

BEYOND THE CONGRESS

Key Conversations from the 2021 Hematology Annual Meeting™

FRIDAY, FEBRUARY 4, 2022

BEYOND THE CONGRESS

Key Conversations from the 2021 Hematology Annual Meeting™

FRIDAY, FEBRUARY 4, 2022

Emerging Themes and Concepts in the Treatment of MDS

Michael R. Savona, MD

Professor of Medicine and Cancer Biology Vanderbilt University Medial Center, Nashville, TN, USA

Disclosures

I have the following financial relationships to disclose:

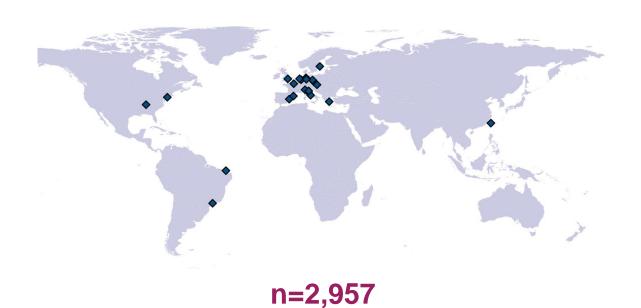
Advisory and consulting: Abbvie, Celgene, CTI, Geron, Karyopharm, Novartis, Ryvu, Taiho, Takeda, TG Therapeutics; Research Support: ALX Oncology, Astex, Incyte, Takeda, TG Therapeutics; Equity: Karyopharm, Ryvu; Data Safety Monitoring Board: Celgene, Sierra Oncology, TG Therapeutics; Licensing Agreement: Boehringer-Ingelheim

Myelodysplastic syndromes: Emerging Themes and Ideas

- 1. Prognostication via IPSS/IPSS-R includes marrow fitness, transformational features, and large structural changes in somatic DNA → critical small mutational changes are now formally part of the prognostication
- 2. Metabolic changes in MDS cells provide vulnerability for treatment

3. Targeting Inflammation as part of the pathophysiology of MDS

Use of NGS in Prognostication



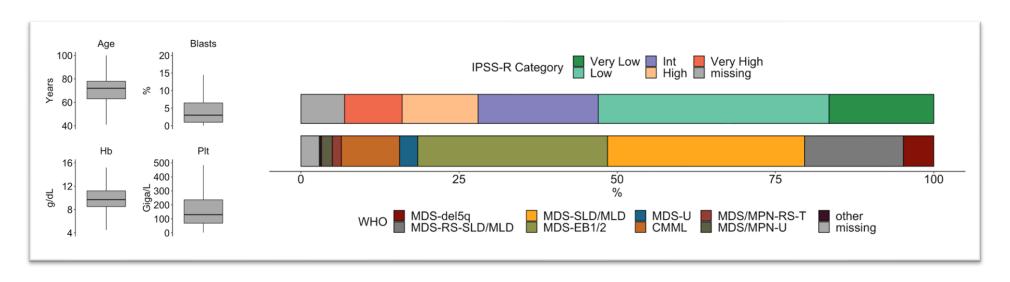
International Working Group for the Prognosis of MDS (IWG-PM)

Study objective: Integrate gene mutations into the International Prognostic Scoring System (IPSS/IPSS-R)

IWG cohort (discovery)

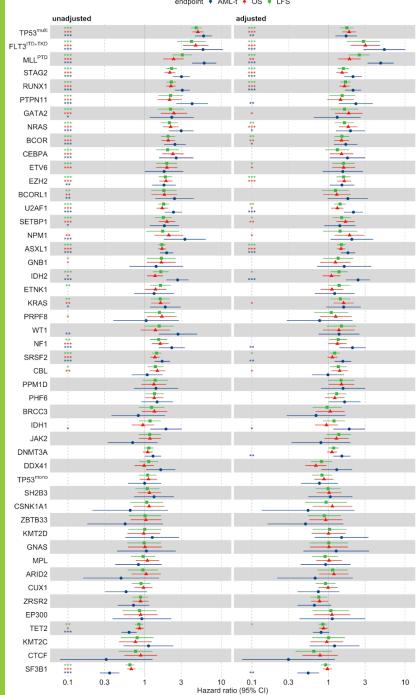
Japan cohort (validation)

n=754



IWG-PM cohort clinical characteristics

Inclusion criteria: diagnostic samples | blast percentages < 20% | white blood cell count < 13x10⁹/L

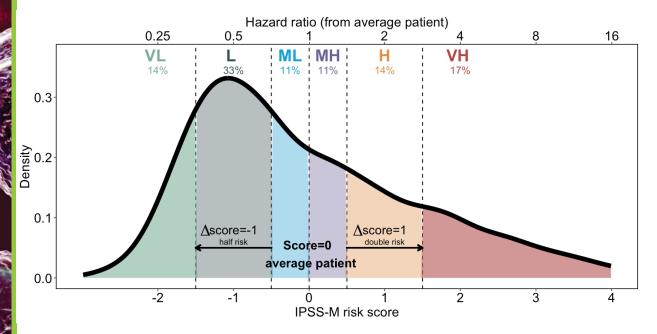


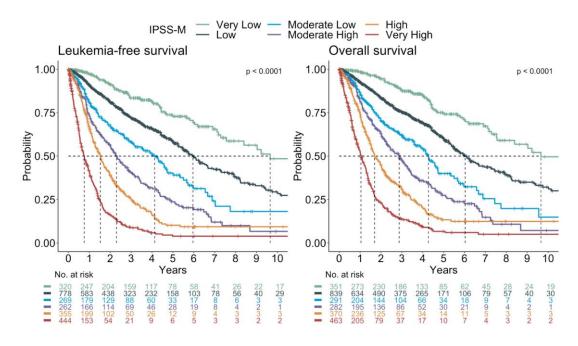
- Median age of presentation 72 years (39-88, 95th range).
- Representative of all IPSS-R risk categories and WHO subtypes.
- 8% of patients had therapy-related MDS.
- 30% of patients treated with disease-modifying agents according to established guidelines.
- Median follow-up 3.8 years.

Association between gene mutations and clinical endpoints

Leukemia free survival (LFS)

Overall survival (OS)


AML transformation (AML-t)

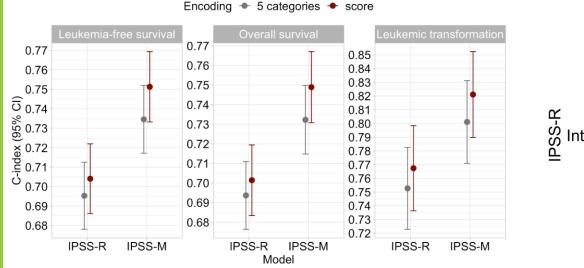

Adjusting for age, sex, MDS type (primary vs. therapy-related), and IPSS-R raw score,

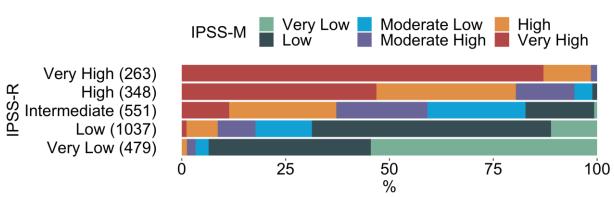
14, 16 and 15 genes were significantly associated with adverse outcomes for the three endpoints, respectively.

The IPSS-M risk categories

A six-category risk schema

Very Low | Low | Moderate Low | Moderate High | High | Very High

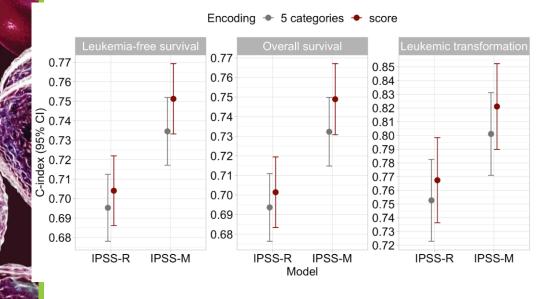


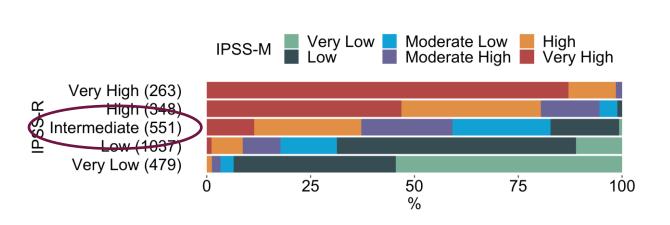


From the IPSS-R to the IPSS-M

Improved prognostic discrimination

Extensive patient re-stratification

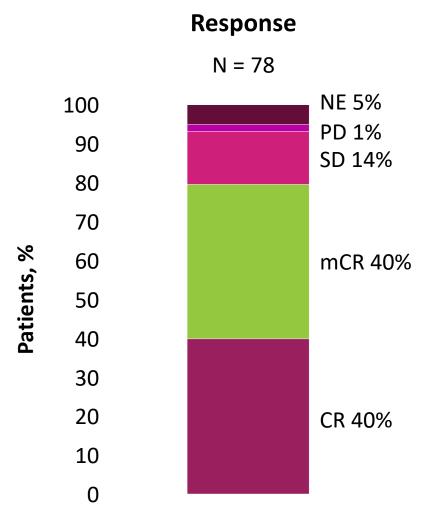

Five points increase in concordance index from IPSS-R to IPSS-M across all endpoints 46% (n=1,223) of patients were re-stratified 7% (n=196) of patients were re-stratified by more than one strata



From the IPSS-R to the IPSS-M

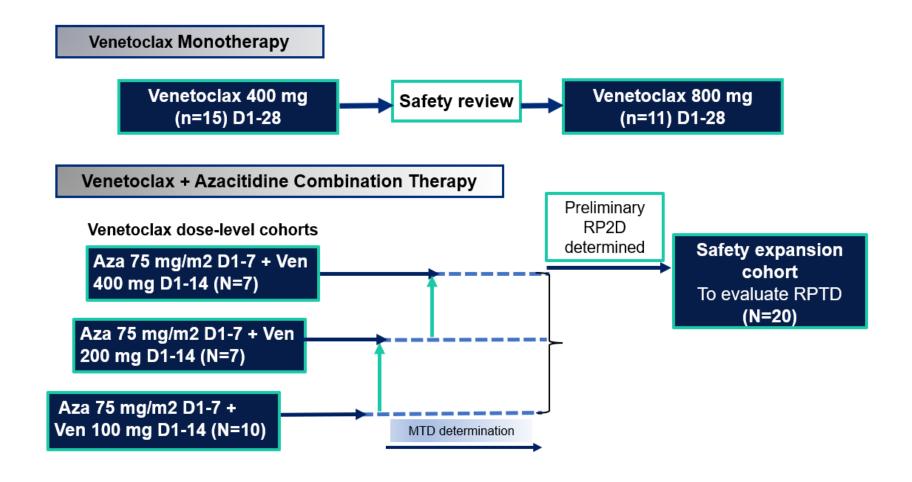
Improved prognostic discrimination

Extensive patient re-stratification


Five points increase in concordance index from IPSS-R to IPSS-M across all endpoints 46% (n=1,223) of patients were re-stratified 7% (n=196) of patients were re-stratified by more than one strata

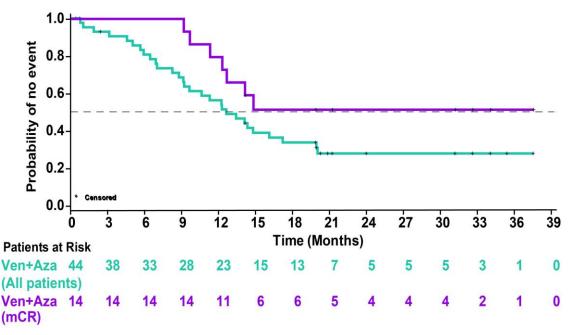
Metabolism and Apoptosis

Phase Ib Study Adding Venetoclax to Azacitidine in Higher-risk MDS Shows Safety and Efficacy

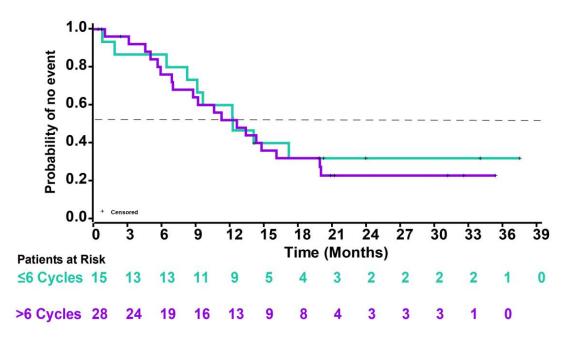

Median time to mCR, mo (range)	0.9 (0.7-4.6)					
Median time to CR, mo (range)	2.6 (1.2-19.6)					
Transfusion independence rate n/N (%) [95% CI]	20/43 (46.5) [31.2-62.3]					
Duration of response for CR, median	13.8 (8.9-NE)					

 Prior to other post-study systemic cancer therapies, 23% of the study population moved to post-study allogeneic HSCT

Study of Venetoclax and Azacitidine in R/R MDS



Safety of Venetoclax and Azacitidine in R/R Higher-risk MDS


	Ven n (%)	Aza n (%)
Study drug discontinuation ^a	9 (20.5)	7 (15.9)
Dose interruption ^b	21 (47.7)	18 (40.9)
Febrile neutropenia	7 (15.9)	7 (15.9)
Neutropenia	4 (9.1)	3 (6.8)
Pneumonia	3 (6.8)	1 (10)
Pneumonia fungal	2 (4.5)	1 (10)
Oral infection	1 (2.3)	1 (10)

Survival in Ongoing Study of Venetoclax and Azacitidine in R/R Higher-risk MDS

os	# of events	12-month, % (95% CI)	24-month % (95% CI)	Median OS, months (95% CI)
Ven+Aza (All patients)	29	56.2 (39.8 — 69.7)	27.7 (14.8 — 42.3)	12.6 (9.1 — 17.2)
Ven+Aza (mCR)	7	78.6 (47.2 — 92.5)	49.0 (21.6 — 71.7)	14.8 (11.3 — NE)

os	# of events	12-month, % (95% CI)	24-month % (95% CI)	Median OS, months (95% CI)
≤ 6 cycles of prior HMA	10	60.0 (31.8 — 79.7)	32.0 (10.9 - 55.7)	12.3 (6.4 – NE)
> 6 cycles of prior HMA	19	52.1 (31.3 - 69.3)	22.9 (8.8 - 40.9)	12.6 (7.0 — 19.9)

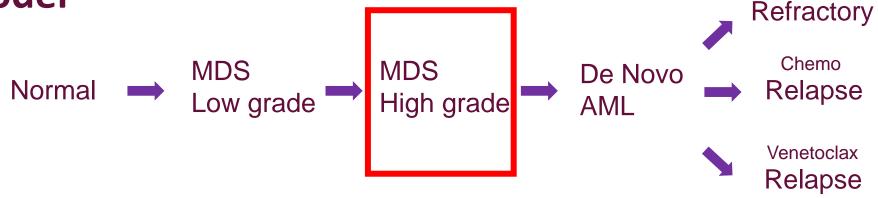
Untreated High Risk MDS is Largely BCL2 Dependent

Venetoclax (μM)	0.23	2.54	5.00	3.69	5.00	1.05	0.25	3.61	1.41	0.29	5.00	5.00	3.82	0.84	0.27	0.23	5.00	0.25	1.57	0.27	0.20	0.47	0.26	0.11	0.36	0.18	0.15	0.12	0.08	0.14	5.00	1.15	5.00	0.18	0.13
S63845 (μM)	0.21	0.56	0.33	0.30	0.18	1.70	0.20	0.34	0.62	0.30	0.13	0.36	0.44	0.22	0.30	0.13	0.41	90.0	0.64	0.14	0.30	0.39	0.99	0.13	0.12	0.33	0.13	0.82	0.36	0.17	1.73	1.73	0.52	1.84	0.57
A-1155463 (μM)	5.00	5.00	5.00	4.00	1.46	1.70	3.17	1.68	0.53	5.00	5.00	5.00	5.00	0.58	2.99	5.00	5.00	5.00	5.00	5.00	5.00	X	5.00	5.00	5.00	5.00	0.03	5.00	5.00	5.00	0.12	5.00	5.00	5.00	5.00
***********	ME	S-R	s-s	LD	N	/DS	-RS	-MLI	D				MD	S-M	ILD							N	/IDS	-EB	1						MD	S-E	B2		
MDS WHO 2016 Classification	MDS001	MDS002	MDS003	MDS004	MDS005	MDS006	MDS007	MDS008	MDS009	MDS010	MDS011	MDS012*	MDS013*	MDS014*	MDS015	_	MDS017	MDS018	MDS019	MDS020	MDS021	MDS022	MDS023	MDS024	MDS025	MDS026	MDS027	MDS028	MDS029#	MDS030*	MDS031	MDS032*	MDS033	MDS034	MDS035

Untreated High Risk MDS is Largely BCL2 Dependent

Venetoclax (μM)	0.23	2.54	5.00	3.69	2.00	1.05	0.25	3.61	1.41	0.29	5.00	5.00	3.82	0.84	0.27	0.23	5.00	0.25	1.57	0.27	0.20	0.47	0.26	0.11	0.36	0.18	0.15	0.12	0.08	0.14	5.00	1.15	2.00	0.18	0.13
S63845 (μM)	0.21	0.56	0.33	0:30	0.18	1.70	0.20	0.34	0.62	0.30	0.13	0.36	0.44	0.22	0.30	0.13	0.41	90.0	0.64	0.14	0.30	0.39	0.99	0.13	0.12	0.33	0.13	0.82	0.36	0.17	1.73	1.73	0.52	1.84	0.57
A-1155463 (μM)	5.00	5.00	5.00	4.00	1.46	1.70	3.17	1.68	0.53	5.00	5.00	5.00	5.00	0.58	2.99	5.00	5.00	5.00	5.00	5.00	5.00	X	5.00	5.00	5.00	5.00	0.03	5.00	5.00	5.00	0.12	5.00	5.00	5.00	5.00
	МЕ	S-R	s-s	LD	N	ИDS	-RS-	-MLI	D				MD	S-M	LD							N	/IDS	-EB	1						MD	S-E	B2		
MDS WHO 2016 Classification	MDS001	MDS002	MDS003	MDS004	MDS005	MDS006	MDS007	MDS008	MDS009	MDS010	MDS011	MDS012*	MDS013*	MDS014*	MDS015	MDS016	MDS017	MDS018	MDS019	MDS020	MDS021	MDS022	MDS023	MDS024	MDS025	MDS026	MDS027	MDS028	ADS029#	ADS030*	MDS031	ADS032*	MDS033	MDS034	MDS035

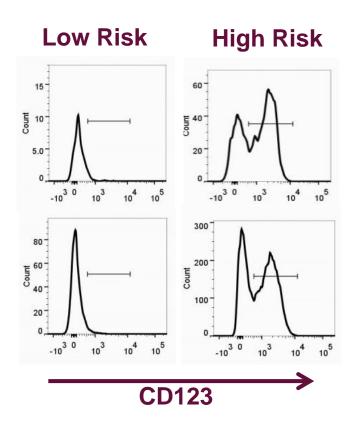
Untreated High Risk MDS is Largely BCL2 Dependent


Venetoclax (μM)	0.23	2.54	5.00	3.69	5.00	1.05	0.25	3.61	1.41	0.29	5.00	5.00	3.82	0.84	0.27	0.23	5.00	0.25	1.57	0.27	0.20	0.47	0.26	0.11	0.36	0.18	0.15	0.12	0.08	0.14	5.00	1.15	2.00	0.18	0.13
S63845 (μM)	0.21	0.56	0.33	0.30	0.18	1.70	0.20	0.34	0.62	0.30	0.13	0.36	0.44	0.22	0.30	0.13	0.41	90.0	0.64	0.14	0.30	0.39	0.99	0.13	0.12	0.33	0.13	0.82	0.36	0.17	1.73	1.73	0.52	1.84	0.57
A-1155463 (μM)	5.00	5.00	5.00	4.00	1.46	1.70	3.17	1.68	0.53	5.00	5.00	5.00	5.00	0.58	2.99	5.00	5.00	5.00	5.00	5.00	5.00	X	5.00	5.00	5.00	5.00	0.03	5.00	5.00	5.00	0.12	5.00	5.00	5.00	5.00
MD0 M410	ME	S-R	s-s	LD	N	ИDS	-RS-	MLI	D				MD	S-M	LD							N	ИDS	-EB	1						MD	S-E	B2		
MDS WHO 2016 Classification	MDS001	MDS002	MDS003	MDS004	MDS005	MDS006	MDS007	MDS008	MDS009	MDS010	MDS011	MDS012*	MDS013*	MDS014*	MDS015	MDS016	MDS017	MDS018	MDS019	MDS020	MDS021	MDS022	MDS023	MDS024	MDS025	MDS026	MDS027	MDS028	MDS029#	MDS030*	MDS031	MDS032*	MDS033	MDS034	MDS035

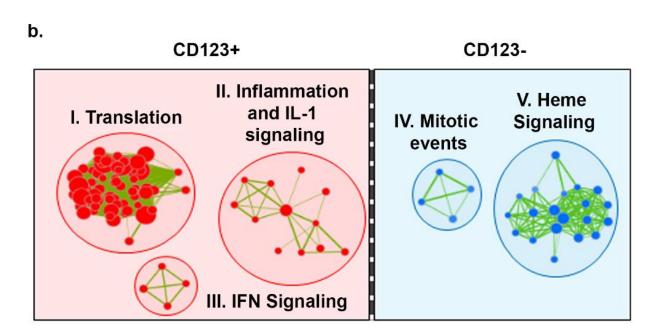
...R/R High Risk MDS is less BCL2 Dependent

Stem Cell Energy Metabolism During Myeloid Pathogenesis: Working Model

Metabolic fuel	Glucose	?	AA*	AA	AA or FA
Oxphos	?	?	Yes	Yes	Yes
Glycolysis	Yes		No*	No	No


^{*}indirect evidence only, AA = amino acids, FA = fatty acids

Lagadinou et al, *Cell Stem Cell*, 2013; Stevens et al, *Nat. Comm*, 2018,; Jones et al, *Cancer Cell*, 2018; Pollyea, Stevens, Jones et al, *Nature Medicine*, 2018; Pei et al, *Cancer Discovery*, 2020; Jones et al, *Cell Stem Cell*, 2020; Stevens et al, *Nature Cancer*, 2020

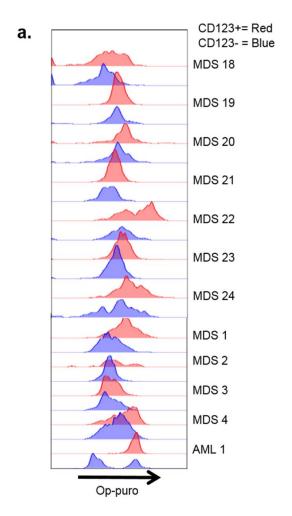


MDS stem cells can be marked by CD123

Immunophenotype

Transcriptional Differences

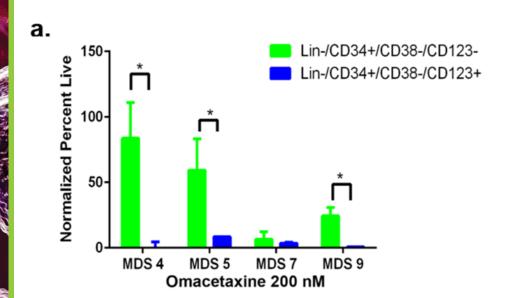
Stevens et al, 2018, Nature Communications.

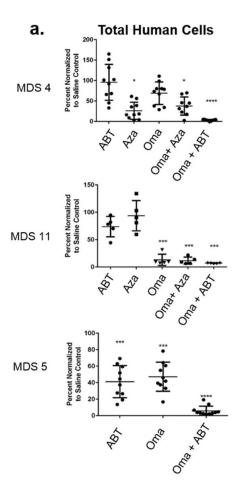


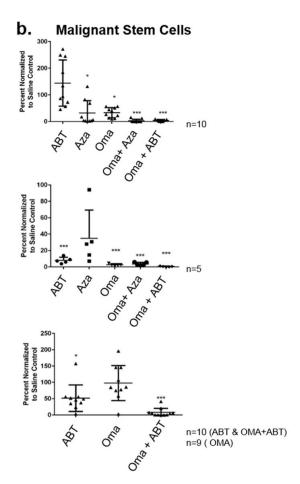
MDS stem cells have increased protein translation

Unstained CD123- CD123+

OP-Puro


Stevens et al, 2018, Nature Communications.


Stevens et al. Blood; Abstract 1604: 2021.



MDS Stem cells can be targeted *in vitro* and *in vivo* through unique metabolic properties including translation

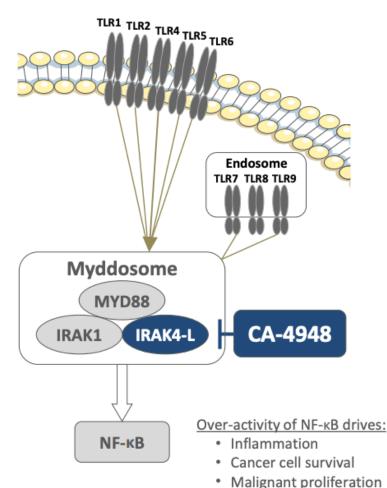
Omacetaxine and Azacitidine in TN MDS Phase I Baseline Characteristics

Patient	Cohort	IPSS-R	Blast %	Complex/ Monosomal Karyotype	Molecular	Treatment Related
1236	1	7.5 (Very High)	12	N	STAG2, U2AF1	N
1385	1	5 (High)	7	N	RUNX1, U2AF1, BCOR, STAG2	N
1485	1	8.5 (Very High)	7	Υ	None	N
1362	0	5.5 (High)	9.5	N	ASXL1, SRSF2, STAG2	N
1595	0	8 (Very High)	13	N	DNMT3A, SETBP1, SRSF2, TET2, CSF3R	N
1676	0	5.5 (High)	10	Υ	RUNX1, PHF6	Υ
1748	0	4 (Intermediate)	13.5	N	SF3B1	N
1843	0	7 (Very High)	11	Υ	TP53	Υ
1726	0	5 (High)	8	N	DDX41, JAK2, CBL	N

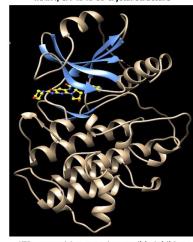
Omacetaxine and Azacitidine Phase I Preliminary Efficacy

Patient	Cohort	Best IWG Response	Hematologic Improvement	Number of Cycles	Bridged to Transplant	Alive
1236	1	Marrow CR	No	2	Yes	Υ
1385	1	Marrow CR	ErythroidPlateletsNeutrophils	1	Yes	Y
1485	1	Marrow CR	 Neutrophils 	1	No	N
1362	0	Marrow CR	ErythroidNeutrophils	3	Yes	Υ
1595	0	Marrow CR	No	1	Yes	Υ
1676	0	No Response	No	1	No	N
1748	0	Marrow CR	ErythroidPlateletsNeutrophils	3	Yes	Y
1843	0	Marrow CR	No	3	No	N
1726	0	Marrow CR	ErythroidNeutrophils	2	Yes	Υ

- 8 of 9 Marrow CR
- 6 of 8 Bridge to transplant
- 5 of 9 Hematologic improvement

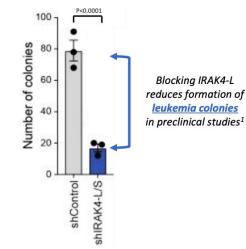


Inflammation and the Niche

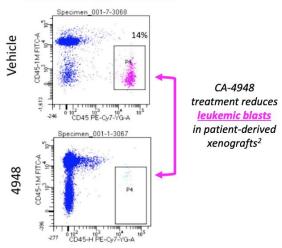


IRAK-4 Inhibition to Disrupt MDS/AML in the Niche

TLR Pathway



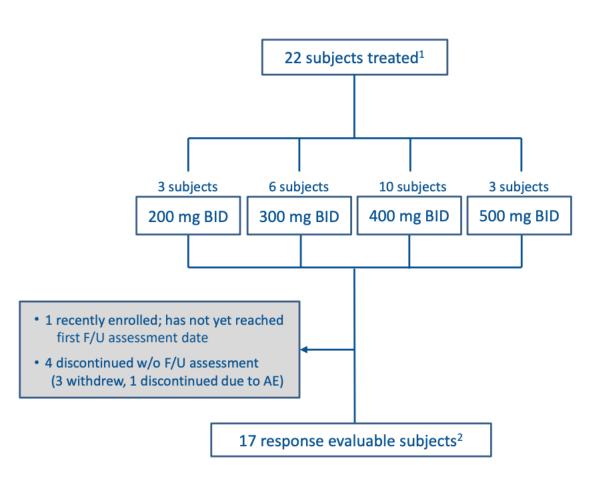
Suppression of apoptosis


ATP-competitive, type 1 reversible inhibitor

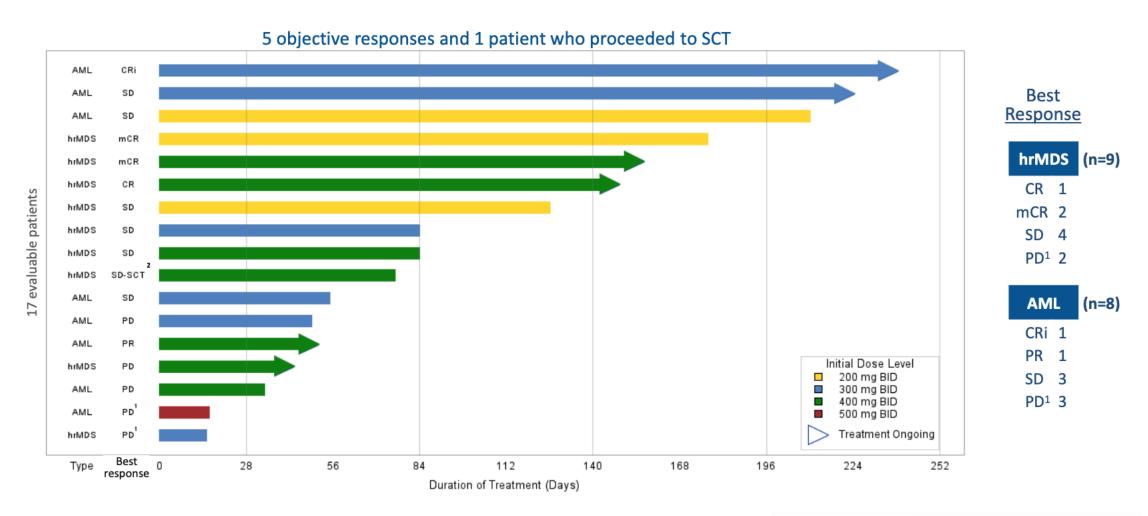
IRAK4-L is oncogenic

IRAK4-L knockdown models demonstrate genetic link to oncogenic immune signaling in AML/MDS1

CA-4948 targets IRAK4-L


In preclinical model, IRAK4-L inhibition with CA-4948 demonstrates anti-cancer activity consistent with knockdown models2

CA-4948



	Characteristics	Patients (n=22)
Female n (%) : Ma	ıle n (%)	5 (23) : 17 (77)
Age (yrs): median	(range)	74 (32-87)
	White	18 (82)
Race, n (%)	African American	1 (4)
	Not reported	3 (14)
ECOG: n 0/1/2		7/11/4
Diamenia	AML, n (%)	11 (50)
Diagnosis	hrMDS, n (%)	11 (50)
Median platelets	(10 ³ /mm ³) (range)	33 (7, 275)
Median ANC (10 ³	/mm ³) (range)	1.2 (0.1, 14.8)
Median lines of p	rior therapy (range)	2 (1-4)
	Azacitidine	14 (64)
Prior therapy,	Decitabine	7 (32)
n (%)	Cytarabine	3 (14)
	Venetoclax	10 (45)
Cytogenetic	AML (favorable/intermediate/ adverse)	1 (10) / 2 (20) / 7 (70)
risk, n (%) ³	hrMDS (good/intermediate/poor/ very poor)	1 (9) / 4 (36) / 3 (27) / 3 (27)
Dalayant	FLT3	1
Relavant mutations ⁴	SF3B1	2
Trucucionio	U2AF1	2

Preliminary Efficacy of CA-4948 in MDS/AML

Summary of Key Advances in Myelodysplastic syndromes

- 1. In Prognostication → IPSS-M
- 2. Use of venetoclax and address venetoclax metabolic vulnerabilities

3. Therapeutic relationship between somatic changes and inflammation

Thank you

Thank you

Acknowledgments

The patients
The MDS community

Beverly and George Rawlings Directorship in Hematology Research

The Biff Ruttenberg Foundation

Serodino Family Compact

Lovell Family Fellowship

