

BEYOND THE CONGRESS

Key Conversations from the 2021 Hematology Annual Meeting[™]

FRIDAY, FEBRUARY 4, 2022

This activity is jointly provided by

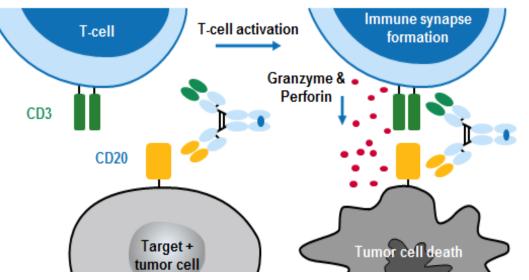
ASH 2021 Updates: FL and MCL

Brad Kahl, MD

NCCN National Comprehensive Cancer Network®

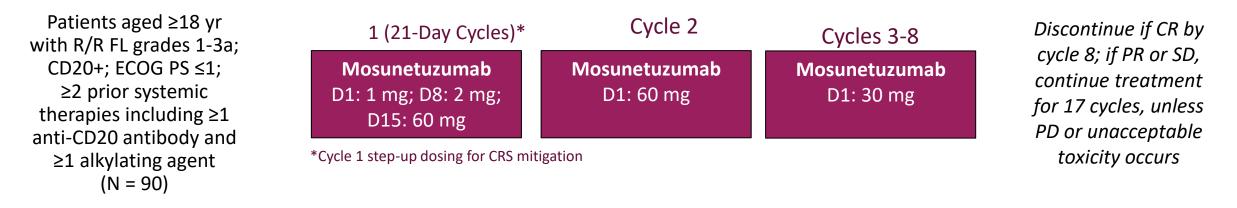
Disclosures

- Research Funding
 - Genentech, ADC Therapeutics, Abbvie, AstraZeneca, BeiGene
- Consulting
 - Genentech, ADC Therapeutics, Abbvie, AstraZeneca, BeiGene, Pharmacyclics, Celgene/BMS, TG Therapeutics, Hutchmed, MEI, MTEM, Kite, Epizyme, Takeda, Genmab, Incyte, Lilly


Newsworthy FL/MCL abstracts ASH 2021

- Follicular Lymphoma
 - How good are bi-specific monoclonal antibodies?
 - Abstract #127, Budde et al
 - How is CAR-T therapy looking with longer term follow up?
 - Abstract #93, Neelapu et al
 - Abstract #131, Thieblemont et al
- MCL
 - Do bi-specifics work in MCL?
 - Abstract #130, Phillips et al

Background


• Mosunetuzumab

- Full-length, fully humanized IgG1 bispecific antibody¹
- Redirects T cells to engage and eliminate B cells; T-cell activation, cytokine elevation and increase in TILs observed
- No ex-vivo T cell manipulation required ('off-the-shelf' and no delay in treatment)

Pivotal Phase II of Mosunetuzumab in R/R FL

• Single-arm, pivotal phase II expansion study¹

- Primary endpoint: CR (best response) rate by IRF, assessed vs 14% historical control CR rate²
- Secondary endpoints: ORR, DoR, PFS, safety and tolerability

No mandatory hospitalization for treatment administration.

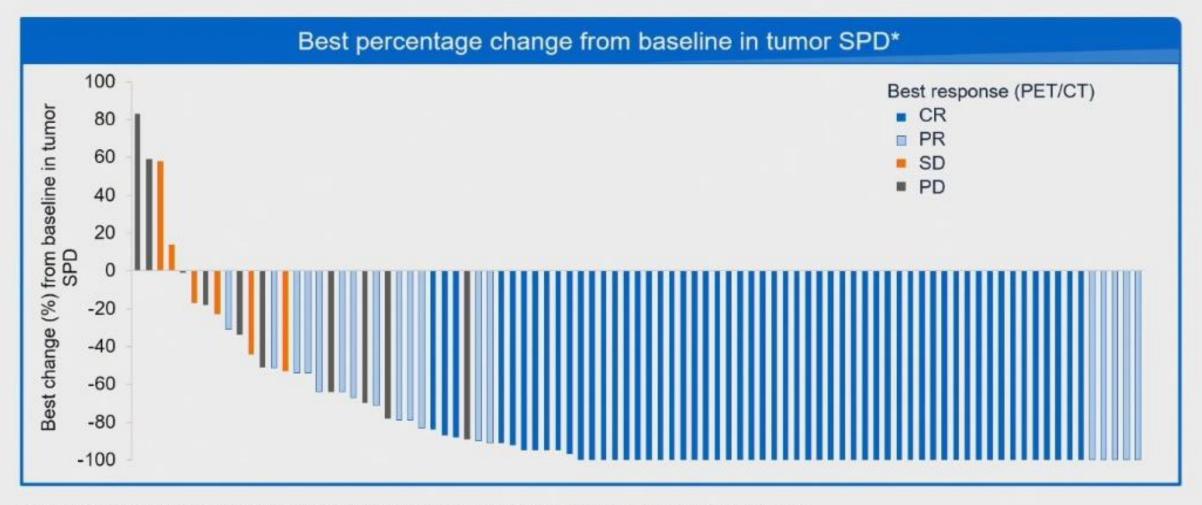
Pivotal Phase II of Mosunetuzumab in R/R FL:

Baseline Characteristics

Characteristic	All Patients (N = 90)	Prior Therapy	All Patients (N = 90)
Median age, yr (range)	60 (29-90)	Prior systemic therapy, n (%)	
Male, n (%)	55 (61.1)	Anti-CD20 therapyAlkylator therapy	90 (100) 90 (100)
ECOG PS, n (%)		 PI3K inhibitor 	17 (18.9)
■ 0	53 (58.9)	IMiD	13 (14.4)
• 1	37 (41.1)	 CAR T-cell therapy 	3 (3.3)
Ann Arbor stage, n (%)		Prior ASCT, n (%)	19 (21.1)
■ I-II	21 (23.3)	Prior ASCT, n (%) Refractory to, n (%)	19 (21.1)
	21 (23.3) 69 (76.7)		19 (21.1) 62 (68.9)
■ I-II		Refractory to, n (%)	
 I-II III-IV Median prior lines, n (range) 	69 (76.7) 3 (2-10)	Refractory to, n (%) Last prior therapy 	62 (68.9)
■ I-II ■ III-IV	69 (76.7) 3 (2-10) 18.3 (2.0-27.5)	 Refractory to, n (%) Last prior therapy Any prior anti-CD20 therapy 	62 (68.9) 71 (78.9)

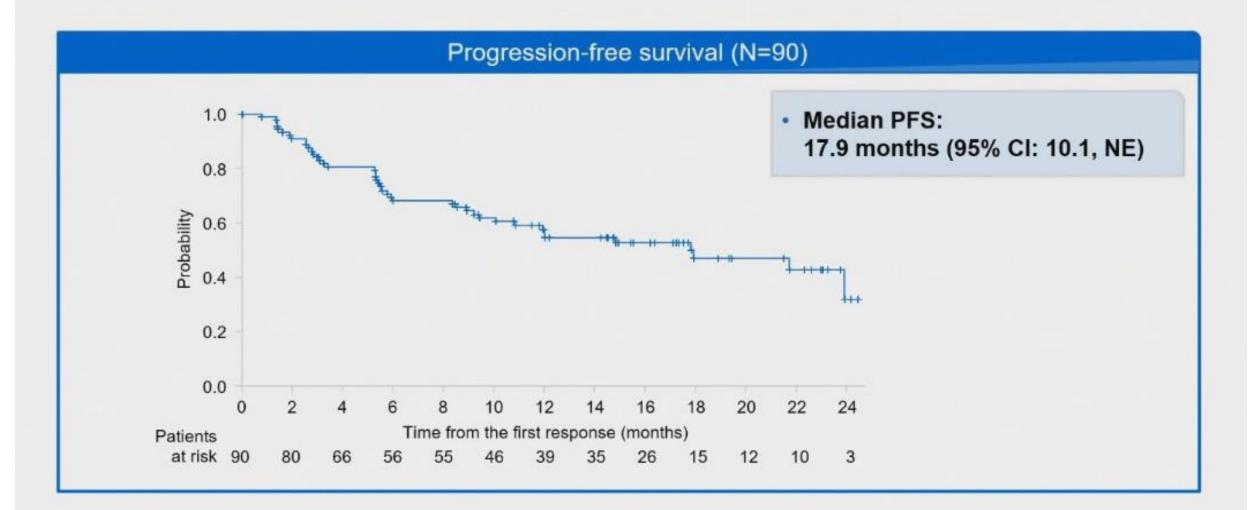
cycles

Pivotal Phase II of Mosunetuzumab in R/R FL:

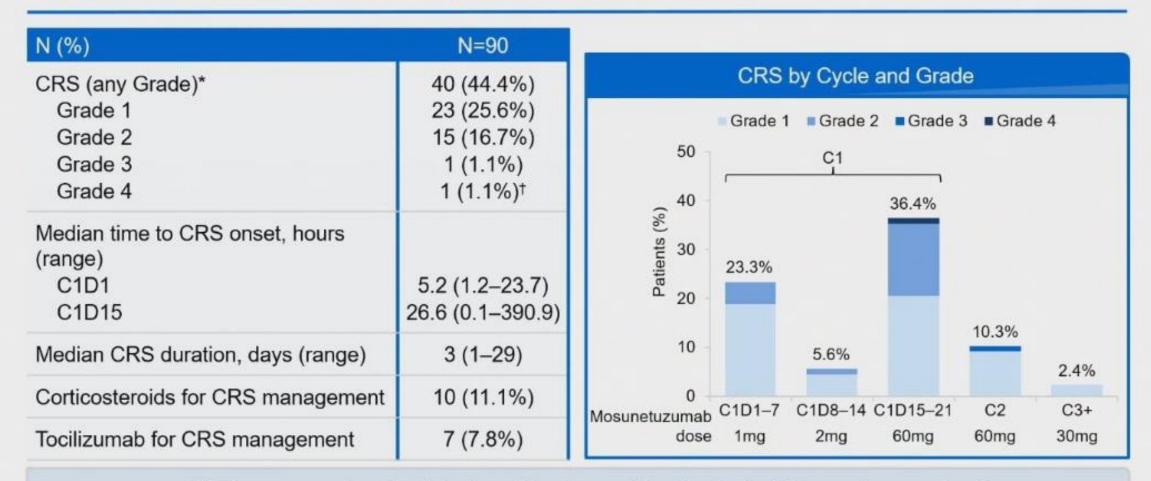

Response

Outcome, % (95% Cl) ¹	By IRF (N = 90)	By INV (N = 90)	
ORR	80 (70-88)	78 (68-86)	
• CR	60 (49-70)	60 (49-70)	

- Concordance between IRF and INV¹
 - For ORR: 96%
 - For CR: 93%
- CR rate by IRF is significantly higher than 14% historical control CR rate (P <.0001)²


Response by Double Refractory Disease Status, % (95% CI) ¹	Yes (n = 48)	No (n = 42)
ORR	71 (56-83)	90 (77-97)
CR	50 (35-65)	71 (55-84)
Response by POD ≥24 Mo of Initial Tx, % (95% CI) ¹	Yes (n = 47)	No (n = 43)
ORR	85 (72-94)	74 (59-86)
CR	57 (42-72)	63 (47-77)

Anti-tumor efficacy



*in all patients with a baseline and ≥1 post-baseline SPD available; PD, progressive disease; SPD, sum of product diameters

Progression-free survival

Cytokine release syndrome

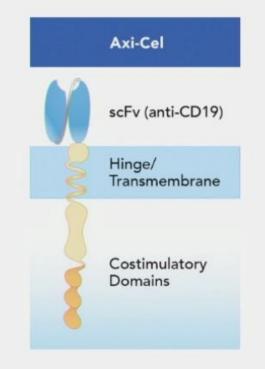
CRS was predominately low Grade and in Cycle 1. All events resolved.

*assessed using ASTCT criteria1; †patient with leukemic phase FL

1. Lee et al. Biol Blood Marrow Transplant 20192019;25:625-38

Conclusions

- Pivotal Phase II study of mosunetuzumab, a CD20xCD3 T-cell-engaging bispecific antibody, met primary efficacy endpoint (CR rate: 60%, p<0.0001; ORR: 80%)
- Deep and durable responses achieved in heavily pre-treated/high-risk R/R FL with fixedduration treatment
- Favorable tolerability profile, with most CRS confined to Cycle 1 and low Grade; treatment administration without mandatory hospitalization
- First T-cell-engaging bispecific antibody to demonstrate clinically meaningful outcomes for patients with R/R FL in pivotal Phase II setting
 - potentially promising off-the-shelf, outpatient therapy


Long-Term Follow-Up Analysis of ZUMA-5: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) in Patients With Relapsed/Refractory Indolent Non-Hodgkin Lymphoma

Sattva S. Neelapu, MD^{1*}; Julio C. Chavez, MD^{2*}; Alison R. Sehgal, MD³; Narendranath Epperla, MD, MS⁴; Matthew Ulrickson, MD⁵; Emmanuel Bachy, MD, PhD⁶; Pashna N. Munshi, MD⁷; Carla Casulo, MD⁸; David G. Maloney, MD, PhD⁹; Sven de Vos, MD, PhD¹⁰; Ran Reshef, MD¹¹; Lori A. Leslie, MD¹²; Olalekan O. Oluwole, MD, MPH, MBBS¹³; Ibrahim Yakoub-Agha, MD, PhD¹⁴; Rashmi Khanal, MD¹⁵; Joseph Rosenblatt, MD¹⁶; Marika Sherman, MSHS¹⁷; Jinghui Dong, PhD¹⁷; Alessandro Giovanetti, BSc¹⁷; Yin Yang, MD, PhD¹⁷; Christine Lui, MS¹⁷; Zahid Bashir, MBBS; MS¹⁷; A. Scott Jung, MD¹⁷; and Caron A. Jacobson, MD¹⁸

 ¹The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; ²University of South Florida H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; ³UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ⁴The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ⁵Banner MD Anderson Cancer Center, Gilbert, AZ, USA; ⁶Centre Hospitalier Lyon Sud, Pierre-Bénite, France;
 ⁷Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA; ⁸University of Rochester Medical Center - James P. Wilmot Cancer Center, Rochester, NY, USA; ⁹Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁰Ronald Reagan University of California Los Angeles Medical Center, Santa Monica, CA, USA; ¹¹Columbia University Herbert Irving Comprehensive Cancer Center, New York City, NY, USA; ¹²John Theurer Cancer Center, Hackensack, NJ, USA; ¹³Vanderbilt University Medical Center, Nashville, TN, USA; ¹⁴CHU de Lille, Univ Lille, INSERM U1286, Infinite, 59000 Lille, France; ¹⁵Fox Chase Cancer Center, Philadelphia, PA, USA ¹⁶University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA; ¹⁷Kite, a Gilead Company, Santa Monica, CA, USA; and ¹⁸Dana-Farber Cancer Institute, Boston, MA, USA *Equal contributors

Background

- Axi-cel is an autologous anti-CD19 CAR T-cell therapy approved for the treatment of adults with R/R LBCL and R/R FL, both after ≥2 lines of systemic therapy^{1,2}
- ZUMA-5 is a multicenter, single-arm Phase 2 study of axi-cel in patients with R/R iNHL, including FL and MZL
 - In the primary analysis (N=104), the ORR was 92% (76% CR rate) after a 17.5-month median follow-up³
 - Median peak CAR T-cell levels were numerically greater in patients with FL who were in ongoing response at data cutoff than in those who relapsed³
- Here, we report updated clinical and pharmacologic outcomes from ZUMA-5 with ≥2 years of follow-up

1. YESCARTA® (axicabtagene ciloleucel) Prescribing information. Kite Pharma, Inc; 2021. 2. YESCARTA® (axicabtagene ciloleucel) [Summary of Product Characteristics]. Amsterdam, The Netherlands: Kite Pharma EU B.V.; 2021. 3. Jacobson CA, et al. ASH 2020. Abstract #700.

Axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; FL, follicular lymphoma; iNHL, indolent non-Hodgkin lymphoma; LBCL, large B-cell lymphoma; MZL, marginal zone lymphoma; ORR, overall response rate; R/R, relapsed/refractory; scFv, single-chain variable fragment.

ZUMA-5 Study Design

R/R iNHL (N=157) → Leukapheresis

<u>Conditioning Chemotherapy</u> Fludarabine 30 mg/m² IV and cyclophosphamide 500 mg/m² IV on Days -5, -4, -3

Axi-Cel Infusion 2×10⁶ CAR+ cells/kg on Day 0

-

Post-treatment assessment and long-term follow-up periods

Key ZUMA-5 Eligibility Criteria

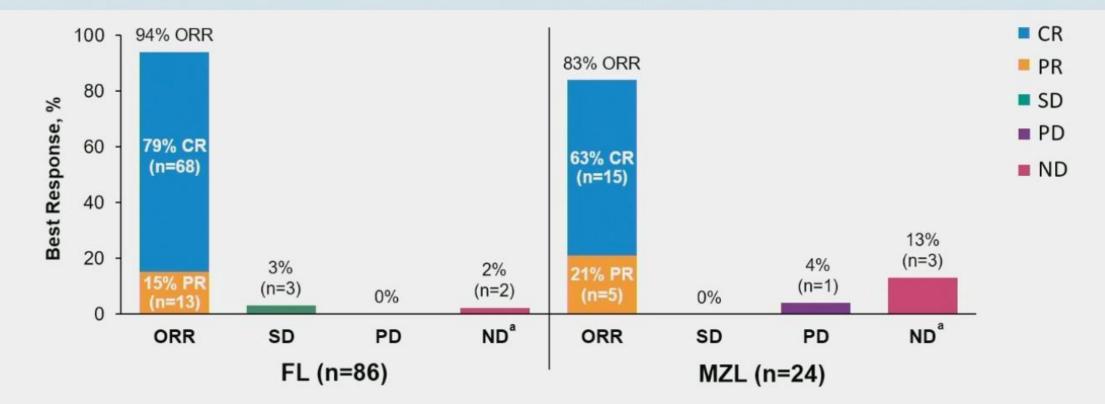
- R/R FL (Grades 1–3a) or MZL (nodal or extranodal)^a
- ≥2 Prior lines of therapy that must have included an anti-CD20 mAb combined with an alkylating agent^b

Primary Endpoint

 ORR (IRRC assessed per the Lugano classification¹)

Key Secondary Endpoints

 \rightarrow


- CR rate (IRRC assessed)
- Investigator-assessed ORR^a
- DOR, PFS, OS
- AEs
- CAR T-cell and cytokine levels

^a Patients with stable disease (without relapse) >1 year from completion of last therapy were not eligible. ^b Single-agent anti-CD20 antibody did not count as line of therapy for eligibility.

1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068.

AE, adverse event; axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; DOR, duration of response; FL, follicular lymphoma; iNHL, indolent non-Hodgkin lymphoma; IRRC, Independent Radiology Review Committee; IV, intravenous; mAb, monoclonal antibody; MZL, marginal zone lymphoma; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; R/R, relapsed/refractory.

ORR by Central Review

- Among efficacy-eligible patients with iNHL (n=110), the ORR was 92% (95% CI, 85–96), with a 75% CR rate
- Among all treated patients with iNHL (n=149), the ORR was 92% (95% CI, 86–96), with a 77% CR rate

Assessed in efficacy-eligible patients (n=110) by an IRRC according to the Lugano Classification (Cheson BD, et al. *J Clin Oncol.* 2014;32:3059-3068). * Among the 5 patients reported as ND, 4 (1 FL; 3 MZL) had no disease at baseline and post-baseline per IRRC but were considered with disease by the investigator; 1 patient with FL died before the first disease assessment. CR, complete response; FL, follicular lymphoma; iNHL, indolent non-Hodgkin lymphoma; IRRC, Independent Radiology Review Committee; MZL, marginal zone lymphoma; ND, not done/undefined; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease.

PFS and OS

Progression-Free Survival Overall Survival 100 Progression-Free Survival, % 80 80 Overall Survival, % 60. 60 40. 40 FL (n=86) MZL (n=24) All Patients (N=110) **Estimated OS** FL (n=86) MZL (n=24) All Patients (N=110) Estimated PFS 20 20 17.3 (9.2-NE) Median (95% CI), mo 39.6 (25.7-NE) 39.6 (23.6-NE) Median (95% CI), mo NR (39.6-NE) NR (18.7-NE) NR (39.6-NE) 63.4 (51.6-73.0) 47.4 (23.1-68.4) 60.1 (49.4-69.2) 81.2 (71.2-88.1) 69.9 (44.0-85.5) 79.1 (70.0-85.7) 24-mo rate (95% CI), % 24-mo rate (95% CI), % 0 0 18 20 22 24 28 30 32 16 26 34 26 28 30 32 34 36 38 Months Months No. at Risk 83 80 77 76 75 10 21 15 22 22 19 17 14 12 60 59 53 52 110 105 90 87 99 94

- Median OS was not yet reached in efficacy-eligible patients with FL or MZL
- Among patients with FL, 3 deaths occurred after Month 24^a; no disease progression events occurred after Month 24

^a Of the 3 deaths, 2 were from COVID-19 and 1 was from sepsis.

FL, follicular lymphoma; MZL, marginal zone lymphoma; NE, not estimable; NR, not reached; OS, overall survival; PFS, progression-free survival.

Efficacy Outcomes in Patients With FL by POD24 Status

	Follicular Lymphoma (n=78) ^a With POD24 Without POD24 (n=49) (n=29)			
Parameter (95% CI)				
Median DOR, months	38.6 (14.5–NE)	NR (24.7–NE)		
24-month rate, %	61.1 (44.3–74.3)	72.4 (50.2–85.9)		
Median PFS, months	39.6 (13.1–NE)	NR (25.7–NE)		
24-month rate, %	57.3 (41.2-70.4)	73.0 (51.1–86.2)		
Median OS, months	NR (39.6–NE)	NR (NE-NE)		
24-month rate, %	77.6 (63.1–86.9)	85.9 (66.7–94.5)		

Patients with FL who had POD24 benefitted from axi-cel, with estimated medians and 24-month rates
of DOR and PFS consistent with all efficacy-eligible patients

- Medians of DOR and PFS among patients without POD24 were not yet reached at data cutoff

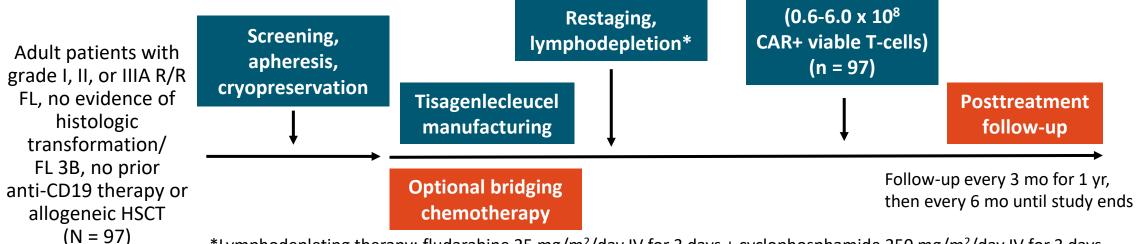
^a Axi-cel-treated patients with FL and available efficacy data on progression after an anti-CD20 mAb + alkylating agent were included in the POD24 analysis.
Axi-cel, axicabtagene ciloleucel; DOR, duration of response; FL, follicular lymphoma; mAb, monoclonal antibody; NE, not estimable; NR, not reached; OS, overall survival; PFS, progression-free survival; POD24, progression of disease <24 months from initiating the first anti-CD20-containing chemoimmunotherapy.</p>

Safety Results

- Consistent with prior reports, the most common Grade ≥3 AEs were neutropenia (33%), decreased neutrophil count (28%), and anemia (25%)
- Grade ≥3 CRS and NEs occurred in 7% of patients (6% FL; 8% MZL) and 19% of patients (15% FL; 36% MZL), respectively
 - Most CRS cases (120 of 121) and NEs (82 of 87) of any grade resolved by data cutoff^a
 - Nearly half of NEs (49%) resolved ≤2 weeks after onset; most NEs (76%) resolved ≤8 weeks after onset
- Grade ≥3 cytopenias present ≥30 days post-infusion were reported in 34% of patients (33% FL; 36% MZL), most commonly neutropenia in 29% of patients (27% FL; 36% MZL)

CRS was graded according to Lee DW, et al. *Blood*. 2014;124:188-195. NEs were identified using the modified blinatumomab registrational study (Topp MS, et al. *Lancet Oncol.* 2015; 16;57-66). The severity of all AEs, including NEs and symptoms of CRS, was graded with the use of the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03. ^a One patient with FL died of multisystem organ failure in the context of CRS (Day 7) prior to the resolution of CRS. Ongoing NEs in FL included Grade 1 attention disturbance, Grade 1 memory impairment, and Grade 1 paresthesia. Ongoing NEs in patients with MZL included Grade 2 facial paresthesia, and Grade 1 memory impairment. AE, adverse event; CRS, cytokine release syndrome; FL, follicular lymphoma; MZL, marginal zone lymphoma; NE, neurologic event.

ELARA: Tisagenlecleucel for R/R FL


- Tisagenlecleucel: anti-CD19 CAR T-cell therapy approved for younger patients with R/R ALL and for adults with R/R DLBCL after ≥2 therapies²
- Phase II ELARA study evaluating tisagenlecleucel in adults with R/R FL³
 - Primary analysis reported ORR 86%, CR 66% at median follow-up of 11 mo
- Current analysis reports extended follow-up at median 17-mo followup and efficacy in patients with high-risk disease (descriptive analysis)⁴

1. Casulo. Blood. 2019;133:1540. 2. Tisagenlecleucel PI.

3. Schuster. ASCO 2021. Abstr 7508. 4. Thieblemont. ASH 2021. Abstr 131.

ELARA: Study Design

 Extended follow up in high-risk R/R FL in ongoing international, single-arm phase II trial

*Lymphodepleting therapy: fludarabine 25 mg/m²/day IV for 3 days + cyclophosphamide 250 mg/m²/day IV for 3 days or bendamustine 90 mg/m²/day IV for 2 days.

Tisagenlecleucel infusion

- Primary endpoint: CRR by IRC
- Secondary endpoints: ORR, DoR, PFS, OS, safety, cellular kinetics

ELARA Extended Follow-up: Efficacy

Response at Median Follow-up of 17 Mo, % (95% CI)	Evaluable Patients (n = 94)
ORR	86.2 (77.5-92.4)
CRR	69.1 (58.8-78.3)
12-mo PFS	
All patientsIn patients achieving CR	67.0 (56.0-75.8) 85.5 (74-92)
9-mo DoR	
All patientsIn patients achieving CR	76.0 (64.6-84.2) 86.5 (75-93)

At median follow-up of 21 mo, median PFS was 29.5 mo (95% CI: 17.9-NE)

Thieblemont. ASH 2021. Abstr 131.

ELARA Subgroup Analysis: PFS in POD24 and High TMTV Subgroups

Discoss Characteristic	Descriptiv	Multivariate Analysis		
Disease Characteristic	High-Risk 12-Mo PFS, %	Low-Risk 12-Mo PFS, %	HR (95% CI)	
POD24	60.8	77.9	2.3 (1.0-5.3)	
TMTV	54.5	68.5	2.5 (1.3-5.6)	

ELARA Extended Follow-up: CRS Events

CRS Events Occurring Within 8 Wk of Infusion	All Patients (N = 97)	CRS Events Occurring Within 8 Wk of Infusion, n (%)	Patients With CRS (n = 47)
Patients with CRS	40 5	Concurrent infections	7 (14.9)
(Lee scale), %	48.5	Admitted to ICU	4 (8.5)
Maximum CRS grade, %		Median duration ICU stay, days	4
■ 1 ■ 2	27.8	Tocilizumab	16 (34.0)
	20.6	Corticosteroids	3 (6.4)
 3/4 Median onset CRS, days 	0 4.0 1/14	Hypotension requiring IV fluids and/or vasopressors	19 (40.4)
Min/max		One vasopressor administered	3 (6.4)
Median duration CRS, days	4.0 1/24	High-dose vasopressors	0
Min/max		Нурохіа	9 (19.1)
		Low-flow oxygen supplementation	9 (19.1)

CART in FL Conclusions

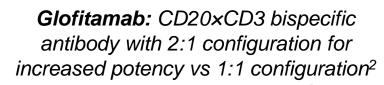
- Very high response rates
 - Axi-cel:94% ORR, 79% CRR
 - Tisa-cel: 86% ORR, 69% CRR
- Durability: So far, pretty good
 - Axi-cel: 2 yr PFS: 63%
 - Tisa-cel: 1 yr PFS: 67%
- Activity promising in high risk subgroups like POD24
- Toxicity
 - Appears to be more CRS and neurotox with axi-cel
 - Long term cytopenias remain a concern with any CART product
- May turn out to be a good option for selected FL patients

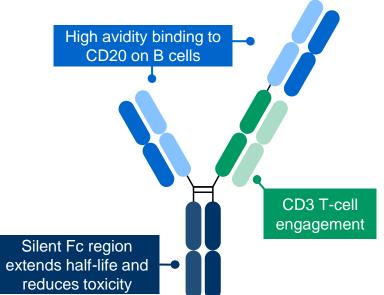
Glofitamab Step-Up Dosing Induces High Response Rates in Pts With R/R MCL, Most of Whom Had Failed Prior BTKi Therapy

Tycel Phillips,¹ Michael Dickinson,² Franck Morschhauser,³ Emmanuel Bachy,⁴ Michael Crump,⁵ Marek Trněný,⁶ Nancy Bartlett,⁷ Jan Zaucha,⁸ Kathryn Humphrey,⁹ David Perez-Callejo,¹⁰ Linda Lundberg,¹⁰ James Relf,⁹ Audrey Filezac de L'Etang,¹⁰ David Carlile,⁹ Emma Clark,⁹ Carmelo Carlo-Stella¹¹

¹University of Michigan Medical School, Ann Arbor, MI, USA; ²Peter MacCallum Cancer Centre, Royal Melbourne Hospital and The University of Melbourne, Melbourne, Australia; ³CHU Lille, Service des Maladies du Sang, Lille, France; ⁴Hospices Civils de Lyon and Université Claude Bernard, Pierre-Bénite, France; ⁵Princess Margaret Hospital, Toronto, ON, Canada; ⁶1st Faculty of Medicine, Charles University, General Hospital, Prague, Czech Republic; ⁷Washington University, Siteman Cancer Center St. Louis, MO, USA; ⁸Medical University of Gdańsk, Gdańsk, Poland; ⁹Roche Products Ltd, Welwyn Garden City, United Kingdom; ¹⁰F. Hoffmann-La Roche Ltd, Basel, Switzerland; ¹¹Humanitas University and Humanitas Research Hospital, Milan, Italy.

Mantle cell lymphoma

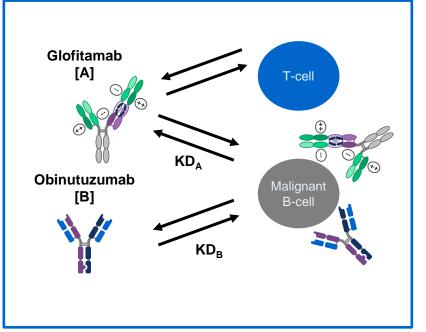

- Aggressive subtype of NHL
- Patients with PD after BTKi therapy have a poor prognosis¹


Glofitamab

- Engages and redirects T cells to eliminate malignant B cells²
- Off-the-shelf availability and fixed duration of treatment^{2,3}

Phase I experience (NCT03075696)³

- Promising efficacy and manageable safety as monotherapy and in combination with obinutuzumab in patients with heavily pre-treated R/R B-NHL^{4,5}
- Effective CRS mitigation with obinutuzumab pre-treatment (Gpt) and/or C1 SUD^{4,5}



Aim: Report data – 1000mg or 2000mg obinutuzumab pretreatment prior to glofitamab monotherapy in R/R MCL

B-NHL, B-cell non-Hodgkin lymphoma; BTKi, Bruton's tyrosine kinase inhibitor; C, cycle; CRS, cytokine release syndrome; Gpt, pretreatment with obinutuzumab; MCL, mantle cell lymphoma; NHL, non-Hodgkin lymphoma; PD, progressive disease; R/R relapsed/refractory; SUD, step-up dosing.

Martin, P et al. Blood 2016; 2. Bacac, M et al. Clin Cancer Res 2018;
 3. NCT03075696. Available at: https://clinicaltrials.gov;
 Hutchings, M et al. JCO 2021; 5. Morschhauser, F et al. ASH 2019

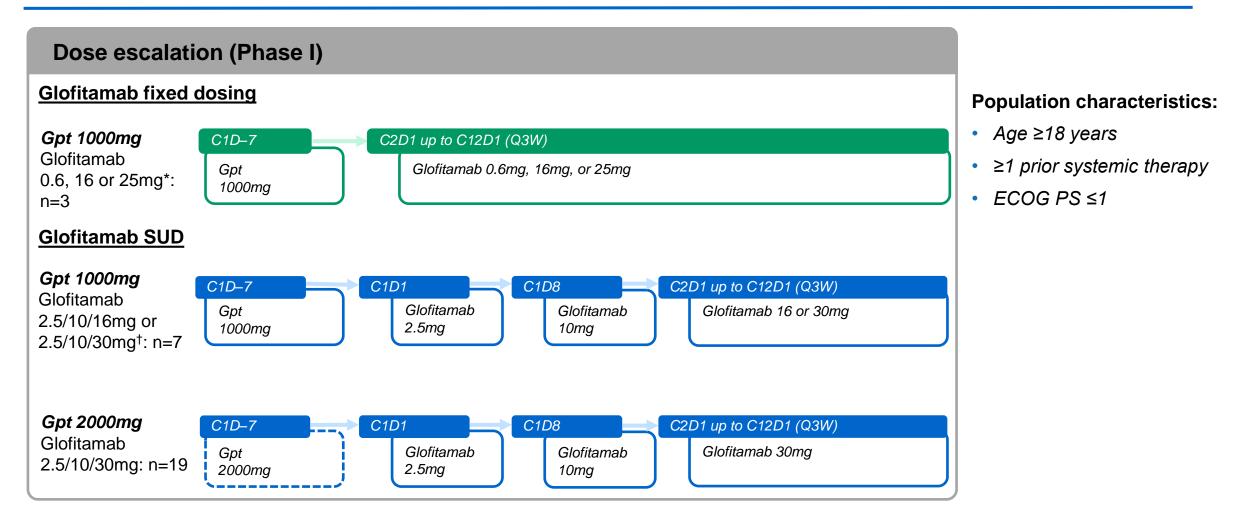
Glofitamab dosing in R/R MCL

CD20 – receptor occupancy (RO; tumor cell)

- Glofitamab and obinutuzumab compete for binding to the same epitope on CD20 receptors
- Gpt reduces glofitamab RO, which aims to mitigate CRS incidence and severity, by competitive binding

Patients with MCL have:

- Higher clearance of obinutuzumab (2-fold) compared with other NHL histologies¹
- Lower obinutuzumab concentration which leads directly to higher glofitamab RO²


CRS

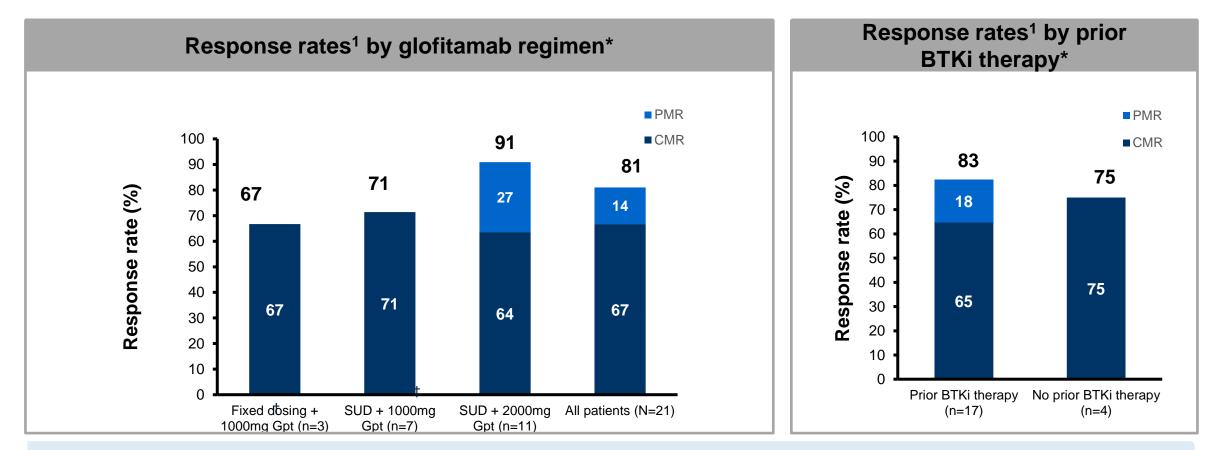
- · Direct relationship between glofitamab RO and CRS at the first dose in NHL
- A higher Gpt dose prior to glofitamab SUD may further reduce risk of CRS in MCL

Response

• Direct relationship between glofitamab RO and CR rate at Cycle 3 in aNHL

Glofitamab regimens investigated in R/R MCL

Clinical cut-off date: May 18, 2021. *Two patients received Gpt 1000mg, glofitamab 0.6mg (n=1) or 16mg (n=1) plus obinutuzumab 1000mg on D1 of Cycles 2–12. [†]One patient received extended SUD (0.5/2.5/10/30mg) and one patient received Gpt 1000mg, glofitamab SUD 2.5/10/30mg, plus obinutuzumab 1000mg on D1 of Cycles 2–12 D, day; ECOG PS, Eastern Cooperative Oncology Group performance status; Q3W, every three weeks.

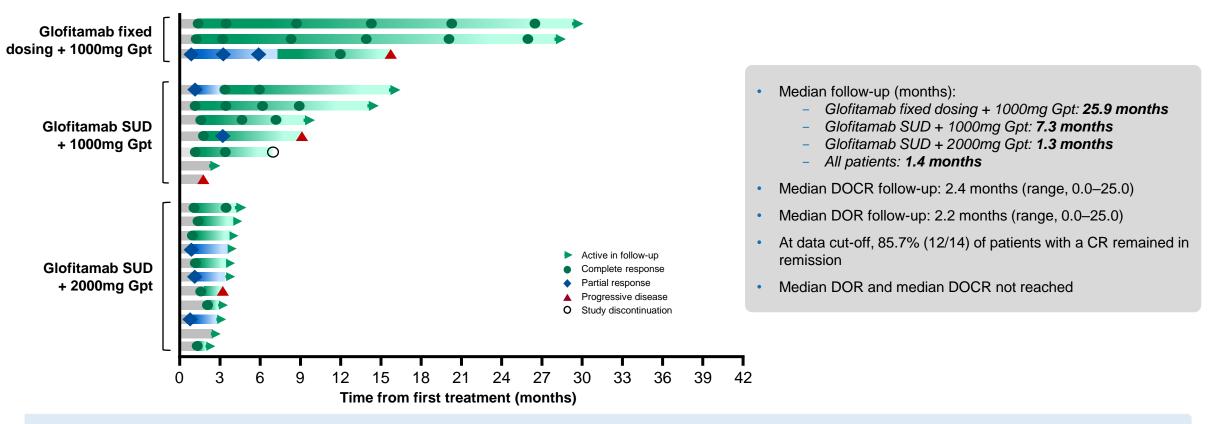

Baseline characteristics

n (%) of pat	ients unless stated	Glofitamab fixed dosing + 1000mg Gpt (n=3)	Glofitamab SUD + 1000mg Gpt (n=7)	Glofitamab SUD + 2000mg Gpt (n=19)	All patients (N=29*)
Median age	e, years (range)	81.0 (66–84)	69.0 (64–75)	66.0 (41–84)	69.0 (41–84)
Male		2 (66.7)	6 (85.7)	12 (63.2)	20 (69.0)
Ann Arbor	stage III-IV at study entry	2 (66.7)	6 (85.7)	16 (84.2)	24 (82.8)
MCL IPI sco	ore ≥6 at study entry	3 (100)	3 (42.9)	12 (63.2)	18 (62.1)
	Median time since last therapy, months (range)	1.1 (1.0–8.5)	3.4 (1.2–53.2)	1.6 (0.1–107.5)	1.7 (0.1–107.5)
	Prior lines of therapy, median (range)	3 (2–5)	4 (3–5)	3 (1–6)	3 (1–6)
	ВТКі	3 (100)	6 (85.7)	11 (57.9)	20 (69.0)
Drior	Lenalidomide	0	1 (14.3)	3 (15.8)	4 (13.8)
Prior therapy	Chemotherapy	3 (100)	7 (100)	18 (94.7)	28 (96.6)
linerapy	Alkylator	0	6 (85.7)	7 (36.8)	13 (44.8)
	Anti-CD20 monoclonal antibody	3 (100)	6 (85.7)	14 (73.7)	23 (79.3)
	Refractory to any prior therapy	3 (100)	7 (100)	16 (84.2)	26 (89.7)
Refractory	Refractory to prior anti-CD20 therapy	2 (66.7)	3 (42.9)	10 (52.6)	15 (51.7)
status	Refractory to first-line therapy	2 (66.7)	2 (28.6)	11 (57.9)	15 (51.7)
	Refractory to last prior therapy	2 (66.7)	5 (71.4)	13 (68.4)	20 (69.0)

Most patients had received prior BTKi therapy

*Three patients were treated with glofitamab in combination with obinutuzumab (G-combo). IPI, International Prognostic Index.

Response rates



Glofitamab resulted in high response rates in patients with R/R MCL

*21/29 patients were efficacy-evaluable: the secondary efficacy-evaluable population includes all patients who had a response assessment performed (investigator-assessed), or who were still on treatment at the time of their first scheduled response assessment (Lugano 2014 criteria)¹. [†]Due to a data issue, the response (CR) from one patient is reported as missing, and two patients treated with a combination of glofitamab and obinutuzumab (G-combo); [‡]One patient treated with G-combo. CMR, complete metabolic response; PMR, partial metabolic response.

1. Cheson, BD et al. J Clin Oncol 2014

Time on treatment and response

Duration of response in efficacy-evaluable patients*

Most patients had ongoing responses at the time of the data cut-off

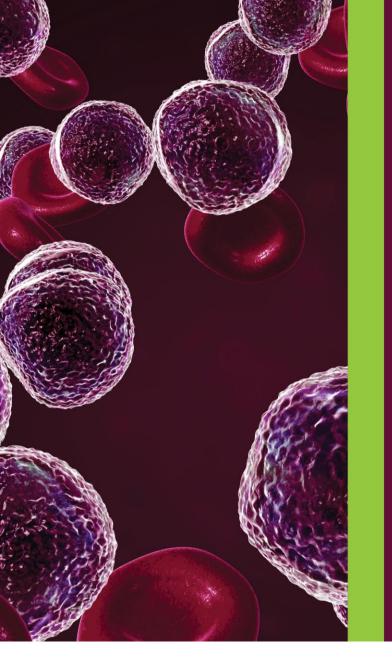
*Secondary efficacy-evaluable population. DOCR, duration of complete response; DOR, duration of response; Gpt, obinutuzumab pretreatment; SUD, step-up dosing.

Cytokine release syndrome*

n (%) of patients with ≥1 AE unless stated	Glofitamab fixed dosing + 1000mg Gpt (n=3)	Glofitamab SUD + 1000mg Gpt (n=7)	Glofitamab SUD + 2000mg Gpt (n=19)	All patients (N=29)				
Any CRS	3 (100)	5 (71.4)	9 (47.4)	17 (58.6)	CRS by cycle and grade (all patients)			
Grade 1	3 (100)	2 (28.6)	5 (26.3)	10 (34.5)	100		Grade 1 Gra	de 2 ■Grade 4
Grade 2	0	2 (28.6)	4 (21.1)	6 (20.7)				
Grade 3	0	0	0	0	80 •			
Grade 4^{\dagger}	0	1 (14.3)	0	1 (3.4)				
Serious AE of CRS (any grade)	2 (66.7)	5 (71.4)	4 (21.1)	11 (37.9)	Patients (%) • 09	46.4		
Median time to first CRS event, hrs (range)	5.5 (3.0–32.7)	9.6 (6.6–21.7)	12.1 (7.7–19.8)	9.9 (3.0–32.7)	• 04 ^{at}			
Tocilizumab use in patients with CRS	0	4 (57.1)	3 (15.8)	7 (24.1)	20 ·		17.4	13.0
CRS events resolved	3 (100)	4 (80)	6 (66) [‡]	13 (76.5) [§]	ر ₀	C1D1	C1D8¶	C2D1
Median time to CRS resolution, hrs (range)	23.0 (10.9–171.4)	38.8 (20.6–49.0)	51.4 (3.8–142.0)	38.8 (3.8–171.4)		N=28	N=23	N=23

Most CRS events occurred during C1, were Grade 1 or 2 and resolved

*By American Society for Transplantation and Cellular Therapy (ASTCT) criteria¹; [†]Grade 4 CRS in the SUD + 1000mg Gpt cohort (patient died due to cardiopulmonary insufficiency as a result of rapid PD; at time of death CRS was persisting). [‡]3/3 remaining CRS events resolved post data cut off; [§]3/4 rema


1. Lee, DW et al. Biol Blood Marrow Transplant 2019

Conclusions

- Glofitamab, a 2:1 CD20xCD3 T-cell engaging bispecific antibody with a fixed-duration treatment and off-the-shelf availability,^{1,2} demonstrated promising efficacy and favourable safety in R/R MCL
- Glofitamab SUD induced high response rates in patients with R/R MCL, most of whom had failed prior BTKi therapy
- CRS was manageable and mostly low grade; ICANS AEs were infrequent, low grade and resolved within 1 day
- Glofitamab continues to be evaluated in the post-BTKi R/R MCL setting: these results support a future confirmatory trial

Conclusions

- Immunotherapy showing increasing promise in FL
 - Bi-specific monoclonal antibodies (mosunetuzumab)
 - CART
- And in MCL
 - Glofitamab

Breaker Slide

This activity is jointly provided by

