BEST OF ASH: MYELOPROLIFERATIVE NEOPLASMS

Mark Heaney, MD, PhD

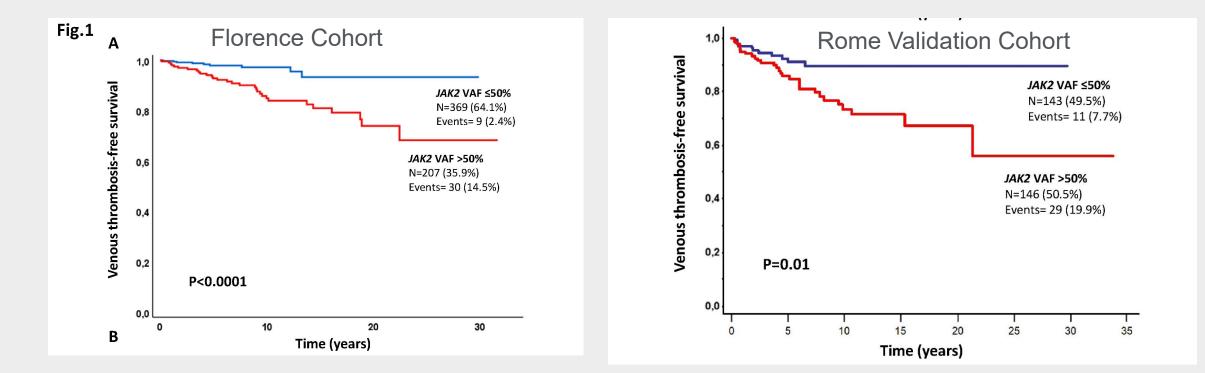
Columbia University Irving Medical Center

COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

- NewYork-Presbyterian

DISCLOSURES

Consulting and Honoraria CTI Pharma Novartis **PharmaEssentia** Blueprint **Research Funding** Blueprint BMS Cogent **CTI BioPharma** Incyte Kartos Sierra Oncology


A JAK2V617F Variant Allele Frequency Greater Than 50% Identifies Patients with Polycythemia Vera at High Risk for Venous Thrombosis *Giuseppe Gaetano Loscocco, MD*^{1*}, Paola Guglielmelli, MD, PhD¹, Carmela Mannarelli,

PhD^{1*}, Elena Rossi, MD, PhD^{2*}, Francesco Mannelli, MD^{1*}, Francesco Ramundo^{2*}, Giacomo Coltro, MD^{3*}, Silvia Betti, MD, PhD^{2*}, Chiara Maccari^{1*}, Sara Ceglie, MD^{2*}, Chiara Paoli, PhD^{1*}, Tiziano Barbui, MD^{4*}, Ayalew Tefferi, MD⁵, Valerio De Stefano^{6*} and Alessandro Vannucchi, MD

- Background: Current risk stratification based on age >60 y and history of thrombosis
- Evaluated 516 PV patients with strict WHO criteria followed at Univ Florence from 1981-2020
- Independent validation with 289 PV patients from Policlinico Gemelli, Catholic Univ Rome JAK2 VAF was annotated within 3 years of diagnosis Venous and arterial thrombotic events were followed

A JAK2V617F Variant Allele Frequency Greater Than 50% Identifies Patients with Polycythemia Vera at High Risk for Venous Thrombosis *Giuseppe Gaetano Loscocco, MD*^{1*}, Paola Guglielmelli, MD, PhD¹, Carmela Mannarelli,

PhD^{1*}, Elena Rossi, MD, PhD^{2*}, Francesco Mannelli, MD^{1*}, Francesco Ramundo^{2*}, Giacomo Coltro, MD^{3*}, Silvia Betti, MD, PhD^{2*}, Chiara Maccari^{1*}, Sara Ceglie, MD^{2*}, Chiara Paoli, PhD^{1*}, Tiziano Barbui, MD^{4*}, Ayalew Tefferi, MD⁵, Valerio De Stefano^{6*} and Alessandro Vannucchi, MD

A JAK2V617F Variant Allele Frequency Greater Than 50% Identifies Patients with Polycythemia Vera at High Risk for Venous Thrombosis *Giuseppe Gaetano Loscocco, MD*^{1*}, Paola Guglielmelli, MD, PhD¹, Carmela Mannarelli,

PhD^{1*}, Elena Rossi, MD, PhD^{2*}, Francesco Mannelli, MD^{1*}, Francesco Ramundo^{2*}, Giacomo Coltro, MD^{3*}, Silvia Betti, MD, PhD^{2*}, Chiara Maccari^{1*}, Sara Ceglie, MD^{2*}, Chiara Paoli, PhD^{1*}, Tiziano Barbui, MD^{4*}, Ayalew Tefferi, MD⁵, Valerio De Stefano^{6*} and Alessandro Vannucchi, MD

- JAK2 VAF had no impact on arterial thrombosis risk
- Multivariate analysis confirmed prior thrombosis and JAK2 VAF as independent risk factors Age >60 showed only a trend (P=0.08)
- The impact of JAK2 VAF on venous thrombosis was particularly significant for conventionally low-risk patients with HR=9.4 in Florence cohort and 3.6 in Rome cohort

A Real-World Evaluation of the Association between Elevated Blood Counts and Thrombotic Events in Polycythemia Vera (Analysis of Data from the REVEAL Study) *Aaron T. Gerds, MD, MS¹, Ruben A.*

Mesa, MD, FACP², John M. Burke, MD³, Michael R. Grunwald, MD⁴, Brady Lee Stein, MD⁵, Robyn Scherber, MD, MPH⁶, Jingbo Yu, MD, PhD⁶, J.E. Hamer–Maansson, MSPH^{6*} and Stephen Oh, MD, PhD^{7*}

- Background: Association between HCT and thrombosis has been well established in PV; the contributions of WBC and PLT are less certain
- REVEAL study enrolled 2510 patients, of whom 2271 were eligible, based on at least 3 CBCs, including 1 CBC within 6 months of the thrombotic event

Analyzed variables also included gender, age, disease duration, TE history at enrollment, and treatment parameters.

Median age: 66 y, 54% male

Median disease duration: 4.1 y, 20.1% had TE history

56% treated with hydroxyurea

30 arterial TE (TIA=15), 76 VTE (DVT=37)

A Real-World Evaluation of the Association between Elevated Blood Counts and Thrombotic Events in Polycythemia Vera (Analysis of Data from the REVEAL Study) *Aaron T. Gerds, MD, MS¹, Ruben A.*

Mesa, MD, FACP², John M. Burke, MD³, Michael R. Grunwald, MD⁴, Brady Lee Stein, MD⁵, Robyn Scherber, MD, MPH⁶, Jingbo Yu, MD, PhD⁶, J.E. Hamer–Maansson, MSPH^{6*} and Stephen Oh, MD, PhD^{7*}

Table 1. Association Between Blood Count Values and TEs

Analysis	HR (95% CI)	P Value
Association between elevated HCT and TEs		
Age, y	1.03 (1.01–1.046)	0.0026
Male sex (M vs F)	0.54 (0.362-0.799)	0.0021
Disease duration, y	0.98 (0.952–1.017)	0.3438
History of TE (Y vs N)	2.49 (1.667–3.717)	<0.0001
Treatment (HU vs none)	0.95 (0.626–1.435)	0.8004
Treatment (any other vs none)	0 78 (0 39–1 577)	0 4951
HCT (>45% vs ≤45%)	1.84 (1.234–2.749)	0.0028

Confirmation of HCT >45 as a risk for thrombosis

A Real-World Evaluation of the Association between Elevated Blood Counts and Thrombotic Events in Polycythemia Vera (Analysis of Data from the REVEAL Study) Aaron T. Gerds, MD, MS¹, Ruben A.

Mesa, MD, FACP², John M. Burke, MD³, Michael R. Grunwald, MD⁴, Brady Lee Stein, MD⁵, Robyn Scherber, MD, MPH⁶, Jingbo Yu, MD, PhD⁶, J.E. Hamer–Maansson,

MSPH^{6*} and Stephen Oh, MD, PhD^{7*}

Association between elevated WBC count and TEs (4 WBC levels (<7, \ge 7 to <8.5, \ge 8.5 to <11, and \ge 11×10 ⁹ /L)		
Age, y	1.02 (1.006–1.042)	0.0076
Male sex (M vs F)	0.59 (0.396-0.865)	0.0071
Disease duration, y	0.98 (0.948–1.015)	0.2646
History of TE (Y vs N)	2.42 (1.618-3.608)	<0.0001
Treatment (HU vs none)	1.00 (0.66–1.509)	0.9932
Treatment (any other vs none)	0.67 (0.336–1.328)	0.2496
WBC (≥7 to <8.5 vs <7×10 ⁹ /L)	1.01 (0.504–2.022)	0.9778
W/BC (<8.5 to <11 vs <7×10 ⁹ /L)	1 40 (0 76–2 595)	0 2790
WBC (≥11 vs <7×10 ⁹ /L)	2.61 (1.594-4.262)	0.0001

WBC >11 as a risk for thrombosis

A Real-World Evaluation of the Association between Elevated Blood Counts and Thrombotic Events in Polycythemia Vera (Analysis of Data from the REVEAL Study) *Aaron T. Gerds, MD, MS¹, Ruben A.*

Mesa, MD, FACP², John M. Burke, MD³, Michael R. Grunwald, MD⁴, Brady Lee Stein, MD⁵, Robyn Scherber, MD, MPH⁶, Jingbo Yu, MD, PhD⁶, J.E. Hamer–Maansson, MSPH^{6*} and Stephen Oh, MD, PhD^{7*}

Association between elevated PLT count (>400×10 ⁹ /L) and TEs		
Age, y	1.03 (1.01–1.046)	0.0022
Male sex (M vs F)	0.62 (0.416–0.914)	0.0162
Disease duration, y	0.99 (0.953–1.019)	0.3901
History of TE (Y vs N)	2.45 (1.64–3.654)	<0.0001
Treatment (HU vs none)	0.87 (0.58–1.319)	0.5223
Treatment (any other vs none)	0.66 (0.334–1.324)	0 2456
PLT (>400 vs ≤400×10 ⁹ /L)	1.60 (1.088–2.359)	0.0170

PLT >40,000 as a risk for thrombosis

A Real-World Evaluation of the Association between Elevated Blood Counts and Thrombotic Events in Polycythemia Vera (Analysis of Data from the REVEAL Study) Aaron T. Gerds, MD, MS¹, Ruben A.

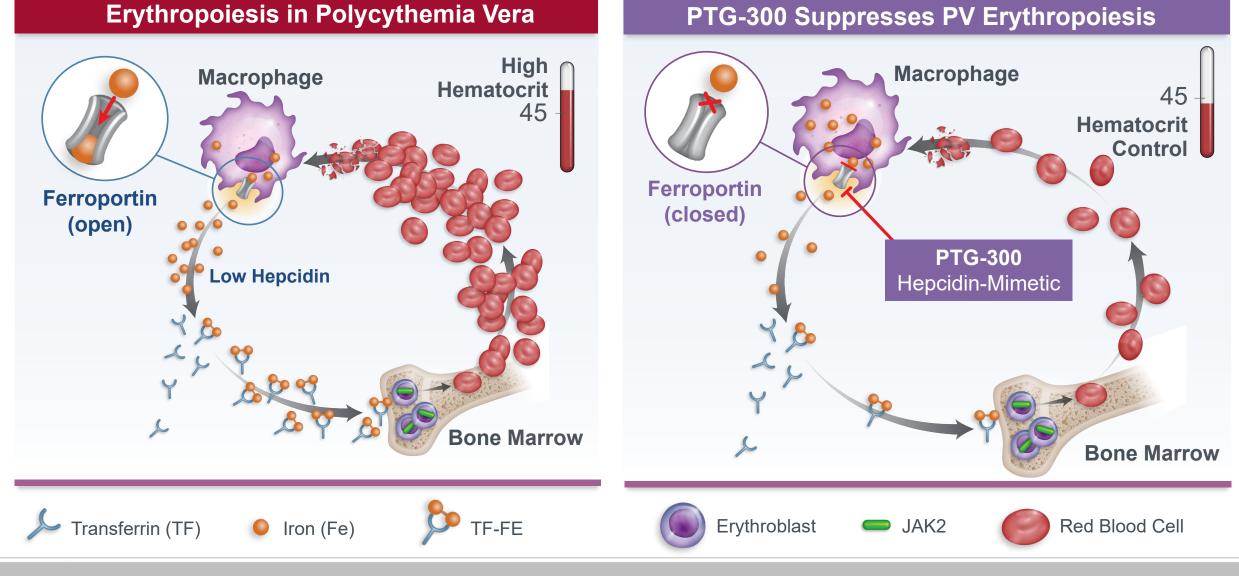
Mesa, MD, FACP², John M. Burke, MD³, Michael R. Grunwald, MD⁴, Brady Lee Stein, MD⁵, Robyn Scherber, MD, MPH⁶, Jingbo Yu, MD, PhD⁶, J.E. Hamer–Maansson, MSPH^{6*} and Stephen Oh, MD, PhD^{7*}

• Conclusions:

HCT >45, age >60, female gender, and prior TE were risk factors for TE in all models

WBC >11 was a risk factor

PLT >400,000 was a risk factor


N.B. PLT >600,000 was NOT a risk factor

Novel Therapies for Polycythemia Vera

Rusfertide (PTG-300) Controls Hematocrit Levels and Essentially Eliminates Phlebotomy Requirement in Polycythemia Vera Patients *Ronald Hoffman, MD¹*, Marina Kremyanskaya, MD, PhD², Yelena Ginzburg, MD³, Andrew T. Kuykendall, MD⁴, Naveen Pemmaraju, MD⁵, Abdulraheem Yacoub, MD⁶, Jay Yang, MD⁷, Suneel Gupta⁸, Frank Valone, MD^{9*}, Sarita Khanna, PhD^{8*} and Srdan Verstovsek, MD, PhD¹⁰

- **Background:** PV compared with secondary forms of erythrocytosis is associated with relative suppression of hepcidin, potentially due to greater degrees of expanded erythropoiesis and iron deficiency
- Rusfertide, a hepcidin mimetic, blocks ferroportin in the macrophage and prevents erythropoiesis

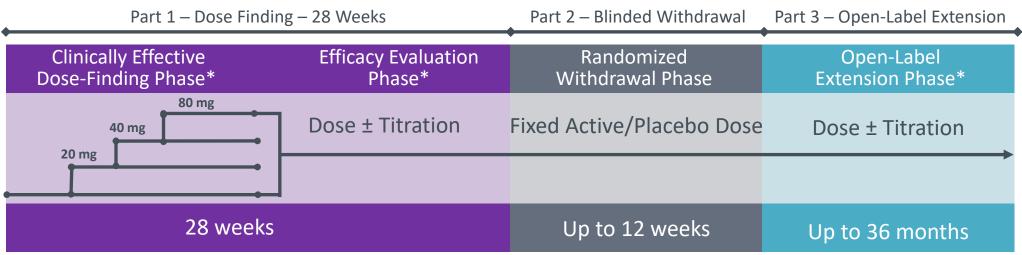
Rationale for Using Hepcidin-Mimetics (PTG-300) in PV

Courtesy R. Hoffman

12

Phase 2 Trial of PTG-300 (Rusfertide) in 63 PV Patients

ELIGIBILITY REQUIREMENTS:


Phlebotomy dependent PV patients diagnosed as per 2016 WHO criteria

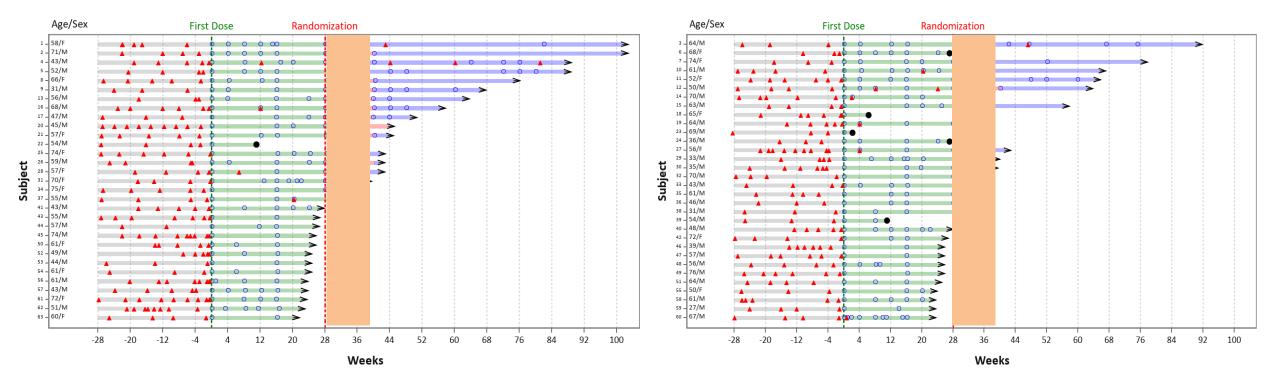
≥3 phlebotomies in 6 months with or without concurrent cytoreductive therapy

All patients prior to first PTG-300 dose were phlebotomized to HCT <45% to standardize the starting HCT

PTG-300 doses of 10-120 mg administered subcutaneously weekly added to prior standard therapy

ADD-ON STUDY DESIGN

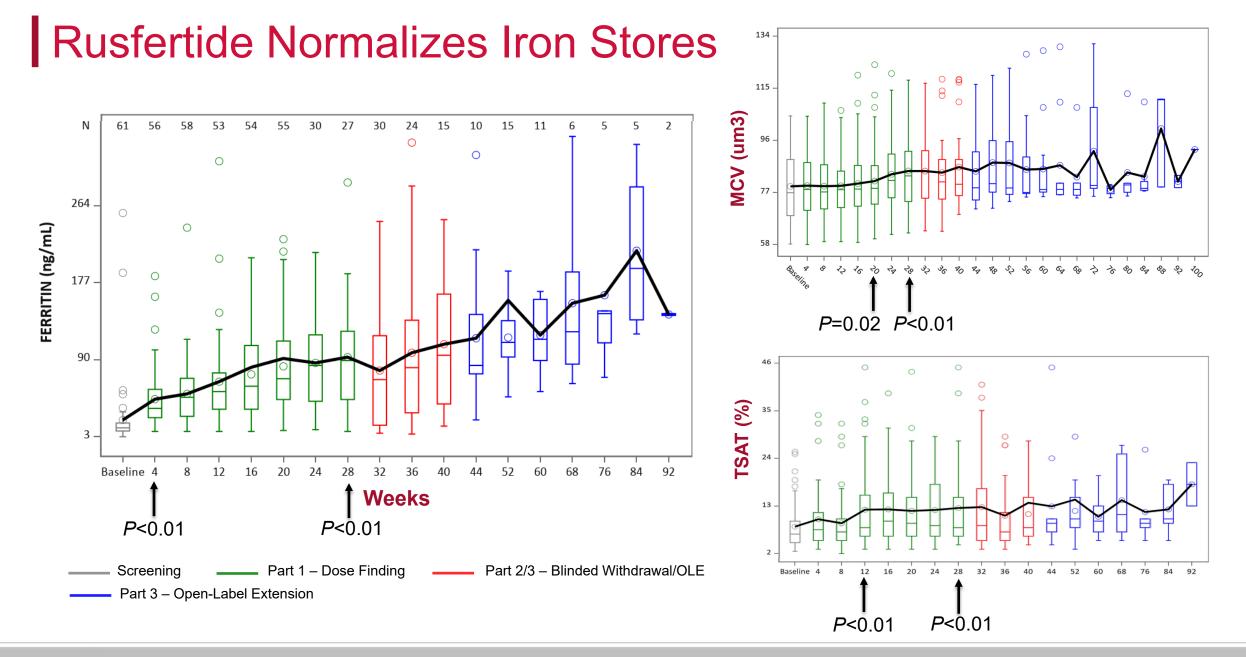
Clinical GOAL: To maintain hematocrit <45%


* Titrate every 4 weeks to maintain hematocrit <45%.

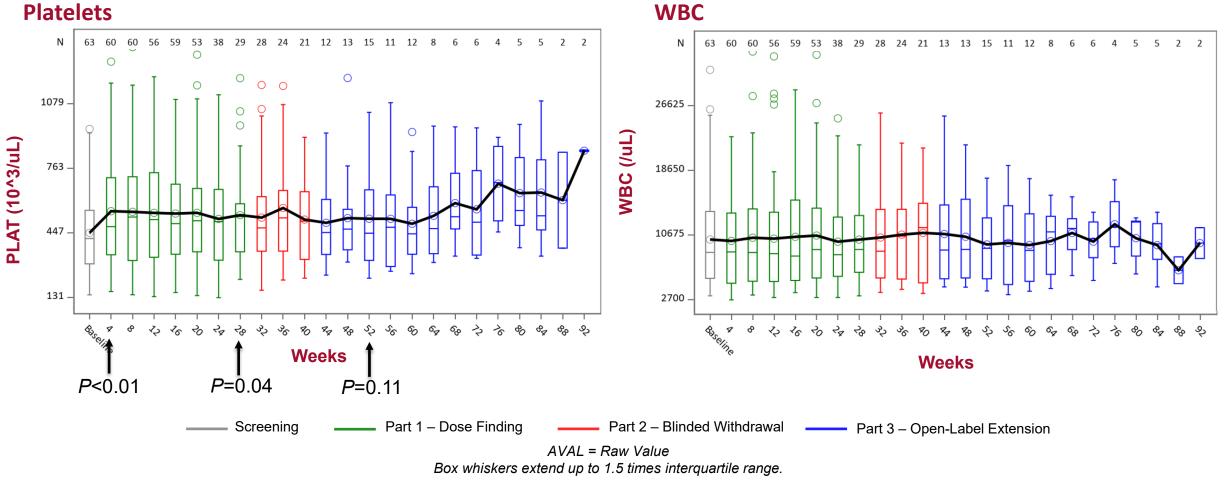
First patient enrolled in Oct 2019 and Last patient enrolled May 2021

Effect of Rusfertide on Phlebotomy Frequency

PHLEBOTOMY ONLY (N=31, 49%)


PHLEBOTOMY + CYTOREDUCTIVE (N=32, 51%)

Overall, during the first 28 weeks of treatment, 84% of patients did not require a phlebotomy, 14% required one, and 2% required two phlebotomies.


Median Dose 40-60 mg/week

Courtesy R. Hoffman

Courtesy R. Hoffman

Effects of Rusfertide on Platelet and WBC Counts

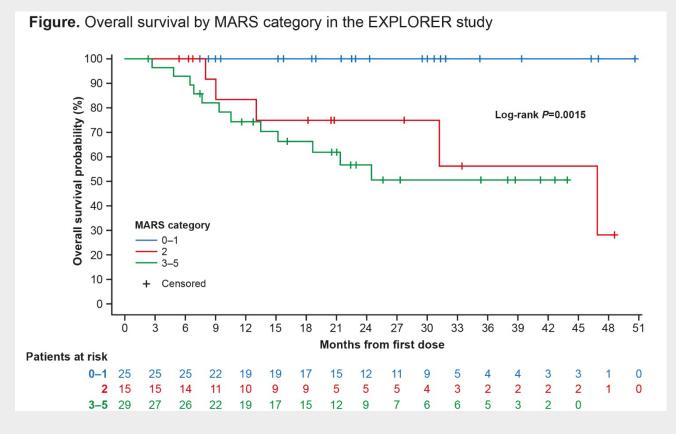
Adverse Events Experienced on Rusfertide

System Organ Class – Preferred term	AE, n (%)
Total number of subjects	63
No. of subjects with treatment-emergent AE	55 (87)
Blood and lymphatic disorders	12 (19.0)
Anemia	9 (14.3)
Gastrointestinal disorders	20 (31.7)
Nausea	8 (12.7)
Infections and infestations	11 (17.5)
Metabolism and nutrition disorders	9 (14.3)
Musculoskeletal and connective tissue disorders	27 (42.9)
Nervous system disorders	21 (33.3)
Psychiatric disorders	7 (11.1)
Insomnia	4 (6.3)
Renal and urinary disorders	5 (7.9)
Respiratory	14 (22.2)
Skin and subcutaneous tissue disorders	23 (36.5)
Pruritis	9 (14.3)

- Most drug-related AEs were Grade 1 or 2
- No Grade 4 or 5 Events
- SAEs: Syncope, peripheral artery aneurism, gastroenteritis, chest pain, AML, squamous cell carcinoma (skin), melanoma, and basal cell carcinoma
- Injection site reaction (ISRs) were most common and associated with 28.1% of injections. All ISRs were transient, and no patient discontinued due to ISR
- One subject stopped treatment due to AE within 2 weeks (asymptomatic thrombocytosis)
- No clinically significant laboratory abnormalities
- No antidrug antibody response was noted in any patient

Progression of Systemic Mastocytosis

Effective Control of Advanced Systemic Mastocytosis with Avapritinib: Mutational Analysis from the Explorer Clinical Study *Michael W. Deininger, MD, PhD¹*, Daniel J. DeAngelo, MD, PhD^{2*}, Deepti H. Radia, MD^{3*}, Tracy I. George, MD⁴, Guang Yang, PhD^{5*}, Javita Sen, PhD^{5*}, Hui–Min Lin, PhD^{5*}, Brenton Mar, MD, PhD^{5*} and Jason Gotlib, MD, MS⁶


- Background: Advanced systemic mastocytosis most commonly manifests as a myeloid malignancy (especially MDS and MPN overlap) occurring in the setting of c-kit-mutated mastocytosis in the bone marrow
- Avapritinib is a kit inhibitor that is highly effective in reducing the c-kit—mutated mast cell clone
- Patients may progress despite control of the mastocytosis
- Mutation-Adjusted Risk Score (Jawhar M, et al. *J Clin Oncol.* 2019;37:2846–2856) was used to evaluate patients on the Explorer trial

Progression of Systemic Mastocytosis

Effective Control of Advanced Systemic Mastocytosis with Avapritinib: Mutational Analysis

from the Explorer Clinical Study Michael W. Deininger, MD, PhD¹, Daniel J. DeAngelo, MD, PhD^{2*}, Deepti H. Radia, MD^{3*}, Tracy I. George,

MD⁴, Guang Yang, PhD⁵*, Jayita Sen, PhD⁵*, Hui–Min Lin, PhD⁵*, Brenton Mar, MD, PhD⁵* and Jason Gotlib, MD, MS⁶

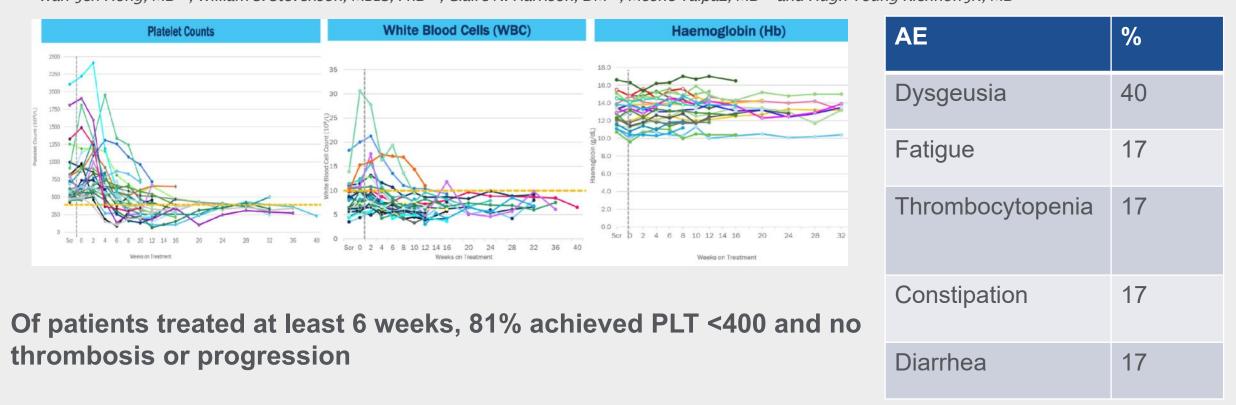
COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Novel Treatments for Essential Thrombocythemia

A Phase 2 Study of the LSD1 Inhibitor Img-7289 (bomedemstat) for the Treatment of Essential Thrombocythemia (ET) *Francesca Palandri, MD, PhD*^{1*}, *Nicola Vianelli, MD*^{2,3*}, *David M. Ross, MBBS, PhD, FRACP, FRCPA*^{4*}, *Tara Cochrane, MBBS, FRCPA, FRACP⁵, Steven W. Lane, MD, PhD*⁶, *Stephen R. Larsen, MBBS PhD FRACP FRCPA*⁷, *Aaron T. Gerds, MD, MS*⁸, *Anna B. Halpern, MD*⁹, *Jake Shortt, FRACP, FRCPA, PhD*¹⁰, *James M. Rossetti, DO*¹¹, *Kristen M. Pettit*¹², *Amber Jones, MA*^{13*}, *Jennifer Peppe, BS*^{14*}, *Georges Natsoulis, Ph.D.*^{15*}, *Willis Navarro, MD*¹⁶, *Wan-Jen Hong, MD*¹⁶, *William S. Stevenson, MBBS, PhD*¹⁷, *Claire N. Harrison, DM*¹⁸, *Moshe Talpaz, MD*¹² and Hugh Young Rienhoff Jr., *MD*¹⁹

Background: Bomedemstat is an oral inhibitor of LSD-1, which is critical for the maturation of progenitors to megakaryocytes.

Ongoing clinical trials in myelofibrosis

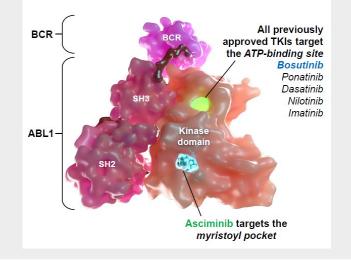

Phase 2 study of patients with ET requiring cytoreduction: first 30 patients 77% failed HU, 10% anagrelide, 7% IFN, 3% busulfan, 3% ruxolitinib

50% JAK2V617F, 44% CALR mutant; all wt MPL

Median time on study: 16 weeks

• Objectives: PLT <400,000, no thrombosis or disease progression

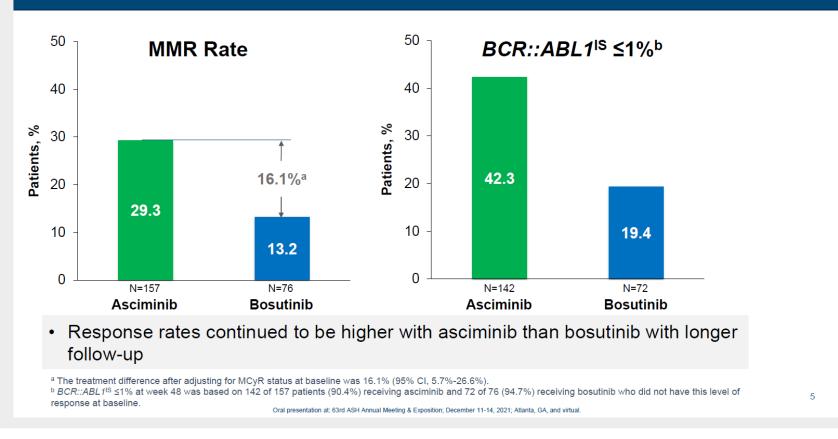
Novel Treatments for Essential Thrombocythemia A Phase 2 Study of the LSD1 Inhibitor Img-7289 (bomedemstat) for the Treatment of Essential Thrombocythemia (ET) Francesca Palandri, MD, PhD^{1*}, Nicola Vianelli, MD^{2,3*}, David M. Ross, MBBS, PhD, FRACP, FRCPA^{4*}, Tara Cochrane, MBBS, FRCPA, FRACP⁵, Steven W. Lane, MD, PhD⁶, Stephen R. Larsen, MBBS PhD FRACP FRCPA⁷, Aaron T. Gerds, MD, MS⁸, Anna B. Halpern, MD⁹, Jake Shortt, FRACP, FRCPA, PhD¹⁰, James M. Rossetti, DO¹¹, Kristen M. Pettit¹², Amber Jones, MA^{13*}, Jennifer Peppe, BS^{14*}, Georges Natsoulis, Ph.D.^{15*}, Willis Navarro, MD¹⁶, Wan-Jen Hong, MD¹⁶, William S. Stevenson, MBBS, PhD¹⁷, Claire N. Harrison, DM¹⁸, Moshe Talpaz, MD¹² and Hugh Young Rienhoff Jr., MD¹⁹



COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

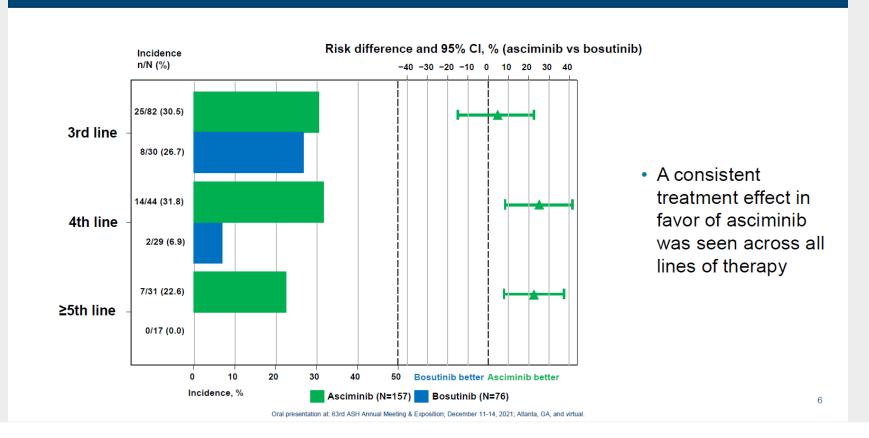
Efficacy and Safety Results from Ascembl, a Multicenter, Open-Label, Phase 3 Study of Asciminib, a First-in-Class STAMP Inhibitor, Vs Bosutinib in Patients with Chronic Myeloid Leukemia in Chronic Phase after ≥2 Prior Tyrosine Kinase Inhibitors: Update after 48 Weeks

*Michael J. Mauro, MD*¹, Yosuke Minami, MD, PhD², Delphine Rea, MD, PhD³, Andreas Hochhaus, MD⁴, Elza Lomaia, MD, PhD^{5*}, Sergey Voloshin, MD, PhD^{6*}, Anna G. Turkina, Prof., MD⁷, Dong–Wook Kim, M.D., Ph.D.⁸, Jane F. Apperley, FRCP, FRCPath, MB⁹, Jorge E. Cortes, MD¹⁰, Andre N.R. Abdo, MD^{11*}, Laura Fogliatto¹², Dennis Dong Hwan Kim, MD, PhD^{13*}, Philipp D le Coutre, MD¹⁴, Susanne Saussele, MD¹⁵, Mario Annunziata, MD^{16*}, Timothy P. Hughes, MD, MBBS, FRACP, FRCPA¹⁷, Naeem A. Chaudhri, MD¹⁸, Lynette C.Y. Chee, MBBS, PhD, FRACP, FRCPA¹⁹, Valentín Garcia Gutierrez, MD, PhD²⁰, Koji Sasaki, MD²¹, Shruti Kapoor^{22*}, Alex Allepuz, MD, MPH^{23*}, Sarah Quenet^{24*}, Véronique Bédoucha^{24*} and Carla Boquimpani, MD^{25*}

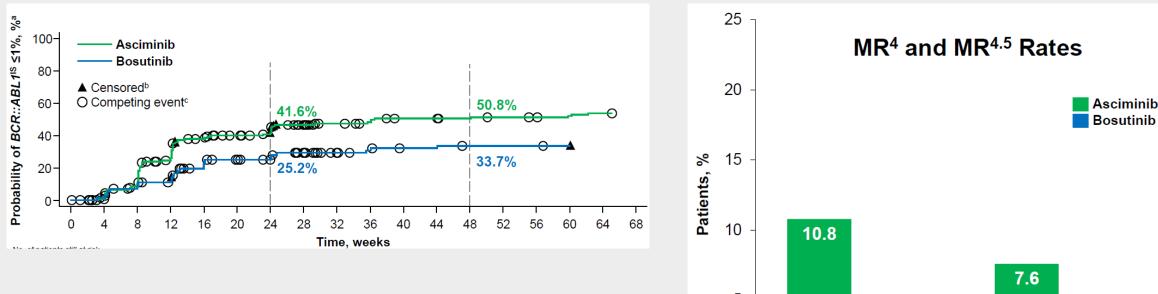

Background: Asciminib binds to ABL myristoyl pocket Ascembl is a phase 3 trial of asciminib randomized 2:1 vs bosutinib -failure or intolerance to at least 2 TKIs -Asciminib 40 mg bid 157 pts -Bosutinib 500 mg bid 76 pts (bosutinib failures could cross over)

COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Efficacy and Safety Results from Ascembl, a Multicenter, Open-Label, Phase 3 Study of Asciminib, a First-in-Class STAMP Inhibitor, Vs Bosutinib in Patients with Chronic Myeloid Leukemia in Chronic Phase after ≥2 Prior Tyrosine Kinase Inhibitors: Update after 48 Weeks


Response Rates at Week 48

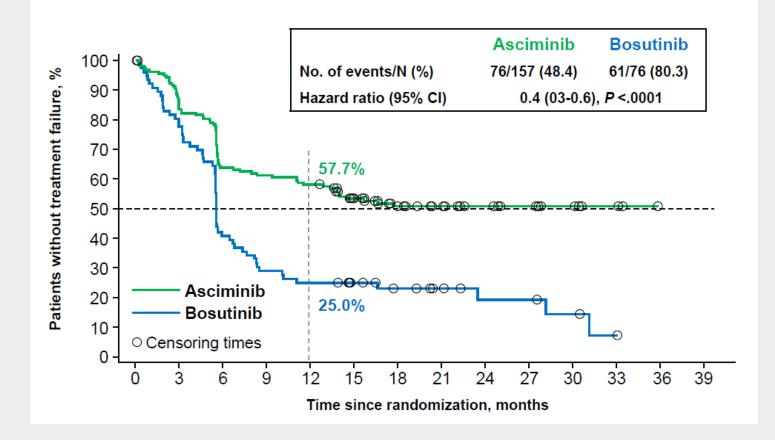
COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER


Efficacy and Safety Results from Ascembl, a Multicenter, Open-Label, Phase 3 Study of Asciminib, a First-in-Class STAMP Inhibitor, Vs Bosutinib in Patients with Chronic Myeloid Leukemia in Chronic Phase after ≥2 Prior Tyrosine Kinase Inhibitors: Update after 48 Weeks

MMR Rate at Week 48 by Line of Therapy

COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

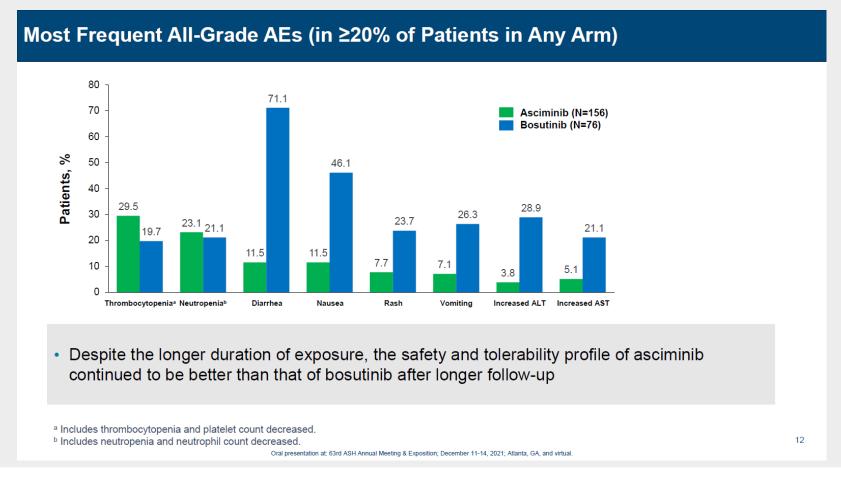
Efficacy and Safety Results from Ascembl, a Multicenter, Open-Label, Phase 3 Study of Asciminib, a First-in-Class STAMP Inhibitor, Vs Bosutinib in Patients with Chronic Myeloid Leukemia in Chronic Phase after ≥2 Prior Tyrosine Kinase Inhibitors: Update after 48 Weeks



Cytogenetic responses seem to be cumulative over time and deep responses were seen more frequently with asciminib than bosutinib

5 3.9 1.3 0 N=157 N=76 N=76 N=157 **MR**^{4.5} MR⁴

COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER


Efficacy and Safety Results from Ascembl, a Multicenter, Open-Label, Phase 3 Study of Asciminib, a First-in-Class STAMP Inhibitor, Vs Bosutinib in Patients with Chronic Myeloid Leukemia in Chronic Phase after ≥2 Prior Tyrosine Kinase Inhibitors: Update after 48 Weeks

Fewer subjects had treatment failure with asciminib (48.4%) than bosutinib (80.3%)

COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Efficacy and Safety Results from Ascembl, a Multicenter, Open-Label, Phase 3 Study of Asciminib, a First-in-Class STAMP Inhibitor, Vs Bosutinib in Patients with Chronic Myeloid Leukemia in Chronic Phase after ≥2 Prior Tyrosine Kinase Inhibitors: Update after 48 Weeks

COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Advanced Systemic Mastocytosis-Future Directions Conclusions

- Midostaurin and avapritinib are FDA-approved TKIs active in advanced SM
- Avapritinib has activity in patients previously treated with midostaurin Less GI toxicity
 Potential for clearance of KIT D816V-mutated cells
- New highly selective agents are entering clinical trials
- TKIs may not address AHN disease component
 Potential need for other treatment modalities:
 Hypomethylating agents
 PCladribine/interferon
 AlloSCT