
Chronic Lymphocytic Leukemia: ASH 2021 Highlights- BTKis

Nicole Lamanna, MD
Associate Professor, Director of CLL Program
Leukemia Service
Division of Hematology/Oncology

Disclosures *Nicole Lamanna, MD*

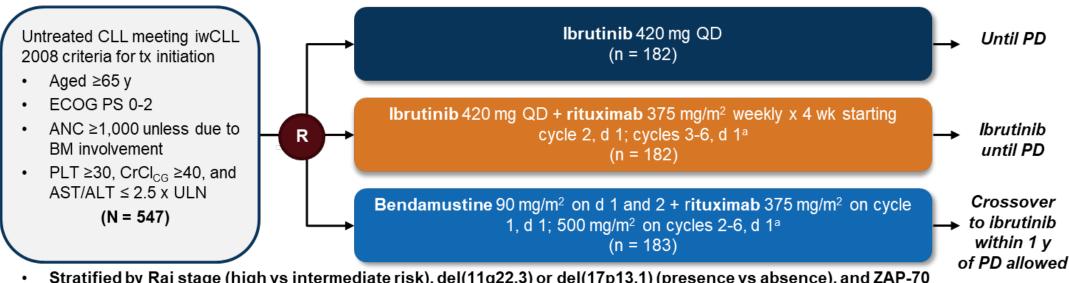
I have the following financial relationships to disclose:

SAB/Consultant/Honoraria: AbbVie, Adaptive Biosciences, Astra-Zeneca, Bei-Gene, Celgene, Genentech, Janssen, LOXO/Eli Lilly, Pharmacyclics

Institutional Research funding: AbbVie, Astra-Zeneca, BeiGene, Genentech, LOXO/Eli Lilly, MingSight, Octapharma, Oncternal, TG Therapeutics, Verastem

Targeted Therapy FDA Approvals and Current Status in CLL¹⁻⁷

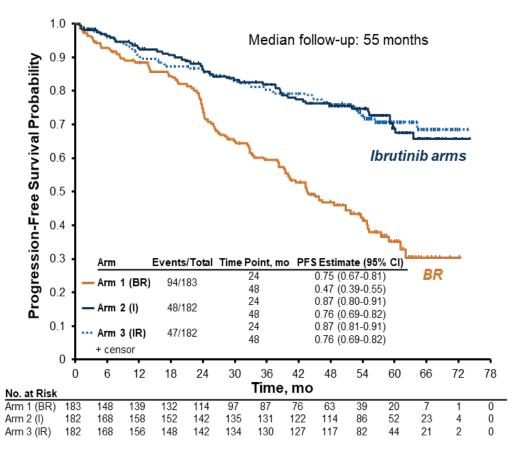
Agent	Target	Status in CLL/SLL				
Ibrutinib		Approved				
Acalabrutinib	DTIA	Approved				
Zanubrutinib	BTK	Phase 3 (SEQUOIA)				
Pirtobrutinib		Phase 3 (NCT04666038)				
Venetoclax	BCL-2	Approved				
Idelalisib		Approved				
Duvelisib	PI3K	Approved				
Umbralisib		Phase 3				


^{1.} Imbruvica (ibrutinib) Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205552s002lbl.pdf. 2. Calquence (acalabrutinib) Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/210259s000lbl.pdf. 3. Brukinsa (zanubrutinib) Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/213217s000lbl.pdf. 4. Venclexta (venetoclax) Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208573s009lbl.pdf. 5. Zydelig (idelalisib) Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206545lbl.pdf. 6. Copiktra (duvelisib) Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211155s000lbl.pdf. 7. Ukoniq (umbralisib) Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213176s000lbl.pdf.

ASH abstracts highlight continued efficacy of BTKis in phase III frontline studies in CLL

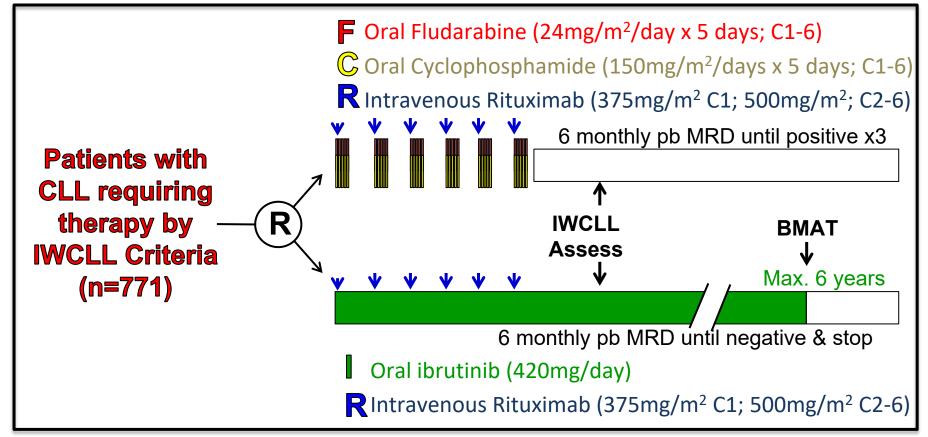
- Alliance study
- FLAIR study
- SEQUOIA study

A041202: First-Line Ibrutinib vs Ibrutinib + Rituximab vs Bendamustine + Rituximab in CLL/SLL


Multicenter, randomized, double-blind phase 3 study

- Stratified by Rai stage (high vs intermediate risk), del(11q22.3) or del(17p13.1) (presence vs absence), and ZAP-70 methylation (< vs ≥20%)
- Primary endpoint: PFS
 - Two primary comparisons of ibrutinib vs BR and ibrutinib + R vs BR with 90% power to detect HR of 0.586 (estimated 2-y PFS rates: ibrutinib, 75%; BR, 61%) and overall 1-sided α = 0.025 for each comparison
 - If both primary comparisons are significant, third planned comparison of ibrutinib + R versus ibrutinib
- 1. Woyach JA et al. ASH 2021. Abstract 639.

Long-Term Update From the ALLIANCE Trial Confirms Benefit of Ibrutinib Regimens, Including in *TP53* CLL¹


Benefit of ibrutinib regimens over CIT was consistent for all subgroups of patients

- Median PFS was 44 months with BR, NR for ibrutinib arms (HR = 0.36; P < .0001)
- Greater benefit of ibrutinib regimens over
 CIT noted among patients with TP53
 abnormalities than without (P < .001)
- With BR, PFS was worse for those with TP53 abnormalities versus without (HR = 5.32; P < .0001)
- In the ibrutinib arms, no significant difference in PFS by presence or absence of TP53 abnormalities (HR = 0.99; P = .98)

1. Woyach JA et al. ASH 2021. Abstract 639.

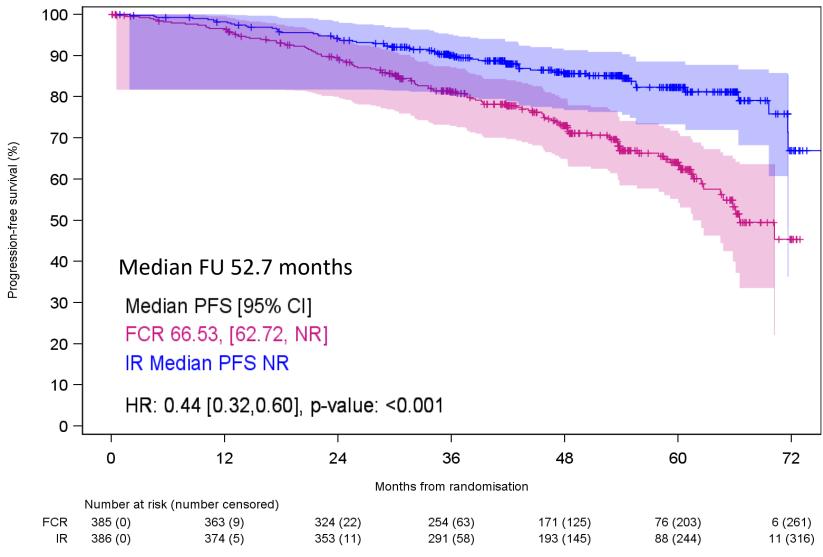
Ibrutinib Plus Rituximab vs FCR in Previously Untreated CLL: Results of the Phase III NCRI FLAIR Trial

Primary end-point:

To assess whether IR is superior to FCR in terms of PFS

Key secondary end-points:

Overall survival
Response including MRD
Safety and toxicity


Key Inclusion Criteria:

Previously untreated CLL requiring therapy by IWCLL criteria; Considered fit for FCR; ≤75 yrs old

Key Exclusion Criteria:

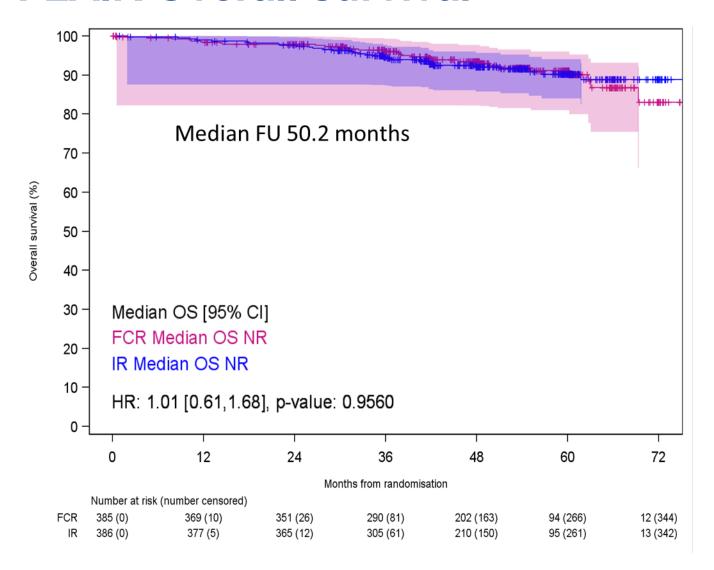
Prior therapy for CLL; History of Richter's transformation; >20% *TP53* deletion by FISH; Concomitant warfarin (or equivalent) Symptomatic cardiac failure or angina

FLAIR Primary end-point: Progression Free Survival

FLAIR IWCLL and MRD Response

IWCLL Response 3-months post treatment with FCR/R

	FCR (n=385)	IR (n=386)
CR	233 (60.5%)	81 (21.0%)
PR	106 (27.6%)	271 (70.2%)
SD/PD/NR	46 (11.9%)	34 (8.8%)


Proportion of participants with MRD negativity* in the bone marrow at 3-months post treatment with FCR/R

	FCR (n=385)	IR (n=386)
MRD Negative	213 (55.3%)	15 (3.9%)
MRD Positive	140 (36.4%)	357 (92.5%)
N/A	32 (8.3%)	14 (3.6%)

*MRD flow cytometry <1 CLL cell/10,000 (IWCLL criteria)

A greater percentage of participants in the FCR arm became MRD negative in the bone marrow 3-months post-treatment compared to the IR arm (55.3% vs. 3.9%).

FLAIR Overall survival

	FCR	IR								
	(n=56)	(n=19)								
Therapy for Richter's transformation or Hodgkin's										
CHOP-R (5) or ABVD (1)	4	2								
Therapy for relapsed CLL										
BTKi	38	0								
Idelalisib + R	1	1								
Venetoclax + R	8	5								
CIT (FCR/BR/ChIR)	4	10								
Rituximab	1	1								
Targeted therapy for CLL	47/52	6/17								
	(90%)	(35%)								

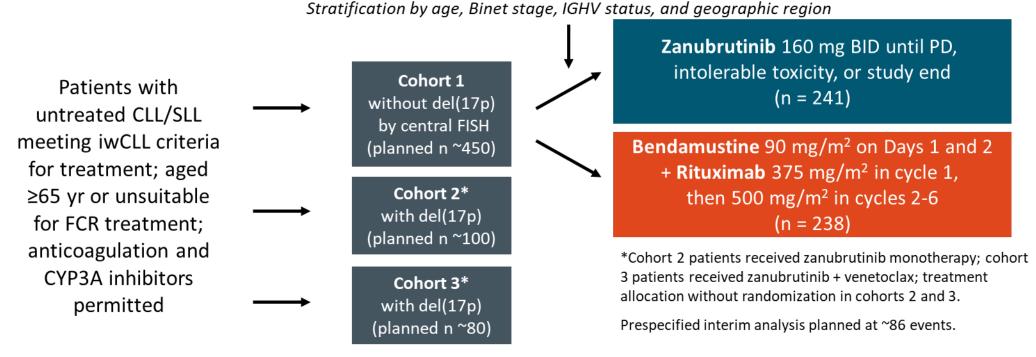
Overall survival historical comparison

Surviving at:	FCR FLAIR (2014-2018)	FCR ADMIRE/ARCTIC (2009-2012)				
12 months	98.4%	97.5%				
24 months	97.9%	92.9%				
36 months	96.4%	86.8%				
48 months	94.5%	84.2%				

Relative risk of sudden unexplained death or cardiac death, accounting for pre-existing HTN/cardiac disorder at trial entry*, by FLAIR arm

*Defined as being on medication for HTN or CV conditions at study entry

		F	CR		IR				
	Sud		plained o		Sudden unexplained death or cardiac death				
Hypertension		No	Yes	Total		No	Yes	Total	
or prior history of cardiac	No	288	2	290	No	276	1	277	
disorder (on	Yes	88	0	88	Yes	100	7	107	
treatment at trial entry)	Total	376	2	378	Total	376	8	384	
			e Risk IE* Exact P IE				1, 95%CI act P <0.0	` '	


Meta-analysis

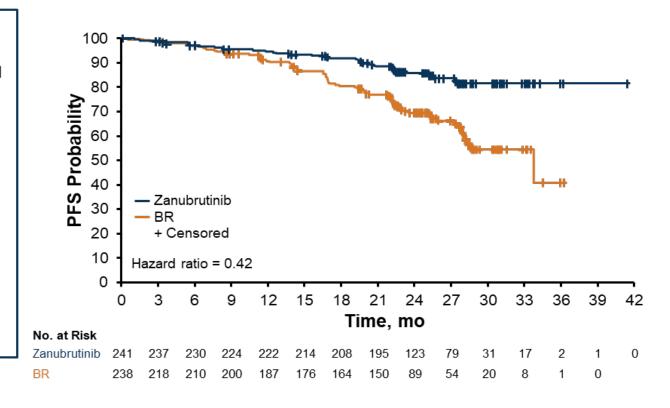
FLAIR is not an outlier for sudden unexplained or cardiac deaths in ibrutinib-containing arms and is consistent with other phase III CLL ibrutinib-containing trials including ALLIANCE, iLLUMINATE, RESONATE, GENUINE and HELIOS.

See poster abstract (#2636) for more details: 'Sudden or Cardiac Deaths on Ibrutinib-Based Therapy Were Associated with a Prior History of Hypertension or Cardiac Disease and the Use of ACE-Inhibitors at Study Entry: Analysis from the Phase III NCRI FLAIR Trial", Munir, T.

SEQUOIA: Study Design

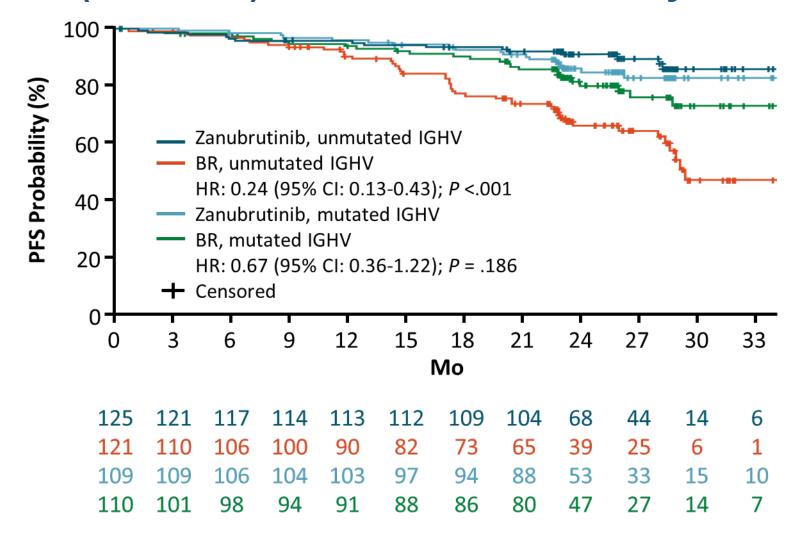
Multicenter, multicohort, open-label, part-randomized phase III trial

- Primary endpoint (cohort 1): IRC-assessed PFS
- Secondary endpoints (cohort 1): investigator-assessed PFS, ORR, OS, safety

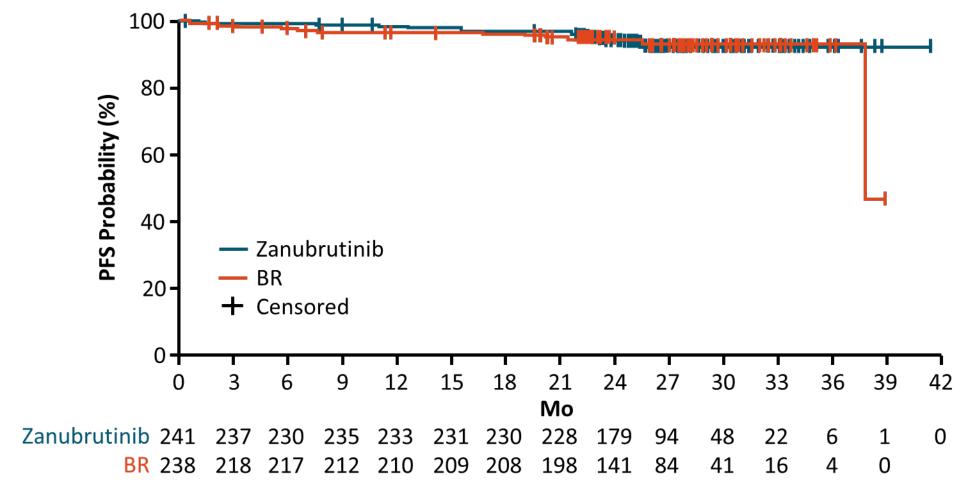

Tam. ASH 2021. Abstr 396.

SEQUOIA: Zanubrutinib Prolongs PFS vs BR in TN CLL

ASH 2021: phase 3 trial of 479 patients with CLL without del(17p); subjects randomized to zanu (n = 241) and BR (n = 238)¹


After median follow-up of 26.2 mo

- PFS significantly prolonged with zanu
 vs BR (HR = 0.42; P < .0001)
- Benefit with zanu was observed across subgroups for age, Binet stage, bulky disease, and del(11q)
- Treatment benefit was also observed for patients with unmutated IGHV (HR = 0.24, 1-sided and 2-sided P < .0001), but not for mutated IGHV



1. Tam C et al. ASH 2021. Abstract 396.

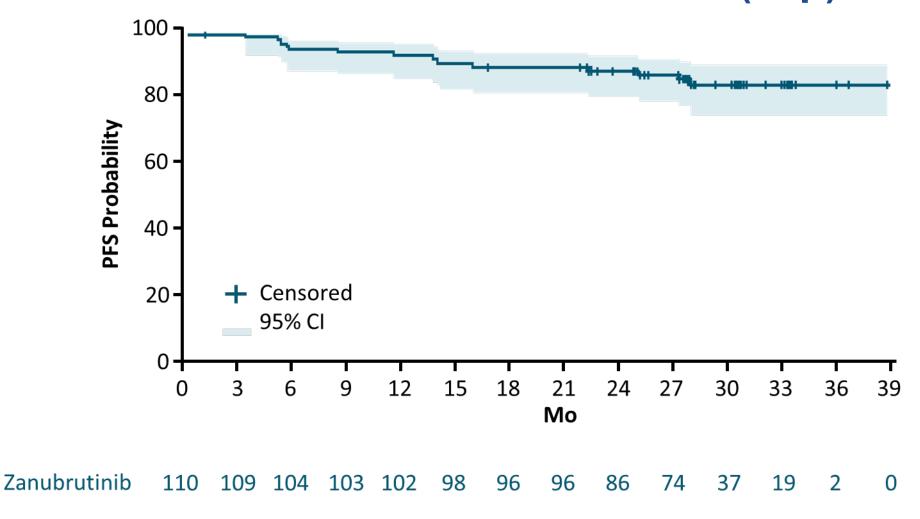
SEQUOIA (Cohort 1): IRC-Assessed PFS by IGHV Status

SEQUOIA (Cohort 1): OS

Median follow-up: 26.2 mo

SEQUOIA (Cohort 1): Summary of AEs

AEs, n (%)	Zanubrutinib (n = 240)*	Bendamustine + Rituximab (n = 227)*
Any AE	224 (93.3)	218 (96.0)
Grade ≥3 AE	126 (52.5)	181 (79.7)
Serious AE	88 (36.7)	113 (49.8)
Fatal AE	11 (4.6)	11 (4.8)
AE leading to dose reduction	18 (7.5)	84 (37.4)
AE leading to dose interruption or delay	111 (46.3)	154 (67.8)
AE leading to discontinuation	20 (8.3)	31 (13.7)


^{*}Safety was assessed in patients who received ≥1 treatment dose; 1 patient in the zanubrutinib arm and 11 patients in the combination arm did not receive treatment.

SEQUOIA (Cohort 1): AEs of Interest

AEc = (9/)	Zanubrutinil	o (n = 240)*	Bendamustine + Rituximab (n = 227)*				
AEs, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3			
Anemia	11 (4.6)	1 (0.4)	44 (19.4)	4 (1.8)			
Neutropenia	38 (15.8)	28 (11.7)	129 (56.8)	116 (51.1)			
Thrombocytopenia	11 (4.6)	5 (2.1)	40 (17.6)	18 (7.9)			
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)			
Atrial fibrillation	8 (3.3)	1 (0.4)	6 (2.6)	3 (1.3)			
Bleeding	108 (45.0)	9 (3.8)	25 (11.0)	4 (1.8)			
Major bleeding	12 (5.0)	9 (3.8)	4 (1.8)	4 (1.8)			
Diarrhea	33 (13.8)	2 (0.8)	31 (13.7)	5 (2.2)			
Hypertension	34 (14.2)	15 (6.3)	24 (10.6)	11 (4.8)			
Infections	149 (62.1)	39 (16.3)	127 (55.9)	43 (18.9)			
Myalgia	9 (3.8)	0 (0.0)	3 (1.3)	0 (0.0)			
Other cancers	31 (12.9)	17 (7.1)	20 (8.8)	7 (3.1)			
Dermatologic	16 (6.7)	2 (0.8)	10 (4.4)	2 (0.9)			

^{*}Safety was assessed in patients who received ≥1 treatment dose; 1 patient in the zanubrutinib arm and 11 patients in the combination arm did not receive treatment.

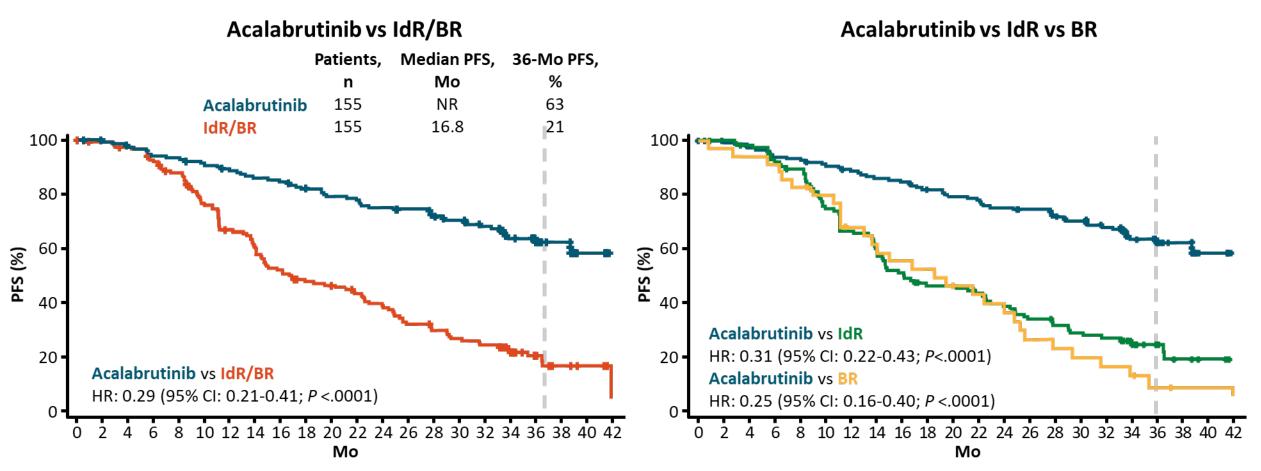
SEQUOIA (Cohort 2): IRC-Assessed PFS in Patients With del(17p)

ASH abstracts highlight continued efficacy of BTKis in phase III relapsed CLL study

ASCEND study

ASCEND: Study Design

Global, multicenter, randomized, open-label phase III trial (data cutoff: October 26, 2020)

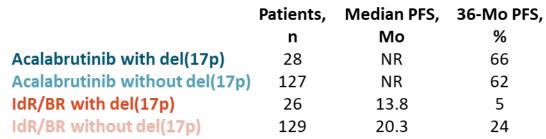

Stratification by presence of del(17p) (yes vs no); ECOG PS (0-1 vs 2); prior therapies (1-3 vs ≤4)

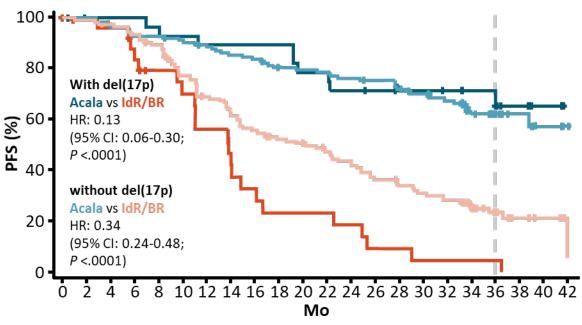
Adults with R/R CLL per IWCLL; ≥1 prior systemic therapy for CLL; Acalabrutinib[†] 100 mg PO BID no prior BCL2 inhibitor or B-cell receptor (n = 155)Crossover inhibitor therapy*; permitted no CNS lymphoma or leukemia or after Idelalisib[†] 150 mg PO BID + Rituximab[‡] (IdR; n = 119) significant CV disease; confirmed PD ECOG PS ≤2 **Bendamustine**§ 70 mg/m² IV + Rituximab (BR; n = 36) (N = 310)(Investigator's Choice)

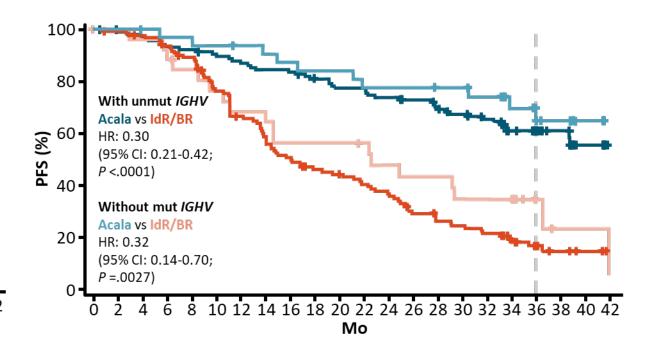
- Primary endpoint: PFS
- Secondary endpoints: ORR, OS, safety

^{*}Prior bendamustine allowed if investigator choice of control treatment was IdR, and if prior response to bendamustine was >24 mo. [†]Dosed until PD or unacceptable toxicity. [‡]Rituximab 375 mg/m² IV on Day 1 of cycle 1, then 500 mg/m² every 2 wk for 4 infusions, followed by every 4 wk for 3 infusions. §Bendamustine on Days 1 and 2 of cycles 1-6. IRituximab 375 mg/m² IV on Day 1 of cycle 1, then 500 mg/m² on Day 1 of cycles 2-6.

ASCEND 3-Yr Update: Investigator-Assessed PFS

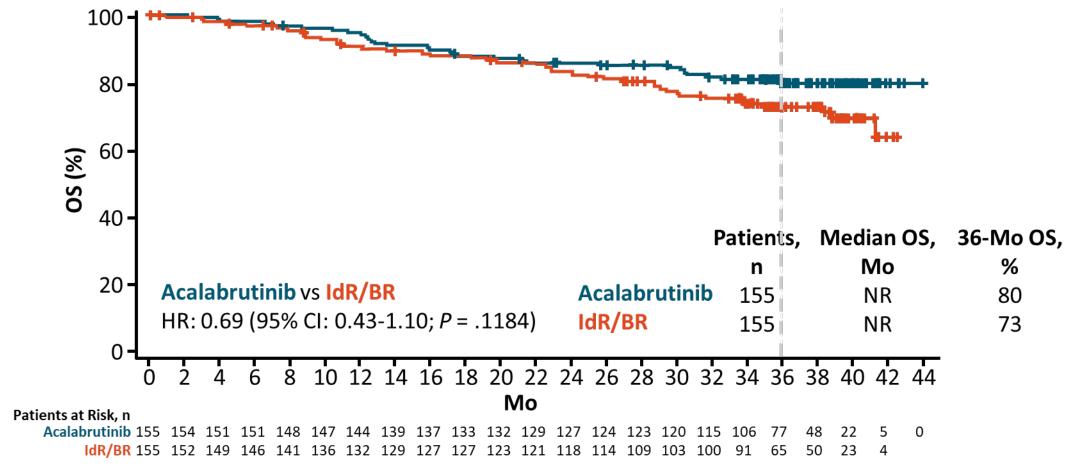

Median time on study: acalabrutinib, 36.0 mo; IdR/BR, 35.2 mo


Jurczak, ASH 2021, Abstr 393,


ASCEND 3-Yr Update: Investigator-Assessed PFS in Patients With High-Risk Features

PFS by del(17p)

PFS by IGHV



Jurczak, ASH 2021, Abstr 393.

ASCEND 3-Yr Update: OS

■ 49% (76/155) of patients receiving IdR/BR crossed over to acalabrutinib

Jurczak. ASH 2021. Abstr 393.

ASCEND 3-Yr Update: Safety Summary

AEs, n (%)	Acalabrutinib (n = 154)	ldR (n = 118)	BR (n = 35)
Any AEs (all grades) ■ Grade ≥3 ■ Grade 5	148 (96) 96 (62) 14 (9)	117 (99) 108 (92) 8 (7)	28 (80) 17 (49) 2 (6)
Serious AEs*	59 (38)	74 (63)	9 (26)
Treatment-related AEs	111 (72)	113 (96)	24 (69)
AEs leading to dose reduction	7 (5)	15 (13)	5 (14)
AEs leading to dose withholding	64 (42)	79 (67)	7 (20)
AEs leading to dose d/c	32 (21)	77 (65)	6 (17)
Death within 30 days of last dose	13 (8) [†]	5 (4) [‡]	1 (3)§

^{*}Serious AEs reported in ≥5% of patients in any group included: pneumonia (acalabrutinib, 8%; IdR, 9%; BR, 3%); diarrhea (acalabrutinib, 1%; IdR, 15%); pyrexia (acalabrutinib, 2%; IdR, 7%; BR, 3%). †Primary causes of death for acalabrutinib: n = 10, AE (n = 1 each, respiratory failure, brain neoplasm, cardiorespiratory arrest, cardiopulmonary failure, pneumonia, neuroendocrine carcinoma, sepsis, bronchitis, cachexia, and neutropenic sepsis); n = 1 each PD, Richter transformation, and unknown. †Primary cause of death for IdR: n = 5, AE (n = 1 each, cardiopulmonary failure, myocardial infarction, pneumonitis, sepsis, and interstitial lung disease). §Primary cause of death for BR: n = 1, AE (acute cardiac failure).

Jurczak. ASH 2021. Abstr 393.

ASCEND 3-Yr Update: AEs of Clinical Interest

AEs of Clinica	al Interest, n (%)		rutinib 154)		dR 118)	BR (n = 35)		
		Any	Grade ≥3	Any	Grade ≥3	Any	Grade ≥3	
Atrial fibrillati	on	10 (7)	2 (1)	4 (3)	1 (1)	1 (3)	1 (3)	
Hemorrhage	Hemorrhage		4 (3)	10 (9)	3 (3)	2 (6)	1 (3)	
Major hem	orrhage*	5 (3)	4 (3) [†]	3 (3) [‡]	3 (3) [‡]	1 (3)	1 (3)	
Hypertension		11 (7)	7 (5)	6 (5)	1 (1)	0	0	
Infections		100 (65)	38 (25)	83 (70)	37 (31)	17 (49)	4 (11)	
	ry malignancies -melanoma skin	11 (7)	8 (5)	2 (2)	1 (1)	2 (6)	2 (6)	
Tumor lysis sy	ndrome	1 (1)	1 (1)	1 (1)	1 (1)	0	0	

^{*}Major hemorrhage: any serious or grade ≥3 hemorrhage, or CNS hemorrhage of any grade. †Includes n = 1 each of grade 4 GI hemorrhage, grade 3 GI hemorrhage, grade 4 ITP, and grade 3 intestinal hemorrhage. ‡Includes n = 1 each of grade 3 GI hemorrhage, grade 3 and grade 4 ITP, and grade 3 hematuria.

Jurczak, ASH 2021, Abstr 393.

HEAD TO HEAD COMPARISONS OF BTKis in RR CLL

- ELEVATE-RR
- ALPINE

ELEVATE-RR: Study Design

Randomized, open-label phase III noninferiority trial

Stratified by del(17p) (yes vs no), ECOG PS (0/1 vs 2), number of prior therapies (1-3 vs \geq 4)

Adults with previously treated CLL requiring treatment per iwCLL 2008; presence of del(17p) and/or del(11q); no significant CV disease; no prior tx with BTK, PI3K, Syk, or BCL2 inhibitors; ECOG PS 0-2 (N = 533)

Acalabrutinib 100 mg PO BID (n = 268)

Ibrutinib 420 mg PO QD (n = 265)

Continued until PD or unacceptable toxicity

- Primary endpoint: noninferiority of IRC-assessed PFS
- Secondary endpoints: any-grade atrial fibrillation/flutter, grade ≥3 infection, Richter transformation, OS

Median follow-up: 40.9 mo

ELEVATE-RR AEs: Selected Common AEs Incidence, Exposure-Adjusted Incidence, and Time With Event

Common AEs	Incidence, %				Ехро	Exposure-Adjusted Incidence*				Exposure-Adjusted Time With Event [†]			
(Incidence ≥10%)	Any G	irade	Grade ≥3		Any G	Any Grade		Grade ≥3		irade	Grade ≥3		
	Acala	Ibr	Acala	Ibr	Acala	Ibr	Acala	Ibr	Acala	Ibr	Acala	Ibr	
Diarrhea	35	46 [‡]	1	5 [‡]	1.9	2.8	<0.1	0.2	6.7	9.6	<0.1	0.1	
Headache	35 [‡]	20	2 [‡]	0	1.8	1.1	<0.1	0	7.8	5.4	<0.1	0	
Cough	29 [‡]	21	1	<1	1.3	1.1	<0.1	<0.1	5.6	4.9	<0.1	<0.1	
Fatigue	20	17	3 [‡]	0	0.9	0.9	0.1	0	7.4	7.0	0.6	0	
Arthralgia	16	23 [‡]	0	1	0.6	1.3	0	<0.1	7.5	10.4	0	<0.1	
Back pain	8	13 [‡]	0	1	0.3	0.5	0	<0.1	1.9	3.2	0	0.1	
Muscle spasms	6	13 [‡]	0	1	0.2	0.7	0	<0.1	0.8	10.0	0	0.1	
Dyspepsia	4	12 [‡]	0	0	0.1	0.5	0	0	1.0	2.4	0	0	

^{*}Reported as events per 100 person-mo. †Reported as mo with event per 100 person-mo. $^{\ddagger}2$ -sided P < .05 without multiplicity adjustment.

[■] Incidence of diarrhea, arthralgia, back pain, muscle spasm, and dyspepsia statistically higher with Ibr vs Acala

Incidence of headache and cough statistically higher with Acala vs Ibr

ELEVATE-RR AEs: Events of Clinical Interest Incidence, Exposure-Adjusted Incidence, and Time With Event

			Incide	nce, %		Ехро	Exposure-Adjusted Incidence*				Exposure-Adjusted Time With Event [†]			
Event of Clinical Interest	Any Grade		Grade ≥3		Any G	Any Grade		Grade ≥3		Any Grade		Grade ≥3		
		Acala	Ibr	Acala	Ibr	Acala	Ibr	Acala	Ibr	Acala	Ibr	Acala	Ibr	
Cardiac eve		24 9	30 16 [‡]	9 5	10 4	1.2 0.4	1.9 0.7	0.4 0.2	0.5 0.1	7.1 1.3	13.0 3.8	0.4 0.3	0.2 0.1	
HTN		9	23 [‡]	4	9 [‡]	0.4	1.2	0.1	0.4	4.1	15.0	1.6	4.0	
■ Major events		38 5	51 [‡] 5	4	5 5	2.4 0.2	3.8 0.2	0.1 0.1	0.2 0.2	13.7 0.1	24.6 0.3	0.1 0.1	0.1 0.1	
Infections		78	81	31	30	8.9	10.4	1.6	2.0	14.6	15.6	1.5	1.1	

^{*}Reported as events per 100 person-mo. †Reported as mo with event per 100 person-mo. ‡2-sided P <.05 without multiplicity adjustment.

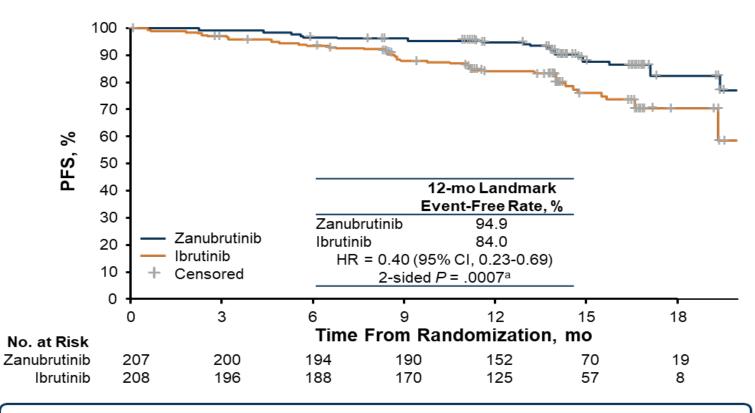
- Incidence of afib/flutter, HTN, and bleeding statistically higher with Ibr vs Acala
- Exposure-adjusted time with these events was also higher with Ibr vs Acala

ELEVATE-RR AEs: Incidence of Afib/Flutter and HTN by Subgroup

Incidence by Cubarana 0/	Any-Grade A	Afib/Flutter	Any-Grade HTN		
Incidence by Subgroup, %	Acala (n = 266)	Ibr (n = 263)	Acala (n = 266)	Ibr (n = 263)	
Age					
■ <65 yr	3.2	7.4	8.9	23.1	
■ ≥65 yr	14.8	23.2	9.9	23.2	
Prior lines of therapy					
■ 1-3	9.7	15.7	10.1	24.6	
■ ≥4	7.1	18.5	3.6	11.1	
No prior history of event	6.2	14.9	6.6	22.8	

- The risk of new-onset afib/flutter and HTN was markedly reduced with Acala vs Ibr in patients with no prior history of such events
 - Afib/flutter: HR: 0.37 (95% CI: 0.20-0.67)
 - HTN: HR: 0.23 (95% CI: 0.11-0.48)

ELEVATE-RR AEs: Cumulative Incidence of Afib, HTN, and Bleeding

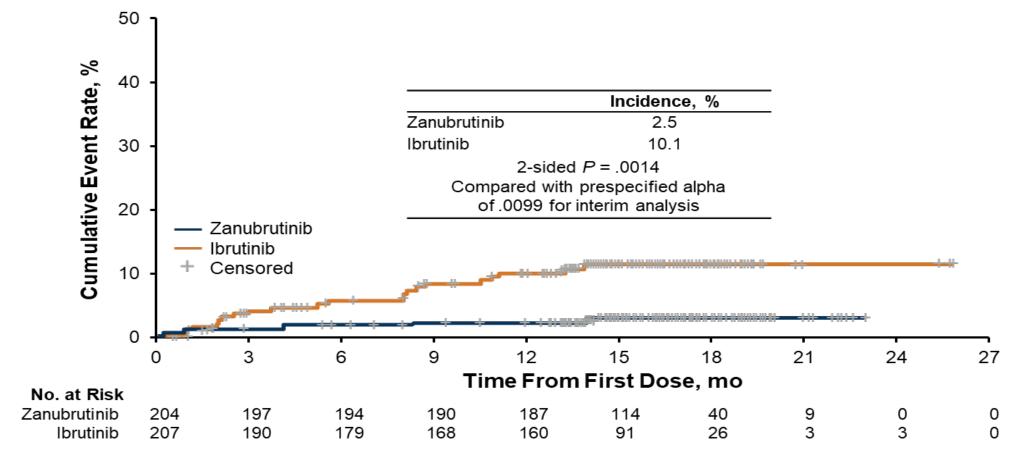

Cumulative Incidence	Any-Grade Afib/Flutter		Any-Grade HTN		Any-Grade Bleeding	
	Acala (n = 266)	Ibr (n = 263)	Acala (n = 266)	Ibr (n = 263)	Acala (n = 266)	Ibr (n = 263)
Treatment duration, mo • 6 • 12 • 18 • 24 • 30 • 36	2.0 3.2 4.1 5.1 5.6 8.5	5.5 7.7 9.7 11.8 15.4 16.0	4.6 6.3 7.7 8.2 9.3 9.8	11.6 16.3 20.0 22.9 25.6 28.0	29.4 32.0 34.2 37.7 38.8 40.7	42.1 45.4 49.1 51.0 53.8 55.3

ALPINE Trial: Zanubrutinib vs Ibrutinib in R/R CLL/SLL¹

- Ongoing, phase 3, randomized, global, Zanubrutinib open-label trial 160 mg twice daily 1:1 n = 300 Adults with CLL/SLL relapsed or refractory to R ≥1 prior systemic therapy (planned: 600) **Ibrutinib** 420 mg once daily ECOG PS 0-2 n = 300Life expectancy ≥6 months
- Primary endpoint: ORR (up to 36 months)
- Secondary endpoints: PFS, DOR, OS, TTF, and safety
- 1. Hillmen P et al. EHA 2021. Abstract LB1900.

ALPINE: Improved ORR and PFS With Zanubrutinib vs Ibrutinib in R/R CLL/SLL¹

- ORR improved with zanubrutinib: 78.3 vs
 62.5 for ibrutinib
- Superiority 2-sided
 P = .0006 compared
 with prespecified
 alpha of .0099



Median PFS follow-up was 14 months for both zanubrutinib and ibrutinib arms

^a Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events is reached.

^{1.} Hillmen P et al. EHA 2021. Abstract LB1900.

ALPINE: Safety Analysis Showed Lower Rates of AF/Flutter With Zanubrutinib¹

1. Hillmen P et al. EHA 2021. Abstract LB1900.

Conclusions:

- Long-term follow-up of ongoing BTKi studies continue to yield excellent PFS outcomes in CLL patients both in upfront and relapsed setting and in high risk patients (ie del17p/p53, unmutated IGHV)
- Adverse events of interest with BTKis: CV, HTN, bleeding, infections need to be respected and managed appropriately
- Follow-up of ongoing randomized clinical trial data will provide a more direct comparison to assess for advantages in the toxicity profile of one BTKi agent over another

