

BEYOND THE CONGRESS

Key Conversations from the 2021 Hematology Annual Meeting[™]

FRIDAY, FEBRUARY 4, 2022

This activity is jointly provided by

DANA-FARBER/BRIGHAM AND WOMEN'S CANCER CENTER

Updates in Management of Relapsed and Refractory CLL/SLL

Jennifer R Brown, MD PhD Director, CLL Center Dana-Farber Cancer Institute Worthington and Margaret Collette Professor of Medicine in the Field of Hematologic Oncology Harvard Medical School February 4, 2022

The Changing Landscape of Relapsed CLL

- Patients relapsing after minimal therapy (ab, clb)
- Patients relapsing after effective CIT
 - Most of our data: RESONATE, HELIOS, ASCEND, MURANO, ELEVATE-RR, ALPINE
- Patients exposed to BTK inhibitors:
 - Off for AEs
 - Progressed during therapy
- Patients relapsing after venetoclax (or PI3Ki)
- Patients relapsing after BTKi and BCL-2

Kinome Selectivity Among Covalent BTKis

Figure 1. Kinome profiling at a single dose of 1 µM (KINOMEscan, Eurofins DiscoverX)

Final Analysis of RESONATE Median 65 Mo F/U

12

Munir et al. submitted

Months

PFS and OS in Patients with CLL and *TP53* Aberrations *Ibrutinib* +/- *Rituximab*

Time follow up (months)

Time follow up (months)

Five Year Follow-up from a Phase 2 Study

4.

Best Response to I+/-R Treatment in CLL Patients with *TP53* Aberrations

E.

Burger, JA et al. ASH 2021. Abstract 2218

MDACC Venetoclax Consolidation

Primary endpoint: U-MRD4* in bone marrow after 12 months of combination *MRD testing performed using standardized 4 color flow cytometry, sensitivity 1 in 10⁴

stop venetoclax

del(17P)/TP53 mutated/CKT only. Del(11q) and Elevated B2M will not be inclusion criteria for 2nd 45 patients

MRD Results

4.

ITT Analysis of MRD:

- 1. 38% U-MRD4 at C6
- 2. 57% U-MRD4 at C12
- 3. Best Cumulative U-MRD4: 73%

ITT Analysis CR/CRi:

- 2/45 (4%) were in CR at baseline
- 23/43 (53%) improved to CR/CRi during ven

MSKCC: Add U2 to Ibrutinib

Duration on Therapy

Time on Study (months)

ASCEND: Investigator-Assessed PFS in Patients with **High-Risk Features**

PFS by del(17p)

Acalabrutinib prolonged PFS in patients with del(17p)/TP53 mutations and unmutated IGHV

ELEVATE RR: Non-inferiority Primary Endpoint Met on IRC-Assessed PFS

Median follow-up: 40.9 months (range, 0.0–59.1).

Hillmen et al. ELEVATE-RR, S145, EHA 2021.

ELEVATE RR: Lower Cumulative Incidence of Atrial Fibrillation and Hypertension With Acalabrutinib

Afib/Flutter, Any Grade

Hypertension, Any Grade

ELEVATE-RR: Lower Cumulative Incidence of Any-Grade Bleeding, Diarrhea, and Arthralgia Events With Acalabrutinib

Hillmen et al. ELEVATE-RR, S145, EHA 2021.

ALPINE: Phase 3, Randomized Study of Zanubrutinib vs Ibrutinib in Patients With Relapsed/Refractory CLL or SLL

R 1:1

R/R CLL/SLL with ≥ 1 prior treatment (Planned N=600, Actual N=652)

Key Inclusion Criteria

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

Key Exclusion Criteria

- Current or past Richter's transformation
- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists

Arm A Zanubrutinib 160 mg BID

Arm B Ibrutinib 420 mg QD

Stratification Factors

- Age
- Geographic region
- Refractory status
- Del(17p)/TP53 mutation status

ORR by Investigator Assessment

	Zanubrutinib (n=207), n (%)	lbrutinib (n=208), n (%)		
	162 (78.3)	130 (62.5)		
Primary endpoint:	95% CI: 72.0, 83.7	95% CI: 55.5, 69.1		
ORR (PR+CR)	Superiority 2-sided <i>P</i> =0.0006 compared with pre- specified alpha of 0.0099			
CR/CRi	4 (1.9)	3 (1.4)		
nPR	1 (0.5)	0		
ORR (PR-L+PR+CR)	<i>183 (88.4)</i>	169 (81.3)		
PR-L	21 (10.1)	39 (18.8)		
SD	17 (8.2)	28 (13.5)		
PD	1 (0.5)	2 (1.0)		
Discontinued or new therapy prior to 1st assessment	6 (2.9)	9 (4.3)		
	del(17p) (n=24), n (%)	del(17p) (n=26), n (%)		
ORR (PR+CR)	20 (83.3)	14 (53.8)		

ALPINE study. Hillmen et al. LB1900 EHA 2021.

ALPINE: PFS by Investigator Assessment

*Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events are reached.

1º

ALPINE study. Hillmen et al. LB1900 EHA 2021.

Atrial Fibrillation/Flutter

ALPINE study. Hillmen et al. LB1900 EHA 2021.

MURANO Study Design

- Primary endpoint: investigator-assessed PFS
- Secondary endpoint: rates of clearance of MRD
- Clinical response and MRD* in PB during Ven monotherapy and follow-up visits were assessed every 3 months for 3 years, then every 6 months thereafter, or until PD

Kater AP et al. ASH 2020. Paper 125

PFS and OS Benefit with VenR Over BR is Sustained 3 Years After EOT

- With this 5-year update we can now accurately define the median PFS of VenR-treated patients
- No new safety signals were identified 3 years after EOT with longer follow up and patients are outside of the adverse event reporting window

uMRD at EOT is Associated with Improved PFS

	PFS (95% CI) since EOT			
Category	24 month	36 month		
uMRD (<10 ⁻⁴)* (N=83)	85.4% (77.4, 93.4)	61.3% (47.3, 75.2)		
Low-MRD+ (10 ⁻⁴ -10 ⁻²) (N=23)	52.2% (31.8, 72.6)	40.7% (19.2, 62.2)		
High-MRD+ (>10 ⁻²) (N=12)	8.3% (0.0, 24.0)	NE		
	HR (95% CI)	P-value		
uMRD vs Low-MRD+	0.40 (0.18, 0.91)	0.0246		
uMRD vs High-MRD+	0.02 (<0.01, 0.18)	<0.0001		
Low-MRD+ vs High-MRD+	0.32 (0.10, 0.99)	0.0410		
post-EOT				

	OS (95% CI) since EOT			
Category	24 month	36 month		
uMRD (<10 ⁻⁴)* (N=83)	98.8% (96.4, 100.0)	95.3% (90.0, 100.0)		
MRD (≥10 ⁻⁴) (N=35)	88.6% (78.0, 99.1)	85.0% (72.8, 97.2)		
	HR (95% CI)	P-value		
uMRD vs MRD	NS	NS		

OS post-EOT

CLL Clonal Growth Rate

Median MRD doubling time, was significantly longer with VenR (93 days) vs BR (53 days) Covariate screening showed treatment type, age, IGHV and *TP53* mutation status, and tumor burden at study initiation to significantly impact MRD growth rate

CLL Clonal Growth Rate

Longer MRD doubling time* was predictive for longer PFS	Time to MRD+ con all treated with Ve	nversion ^s in subgrou enR and had a differ doubling time	ups who were ence in MRD
All patients [†] Patients with MRD doubling Patients with MRD doubling		Median doubling time, days	Median (95% CI), months
100 time <62.6 days [†] (n=106) time ≥62.6 days [†] (n=104)	IGHV-mut, n=23	74	22.6 (8.1–NE)
75 41.3 (29.7–43.0) months	IGHV-unmut, n=56	57	18.2 (8.4–28.0)
SU 50	TP53-WT , n=69 64 22.3 (8.6-	22.3 (8.6–28.4)	
	TP53-mut , n=13	56	18.2 (8.3–NE)
0 5 10 15 2 25 30 35 40 45 50	≥65 years , n=45	66	22.6 (8.7–NE)
Time from last dose to PFS event (months)	<65 years , n=38	53	15.2 (8.4–28.0)
The numerical shift observed in time from uMRD to MRD+ conversion supported the findings of the MRD	Low/medium tumor burden, n=57	64	22.3 (8.6–35.1)
growth model	High tumor burden, n=23	53	12.2 (5.6–27.5)

Abstract 1551; Kater et al.

Acquired Mutations in MURANO

	TP	53*	В	4 <i>X</i>	РМА	IMP1
Treatment arm	VenR, n=42	BR, n=28	VenR, n=42	BR, n=28	VenR, n=42	BR, n=28
Pts with mutation, n (%)	15 (35.7)	9 (32.1)	4 (9.5)	0 (0)	2 (4.8)	0 (0)
Total no. of mutations	19	15	4	0	2	0
Present at baseline	10 [7]	2 [2]	0 [0]	0 [0]	0 [0]	0 [0]
Newly acquired	9 [9]	13 [8]	4 [4]	0 [0]	2 [2]	0 [0]

Acquired Mutations and TTNT

By the data cutoff, 28/42 (66.7%) Pts had received an additional anti-CLL therapy after VenR Tx

TTNT per *TP53* mutations in VenR-treated Pts who were MRD+ post-Tx cessation

There was no apparent association between *TP*53-mut and TTNT; median (range) TTNT 784 days (248–1051) in *TP*53-mut compared with 614 days (38–1142) in *TP*53-WT Pts

Abstract 1551; Kater et al.

HOVON Phase 2 VISION Trial: MRD Guided Stop / Start in <u>RR CLL</u>

Primary outcome (PFS Month 27)

- Relapsed or Refractory CLL or SLL
- Performance status 0-3, all degrees of fitness / comorbidity allowed
- No prior venetoclax or ibrutinib

MRD and Response, 15 Cycles Ibrutinib-Venetoclax Induction:

Low MRD Positive (≥10⁻⁴ and <10⁻²) High MRD Positive (≥10⁻²)

E.

Partial remission

Not available

MRD Over Time from C15, Arm A, Ibrutinib and Arm B, Observation:

total N=24) 0 00 0 00 80 patients, 63% 63% 70 71% 75% 75% (15)(15)75% Ъ (17)Arm A, Ibrutinib 60 (18) (18)(18)(number 100% 100% 50 (24) (24)patients (05 Undetectable MRD 13% 17% (<10⁻⁴) (3) 4% (1) (4)of 13% 20 17% 17% age Low MRD Positive 25% (3) 25% (4) (4) 21% 10 bercent 13% (6) (6) (≥10⁻⁴ and <10⁻²) (5) 8% (2) 8% (2) (3) 0 100 89 **High MRD Positive** (≥10⁻²) ¹₂ 90 08 total Not available 54% 58% patient 0 67% (26) 69% Arm B, Observation 71% (28)75% (32) (33)(34)5 60 (36)**Primary Endpoint** 100% 100% ਵੂੱ 50 (48) nu) st 40 06 gi 35% 29% 23% (17)(14)20 ge of 23% 13% 25% (11)(11)(6) (12)Dercent 13% 10% 2% (1 8% (4) 8% (4) (6) (5) 4% (2) 0 2% (1) Bone 18 21 24 Peripheral Bone 30 Peripheral blood marrow Months Months Months blood marrow Months after start after start after start after start After 15 Cycles of 27 Months after of of of of

treatment

start of treatment

treatment

treatment

Niemann et al. ASH 2021 Abstract 69

Venetoclax-Ibrutinib

treatment

MRD Over Time from C15, Non-Randomized, Ibrutinib Maintenance:

All patients with events prior to cycle 15 included in non-randomized group

Reinitiation, Arm B: observation and Time To Next Treatment

Reinitiation, Arm B: observation

Time To Next Treatment

Outcomes of I+V Given for CLL Progression

¹Cumulative incidence method

Overall Survival from I+V Start

ASH Abstract 1560, Hampel et al.

Real-World Outcomes of Patients with Prior Exposure to cBTKi and Ven

SUBSEQUENT THERAPY	CAR-T	AlloSCT	ncBTKi	PI3Ki	СІТ
Patients treated	9	17	45	24	23
ORR	85.7% n=7	76.5% n=17	75.0% n=43	40.9% n=22	31.8% n=22
Median PFS (months)	4 n=9	11 n=16	Not reached n=40	5 n=21	3 n=20
Median follow-up (months)	3	6.5	9	4	2

Abstract 2628 Thompson et al.

15

15

Summary: CLL

- Comparative data suggest similar efficacy and improved tolerability for the 2nd generation cBTKis acalabrutinib and zanubrutinib
- Adding either venetoclax or U2 in patients already on ibrutinib leads to high rates of uMRD
- Clonal regrowth rates after ven R are lower than after BR and associate with PFS
 - Known poor prognostic features are associated with higher regrowth rates
- Acquired TP53 mutations, but not BCL-2 mutations, were detected in relapsing MURANO patients
- Time-limited I+V is effective in patients relapsed after CIT or ibrutinib
- Relapse after both cBTKi and venetoclax is a major new unmet need
 - Ron covalent BTKi