Pharma Pty Ltd, Sydney, Australia; ⁸Ascentage Pharma Group Inc, Rockville, MD; ¹⁰State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.

*Corresponding author: <u>vzhai@ascentage.com</u>

RESULTS

Table 1. Baseline characteristics and disposition for all patients

	N = 36		N = 36
Age, yr		Median (range) no. of previous therapies	2.0 (1-13)
Median (range)	70.0 (39–89)		
≥ 70, no. (%)	19 (52.8)		
		Treatment discontinuation, no. (% of total)	
Gender, no. (%)		No	15 (41.7)
Male	26 (72.2)	Yes	21 (58.3)
Female	10 (27.8)	Adverse event	2 (9.5)
		Progressive disease	13 (61.9)
Type of cancer, no. (%) ^b		Withdrawal by patient	3 (14.3)
CLL/SLL	15 (41.7)	Physician decision	3 (14.3)
NHL	12 (33.3)	Switch to standard of care regimen due to symptomatic anemia	1 (4.8)
MM	6 (16.7)	Switch to other treatment option due to hepatitis B reactivation	1 (4.8)
Myeloid	2 (5.6)	Switch to other treatment option due to lack of response	1 (4.8)
Hairy-cell leukemia	1 (2.8)		

Figure 2. Swimmer plot showing efficacy of APG-2575 in all patients

Venetoclax, Obinutuzumab and Atezolizumab (PD-L1 Checkpoint Inhibitor) for Treatment for Patients with Richter Transformation

Nitin Jain, Alessandra Ferrajoli, Philip Thompson, Marina Konopleva, Michael Green, Deepa Sampath, Sattva Neelapu, Koichi Takahashi, Paolo Strati, Jan Burger, Rashmi Kanagal-Shamanna, Joseph Khoury, Naveen Garg, Xiaoping Su, Xuemei Wang, Hinalben Patel, Ana Ayala, Hagop Kantarjian, Michael Keating, William Wierda

> Department of Leukemia The University of Texas MD Anderson Cancer Center ASH 2021, Abstract 1550

Treatment Schema

	C1D1	C1D2	C1D3-4	C1D8	C1D15	C2-9D1	C2-9D2	C10-25
Atezolizumab (1680 mg IV, split over 2 days)	-	-	Х	-	-	X	Х	-
Obinutuzumab, mg	100	900	-	1000	1000	1000	-	-
Venetoclax			-			Weekly dose escalation starting C2D1 a 20mg daily to a target dose <u>800mg dail</u> (Total 24 cycles of venetoclax, C2-C25		

Each cycle = 28 days

Response assessment with bone marrow aspirate/biopsy and PET scan: End of C1, C4, C9, C25

Pretreatment Characteristics and Response for Previously untreated RT (N=7)

Age, yrs	Sex	Prior CLL Rx	Prior RT Rx	IGHV status	FISH	Cytogenetics	Mutations	Best PET response	Best Marrow response	Subsequent Allo-SCT in remission	Current status
61	F	none	none	not done	17p	diploid	Not done	CMR	U-MRD	Yes	Relapsed post-SCT; receiving salvage Rx
70	Μ	BR	none	UM	11q	no metaphase	NOTCH1	CMR	U-MRD	Yes	In ongoing remission 9+ mos post-SCT
52	F	Ibrutinib	none	UM	17p	complex	TP53, BTK	PMR	H-MRD+	No	Relapsed while awaiting SCT*
75	Μ	Ibrutinb	none	UM	17p	complex	TP53	CMR	H-MRD+	No	On study C15+
61	F	Ibrutinib	none	UM	17p	complex	TP53	CMR	U-MRD	Yes	In ongoing remission 8+ mos post-SCT
80	F	Chl + Obin; acalabrutinib	none	UM	T12	+12	None	CMR	U-MRD	No	Died from COVID-19 PNA in C5
74	М	Ibrutinib	none	UM	Normal	diploid	NOTCH1	CMR	L-MRD+	No	On study C6+

*Pt achieved PMR and relapsed in C8, prior to a planned allo-SCT; she then achieved remission after non-covalent BTK inhibitor and proceeded to allo-SCT

Note: One pt (58-year-old male) with previously untreated CLL (unmutated IGHV, del(17p), TP53 mutation, NOTCH1 mutation) developed RT and received R-CHOP for 3 cycles with no response. The pt was subsequently enrolled on the current trial but did not respond.

U-MRD: undetectable MRD at 10⁻⁴; L-MRD+: MRD 0.01 to <1%; H-MRD+: MRD \geq 1%

Patient Response (1)

- 70-yr-old
- del(11q), *NOTCH1*-m, IGHV-UM
- BR for CLL
- RT June 2020
- Atezo + VEN + Obin as frontline therapy for RT
- Underwent allo-SCT in Feb 2021 in CMR and marrow U-MRD remission

Novel Agents in CLL

- Non Covalent BTKi
 - Pirtobrutinib (LOXO-305)
 - Nemtabrutinib (MK-1026, ARQ 531)
- Covalent BTKi Zanubrutinib
- Novel PI3Ki Umbralisib
- Novel BCL2i
 - Lisaftoclax (APG-2575)
 - BGB-11417
 - LP-118 (dual BCL2/Bcl-xl inhibitor)

- PKCβ inhibitor MS553
- BTK degrader NX-2127
- CAR-T Liso-cel (CD19 CAR)
- CD20 BiTEs

Thank you!

njain@mdanderson.org

@NitinJainMD

(+1) 713-745-6080