

CAR T-Cell Therapy for Hematologic Malignancies ASH 2021

Current FDA-Approved Indication

Axi-cel

DLBCL 2nd Failure
FL 2nd Failure

Brexucabtagene

MCL 2nd Failure ALL Relapsed

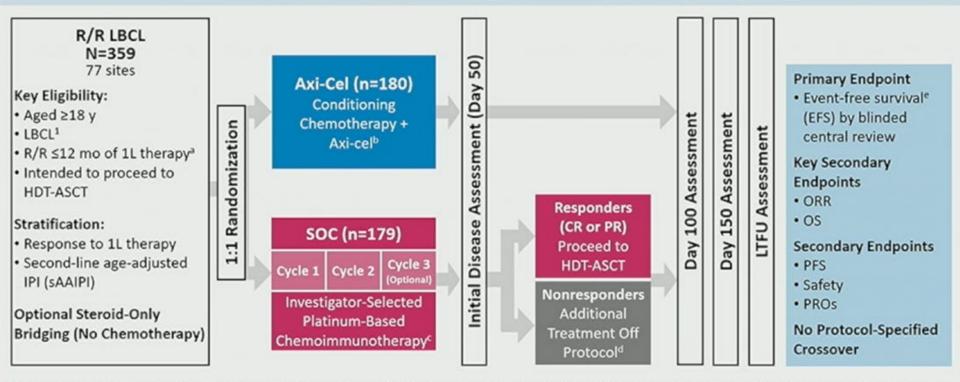
Tisagen

DLBCL 2nd Failure
ALL, Relapsed <23

Liso-cel

DLBCL 2nd Failure

Cappell KM and Kochenderfer JN. Nat Rev Clin Oncol 18, 715 (2021).



Updates

- Large B-Cell Lymphoma
 - CAR T Cell as Second-Line Therapy (ZUMA-7, TRANSFORM, BELINDA)
 - CAR T-Cell Therapy for Primary Refractory DLBCL (ZUMA-12)
- Follicular Lymphoma (ZUMA-5)
- Myeloma
 - Cilta-cel (CARTITUDE)
- New CAR T-Cell Products, Approaches, Indications
 - Novel Targets
 - AlloCAR T Therapy
 - iPSC-Derived NK CAR T Cells
 - AML MICA/MICB
 - Myeloma Gamma Secretase Inhibitor

ZUMA-7: Uncharted Territory Aggressive B-NHL **Primary Refractory** Relapse ≤ 12 mo of 1L Bridging C **ZUMA-7 CAR T-cells** chemo Axi-cel Bridging BELINDA chemo Tisa-cel TRANSFORM Bridging Salvage/ASCT chemo Liso-cel

ZUMA-7 Study Schema and Endpoints: Axi-Cel Versus SOC as Second-Line Therapy in Patients With R/R LBCL

^{*} Refractory disease was defined as no CR to 1L therapy; relapsed disease was defined as CR followed by biopsy-proven disease relapse ≤12 months from completion of 1L therapy. b Axi-cel patients underwent leukapheresis followed by conditioning chemotherapy with cyclophosphamide (500 mg/m²/day) and fludarabine (30 mg/m²/day) 5, 4, and 3 days before receiving a single axi-cel infusion (target intravenous dose, 2×106 CAR T cells/kg).

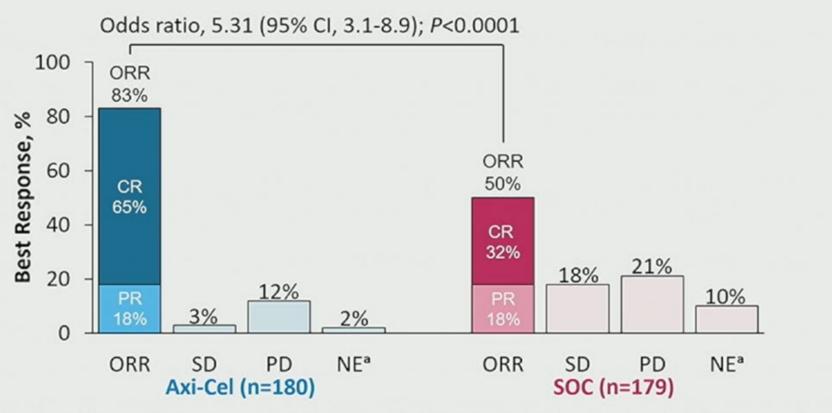
c Protocol-defined SOC regimens included R-GDP, R-DHAP, R-ICE, or R-ESHAP. d 56% of patients received subsequent cellular immunotherapy. * EFS was defined as time from randomization to the earliest date of disease progression per Lugano Classification,² commencement of new lymphoma therapy, or death from any cause.

1. Swerdlow SH, et al. Blood. 2016;127:2375-2390. 2. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068.

Locke et a

ASH 2021

Plenary Abstract 2

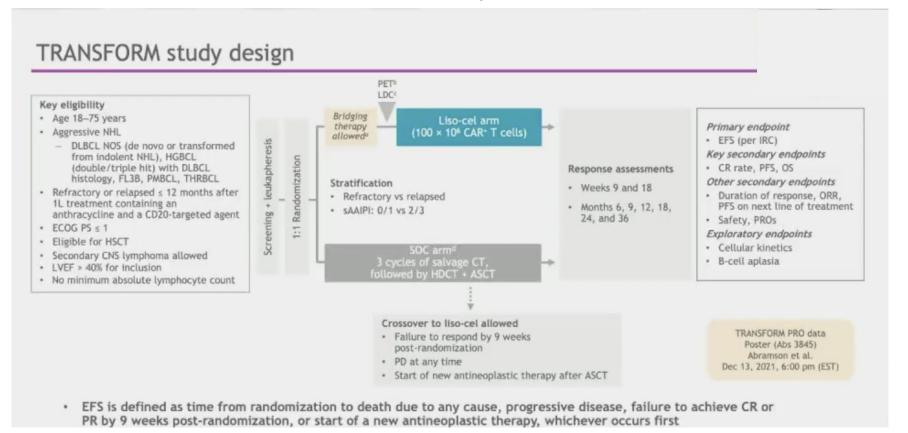

Primary EFS Endpoint: Axi-Cel Is Superior to SOC

ORR Was Significantly Higher in Axi-Cel Versus SOC Patients

Not evaluable (NE): In the axi-cel arm, response assessments were not done for 4 patients. In the SOC arm, there were 4 patients with undefined disease and 14 who did not have response assessments done.

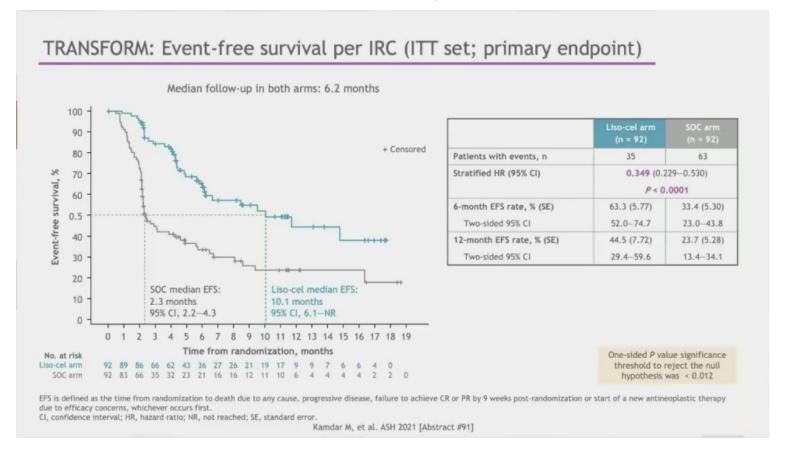
Locke et al

ASH 2021


Plenary Abstract 2

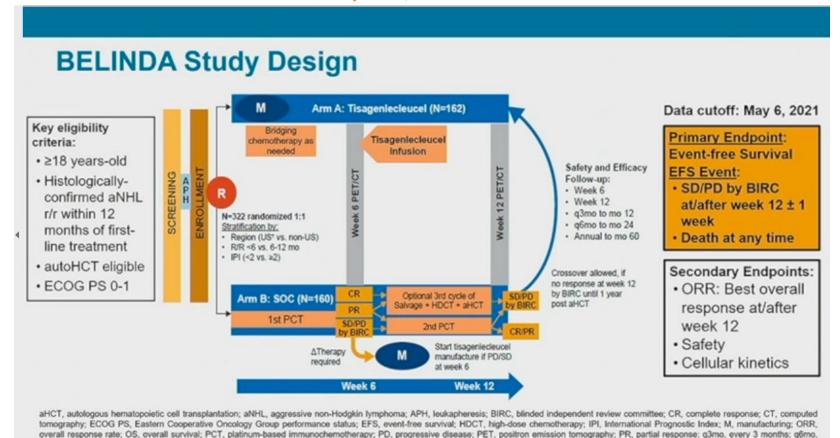
Lisocabtagene maraleucel for 2nd line (<12m) relapsed DLBCL

Kamdar et al, ASH 2021



Lisocabtagene maraleucel for 2nd line (<12m) relapsed DLBCL

Kamdar et al, ASH 2021



Tisagenlecleucel for 2nd line (<12m) relapsed DLBCL

Bishop et al, NEJM 2021

NewYork-Presbyterian

every 6 months; R, randomization; SD, stable disease; SOC, standard of care; US, United States.

Tisagenlecleucel for 2nd line (<12m) relapsed DLBCL

Bishop et al, NEJM 2021

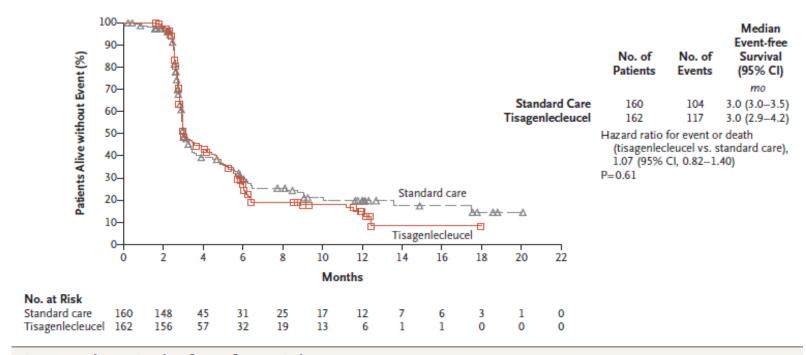


Figure 2. Kaplan-Meier Plot of Event-free Survival.

An event was defined as progressive disease or stable disease on or after day 71 or death at any time (i.e., event-free survival at a given time point represents the estimated percentage of patients who had a complete or partial response at this time point among all ran-

Summary of second line CAR T studies

Randomized trials of CAR T-cells vs. SOC in 2nd line transplant-eligible DLBCL with primary refractory disease or relapse within 1 year of 1st line therapy

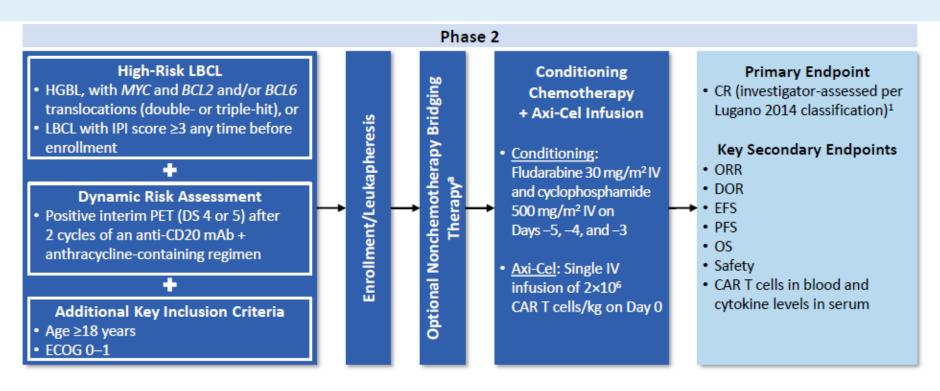
	ZUMA-7	TRANSFORM	BELINDA
CAR T-cell	Axicabtagene Ciloleucel	Lisocabtagene Maraleucel	Tisagenlecleucel
n	359	184	322
% infused in CAR arm	94%	98%	96%
Median EFS	8.3 mo vs. 2 mo	10.1 mo vs. 2.3 mo	3 mo vs. 3 mo
Hazard ratio	0.398 (P<0.0001)	0.349; (<i>P</i> < 0.0001)	1.07 (<i>P</i> =0.69)
Median follow-up	25 months	6 months	10 months
CR rate	65% vs 32%	66% vs 39%	28% vs 28%
Grade ≥3 CRS/NT	6% / 21%	1% / 4%	5% / 3%
	Locke, et al. Abstract 2	Kamdar, et al. Abstract 91	Bishop, et al. Abstract LBA-6

Implications of second line CAR T studies

- In patients with chemoresistant disease (short first remission), more chemo (and AutoSCT) is not effective
- Why different outcome in BELINDA study with tisagenlecleucel?
 - Chemotherapy bridging (sicker patients)
 - Additional chemo cycles for standard group
 - Longer time (52d) to get CAR T (and 25.9% pre-infusion PD)
 - Different agent
 - Less lymphodepletion
 - Event definitions
- CAR T will be SOC for those with PD < 1 year
- AutoSCT remains SOC for those with later relapses

Updates

- Large B-Cell Lymphoma
 - CAR T Cell as Second-Line Therapy (ZUMA-7, TRANSFORM, BELINDA)
 - CAR T for Primary Refractory DLBCL (ZUMA-12)
- Follicular Lymphoma (ZUMA-5)
- Myeloma
 - Cilta-cel (CARTITUDE)
- New CAR T-Cell Products, Approaches, Indications
 - Novel Targets
 - AlloCAR T Therapy
 - iPSC-Derived NK CAR T Cells
 - o AML MICA/MICB
 - Myeloma Gamma Secretase Inhibitor


Primary Analysis of ZUMA-12: A Phase 2 Study of Axicabtagene Ciloleucel as First-Line Therapy in Patients With High-Risk Large B-Cell Lymphoma

Sattva S. Neelapu, MD¹; Michael Dickinson, MBBS, D Med Sci, FRACP, FRCPA²; Javier L. Munoz, MD, MS, MBA, FACP³; Matthew L. Ulrickson, MD³; Catherine Thieblemont, MD, PhD⁴; Olalekan O. Oluwole, MD, MBBS, MPH⁵; Alex F. Herrera, MD⁶; Chaitra S. Ujjani, MD⁷; Yi Lin, MD, PhD⁸; Peter A. Riedell, MD⁹; Natasha Kekre, MD, MPH, FRCPC¹⁰; Sven de Vos, MD, PhD¹¹; Christine Lui, MS¹²; Francesca Milletti, PhD¹²; Jinghui Dong, PhD¹²; Hairong Xu, MD, PhD¹²; and Julio C. Chavez, MD¹³

¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Peter MacCallum Cancer Centre, Royal Melbourne Hospital and the University of Melbourne, Melbourne, Victoria, Australia; ³Banner MD Anderson Cancer Center, Gilbert, AZ, USA; ⁴Hôpital Saint Louis, Paris, France; ⁵Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ⁶City of Hope National Medical Center, Duarte, CA, USA; ⁷Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁸Mayo Clinic, Rochester, MN, USA; ⁹University of Chicago Medicine, Chicago, IL, USA; ¹⁰The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; ¹¹David Geffen School of Medicine at UCLA, Santa Monica, CA, USA; ¹²Kite, a Gilead Company, Santa Monica, CA, USA; and ¹³Moffitt Cancer Center, Tampa, FL, USA

ZUMA-12 Study Design

^{*} Administered after leukapheresis and completed prior to initiating conditioning chemotherapy. Therapies allowed were corticosteroids, localized radiation, and HDMP+R. PET-CT was required after bridging.

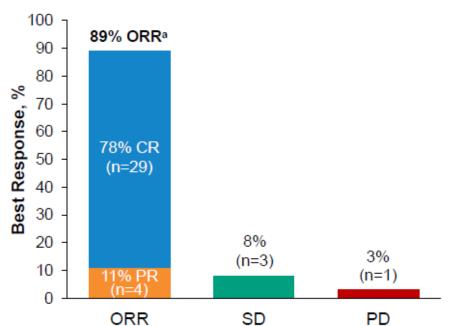
1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068.

Axi-cel, axicabtagene ciloleucel; CAR, chimeric antigen receptor; CR, complete response; CT, computed tomography; DOR, duration of response; DS, Deauville score; ECOG, Eastern Cooperative Oncology Group performance status; EFS, event-free survival; HDMP+R, high-dose methylprednisolone plus rituximab; HGBL, high-grade B-cell lymphoma; IPI, International Prognostic Index; IV, intravenous; LBCL, large B-cell lymphoma; mAb, monoclonal antibody; ORR, objective response rate; OS, overall survival; PET, positron-emission tomography; PFS, progression-free survival.

Neelapu et al ASH 2021 Abstract 739

Baseline Patient Characteristics

Characteristic	All Treated (N=40)
Median age (range), years	61 (23-86)
≥65 years, n (%)	15 (38)
Male, n (%)	27 (68)
Disease stage III/IV, n (%)	38 (95)
ECOG 1, n (%)	25 (63)
1 Prior line of systemic therapy (2 cycles), n (%)	40 (100)
Best response of PR/SD to prior therapy ^a	23 (58)
Best response of PD to prior therapya	16 (40)
Double- or triple-hit as determined by FISH per investigator, n (%) ^b	16 (40)
Double- or triple-hit as determined by FISH per central laboratory, n (%)b	10 (25)
IPI score ≥3, n (%) ^c	31 (78)
Deauville score 4, n (%)	19 (48)
Deauville score 5, n (%)	21 (53)


^a One patient was not estimable for response to prior therapy. ^b Of 6 patients reported to be double- or triple-hit per investigator, 3 remained inconclusive, 1 was determined not to be double- or triple-hit, and 2 were not tested by the central laboratory. A total of 8 treated patients did not have central laboratory testing. ^c IPI score for eligibility was at the time of diagnosis or any time between diagnosis and enrollment. ECOG, Eastern Cooperative Oncology Group performance status; FISH, fluorescence in situ hybridization; IPI, International Prognostic Index; PD, progressive disease; PR, partial response; SD, stable disease.

Neelapu et al ASH 2021 Abstract 739

ORR Was 89% (95% CI, 75–97) and CR Rate Was 78% (95% CI, 62–90) Among Efficacy-Evaluable Patients

	Efficacy Evaluable N=37 ^b
Median follow-up (range), months	15.9 (6.0-26.7)
Patients with ≥12-month follow-up, n (%)	23 (62)
Patients with ongoing response as of data cutoff, n (%)	27 (73)
Median time to response (range), months	
Initial objective response	1.0 (0.9-6.8)
Initial CR	1.0 (0.9-6.8)
Patients converted from PR/SD to CR, n (%)c	7 (19)
PR to CR	6 (16)
SD to CR	1 (3)

Among all treated patients (N=40), ORR was 90% (95% CI, 76-97); CR rate was 80% (95% CI, 64-91)

Neelapu et al ASH 2021 Abstract 739

^{*} Response assessments are based on best overall response. b Includes all treated patients with centrally confirmed disease type (double- or triple-hit lymphomas) or IPI score ≥3 who received ≥1×10⁶ CAR T cells/kg. CAR T cells/kg. All 7 patients converted to a CR by Month 6 postinfusion.

CR, complete response; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Updates

- Large B-Cell Lymphoma
 - CAR T Cell as Second-Line Therapy (ZUMA-7, TRANSFORM, BELINDA)
 - CAR T for Primary Refractory DLBCL (ZUMA-12)
- Follicular Lymphoma (ZUMA-5)
- Myeloma
 - Cilta-cel (CARTITUDE)
- New CAR T-Cell Products, Approaches, Indications
 - Novel Targets
 - AlloCAR T Therapy
 - iPSC-Derived NK CAR T Cells
 - o AML MICA/MICB
 - Myeloma Gamma Secretase Inhibitor

Updated Analysis

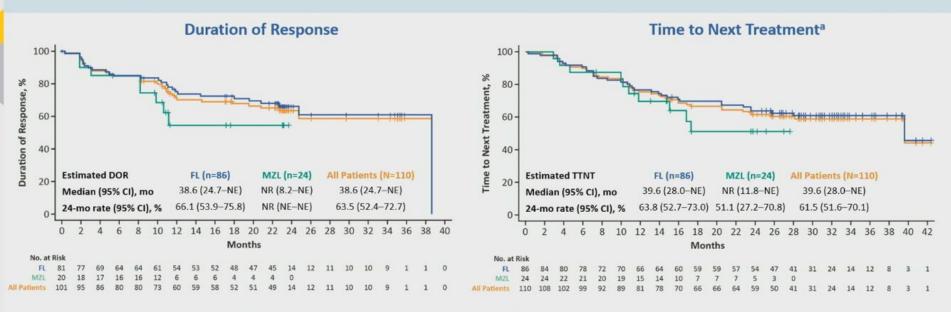
- The updated efficacy analysis occurred when ≥80 treated patients with FL had ≥24 months
 of follow-up, per protocol^a
- Efficacy analyses are reported in the 110 efficacy-eligible patients (86 with FL; 24 with MZL)^a
 - The median follow-up for patients with FL was 30.9 months (range, 24.7–44.3)
 - The median follow-up for patients with MZL was 23.8 months (range, 7.4-39.4)
- Safety data are reported for all 149 patients treated with axi-cel (124 with FL; 25 with MZL)
- Data cutoff date: March 31, 2021

ª Efficacy-eligible patients (inferential analysis set) included ≥80 treated patients with FL who had ≥24 months of follow-up after axi-cel infusion and treated patients with MZL who had ≥4 weeks of follow-up after axi-cel infusion as of the data cutoff date.

Axi-cel, axicabtagene ciloleucel; FL, follicular lymphoma; MZL, marginal zone lymphoma.

Neelapu et al

ASH 2021


Abstract 93

DOR and TTNT

- At data cutoff, 57% of efficacy-eligible patients with FL (49 of 86) and 50% of patients with MZL (12 of 24) had ongoing responses
 - Of patients who achieved a CR, 68% of patients with FL (46 of 68) and 73% of patients with MZL (11 of 15) had ongoing responses

Neelapu et al

ASH 2021

Abstract 93

^a A total of 28 efficacy-eligible patients received subsequent treatment, including 18 with new anti-cancer therapy and 10 with axi-cel retreatment. No patients received subsequent SCT.

Axi-cel, axicabtagene ciloleucel; CR, complete response; DOR, duration of response; FL, follicular lymphoma; MZL, marginal zone lymphoma; NE, not estimable; NR, not reached, SCT, stem-cell transplantation; TTNT, time to next treatment.

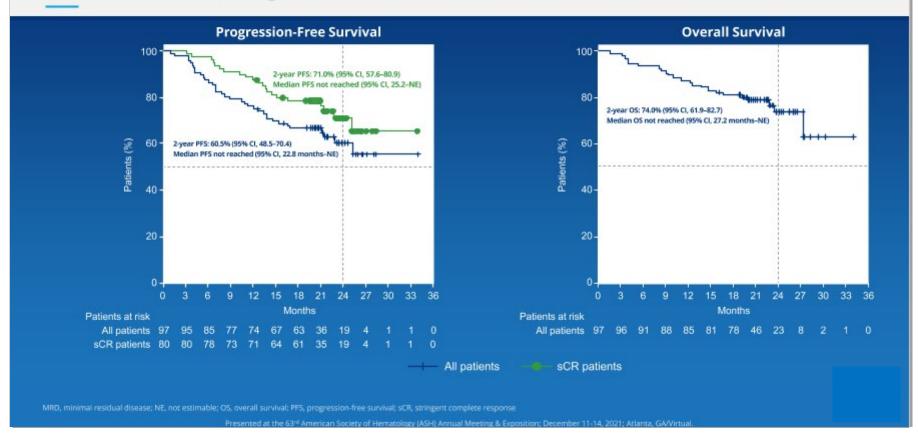
Updates

- Large B-Cell Lymphoma
 - CAR T Cell as Second-Line Therapy (ZUMA-7, TRANSFORM, BELINDA)
 - CAR T for Primary Refractory DLBCL (ZUMA-12)
- Follicular Lymphoma (ZUMA-5)
- Myeloma
 - Cilta-cel (CARTITUDE)
- New CAR T-Cell Products, Approaches, Indications
 - Novel Targets
 - AlloCAR T Therapy
 - iPSC-Derived NK CAR T Cells
 - AML MICA/MICB
 - Myeloma Gamma Secretase Inhibitor

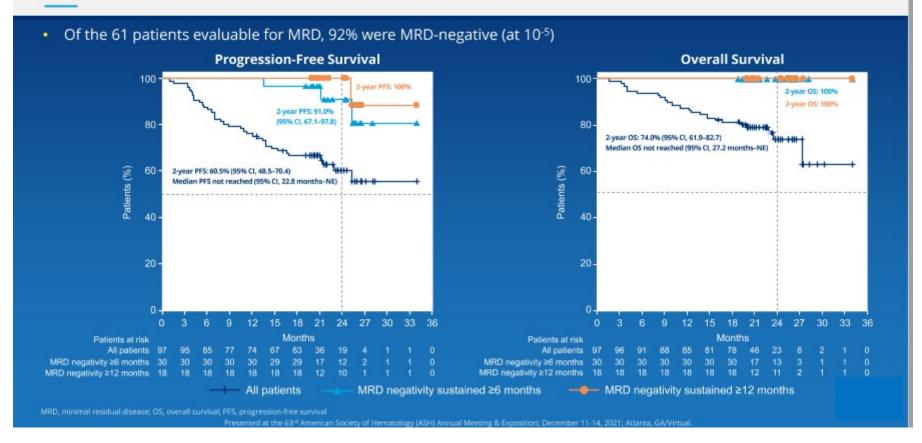
Updated Results From CARTITUDE-1: Phase 1b/2 Study of Ciltacabtagene Autoleucel, a B-cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy, in Patients With Relapsed/Refractory Multiple Myeloma

Thomas Martin¹*, Saad Z Usmani², Jesus G Berdeja³, Andrzej Jakubowiak⁴, Mounzer Agha⁵, Adam D Cohen⁶, Parameswaran Hari⁷, David Avigan⁸, Abhinav Deol⁹, Myo Htut¹⁰, Alexander Lesokhin¹¹, Nikhil C Munshi¹², Elizabeth O'Donnell¹³, A Keith Stewart¹⁴, Jordan M Schecter¹⁵, Jenna D Goldberg¹⁵, Carolyn C Jackson¹⁵, Tzu-Min Yeh¹⁵, Arnob Banerjee¹⁶, Alicia Allred¹⁶, Enrique Zudaire¹⁶, William Deraedt¹⁷, Deepu Madduri¹⁵, Yunsi Olyslager¹⁷, Changwei Zhou¹⁸, Lida Pacaud¹⁸, Yi Lin¹⁹, Sundar Jagannath²⁰

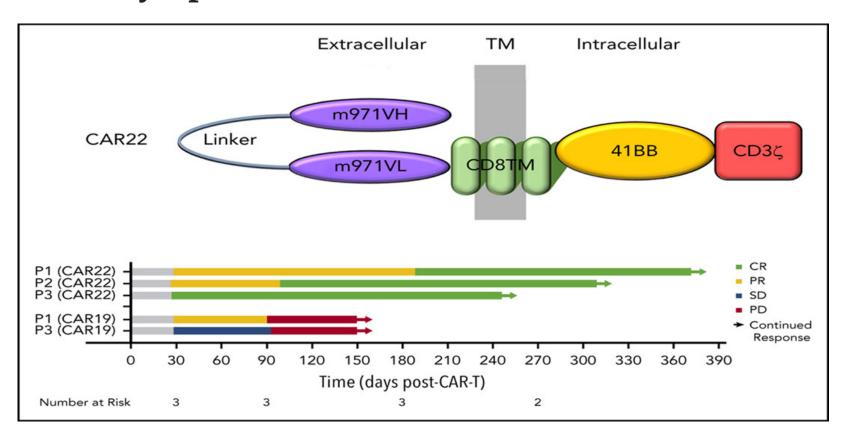
¹UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; ²Levine Cancer Institute, Charlotte, NC, USA; ³Sarah Cannon Research Institute, Nashville, TN, USA; ⁴University of Chicago, Chicago, IL, USA; ⁵UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ⁶Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ⁷Medical College of Wisconsin, Milwaukee, WI, USA; ⁸Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; ¹⁰City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ¹¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹²Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ¹³Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ¹⁴University Health Network and the Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹⁵Janssen R&D, Raritan, NJ, USA; ¹⁶Janssen R&D, Spring House, PA, USA; ¹⁷Janssen R&D, Beerse, Belgium; ¹⁶Legend Biotech USA, Piscataway, NJ, USA; ¹⁹Mayo Clinic, Rochester, MN, USA; ²⁰Mount Sinai Medical Center, New York, NY, USA


Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual.

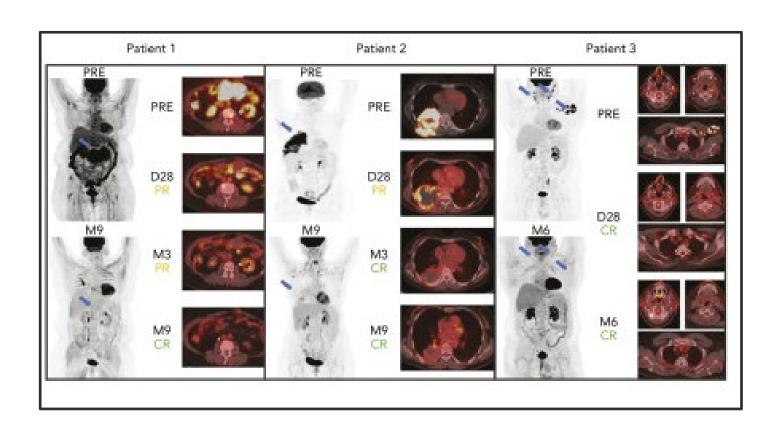
*Presenting author.


CARTITUDE-1: Progression-Free Survival and Overall Survival

CARTITUDE-1: Progression-Free Survival and Overall Survival by MRD Negativity (10⁻⁵) sustained for ≥ 6 and 12 months



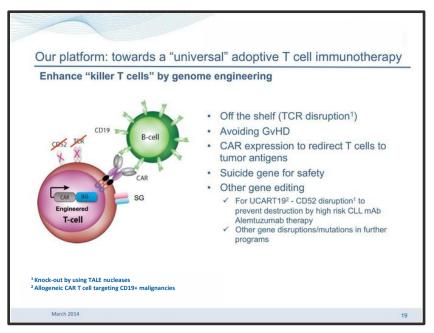
Updates

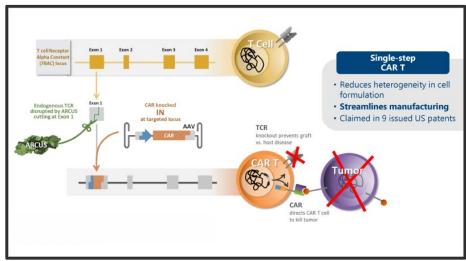

- Large B-Cell Lymphoma
 - CAR T Cell as Second-Line Therapy (ZUMA-7, TRANSFORM, BELINDA)
 - CAR T for Primary Refractory DLBCL (ZUMA-12)
- Follicular Lymphoma (ZUMA-5)
- Myeloma
 - Cilta-cel (CARTITUDE)
- New CAR T-Cell Products, Approaches, Indications
 - Novel Targets
 - AlloCAR T Therapy
 - iPSC-Derived NK CAR T Cells
 - o AML MICA/MICB
 - Myeloma Gamma Secretase Inhibitor

CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma

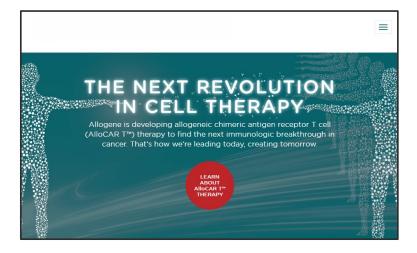
Baird, et al. *Blood*. 2021;137(17):2321-2325.

CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma

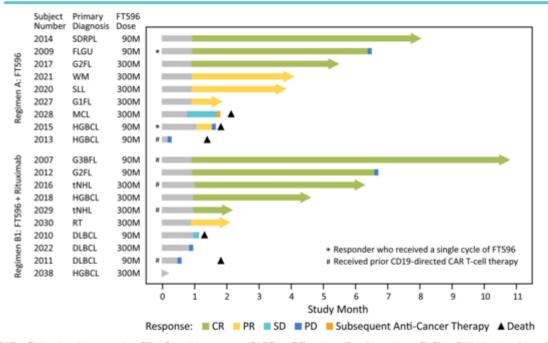



Baird, et al. *Blood*. 2021;137(17):2321-2325.

Updates


- Large B-Cell Lymphoma
 - CAR T Cell as Second-Line Therapy (ZUMA-7, TRANSFORM, BELINDA)
 - CAR T for Primary Refractory DLBCL (ZUMA-12)
- Follicular Lymphoma (ZUMA-5)
- Myeloma
 - Cilta-cel (CARTITUDE)
- New CAR T-Cell Products, Approaches, Indications
 - Novel Targets
 - AlloCAR T Therapy
 - iPSC-Derived NK CAR T Cells
 - o AML MICA/MICB
 - Myeloma Gamma Secretase Inhibitor

Allogeneic CAR T-Cell Therapy



FT596-101: Patient Status and Time on Study

≥90M FT596 Cells

- Median study follow up time for patients treated at ≥90M FT596 cells is 4.2 months
- 10 of 13 responders remain in response at data cutoff between 1.9 and 10.8 months from initiation of treatment

CAR = Chimeric antigen receptor; CR = Complete response; DLBCL = Diffuse large B-cell lymphoma; FLGU = Follicular Lymphoma Grade Unknown; G2FL= Grade 2 follicular lymphoma; G3BFL = Grade 3B follicular lymphoma; HGBCL = High-grade B-cell lymphoma; M = Million; MCL = Mantle cell lymphoma; PD = Progressive disease; PR = Partial response; RT = Richter transformation; SD = Stable disease; SDRPL = Splenic diffuse red pulp small B-cell lymphoma; SLL = Small lymphocytic lymphoma; tNHL = Transformed indolent lymphoma; WM = Waldenstrom macroglobulinemia

Data cutoff date: 11 October 2021

Right arrow indicates subject is still in follow-up without documented disease progression or anti-cancer therapy at time of data cutoff Patient 2038 pending response assessment; not included in efficacy-evaluable population

Conclusions

- CAR T (Axi-cel, Liso-cel) is established as second-line therapy for DLBCL with early disease progression (<12 months) ZUMA-7, TRANSFORM, BELINDA
- CAR T shows encouraging results in primary refractory lymphoma ZUMA-12
- Mature follow-up confirms a high proportion of durable remissions in FL, MZL. ZUMA-5
- Myeloma
 - Encouraging response rates and duration of response in heavily pretreated patients
- Many novel CAR T-cell innovations
 - Targets
 - Products
 - Indications
 - Combinations