PRACTICE POINTS

Current and Emerging CAR T-Cell and Other Cellular Therapies for THE TREATMENT OF PATIENTS WITH HEMATOLOGIC MALIGNANCIES

Strategies to Integrate Cellular Therapy into the Treatment of Hematologic Malignancies

This activity is jointly provided by

Table of Contents

Axicabtagene ciloleucel	3
Axi-Cel in Clinical Practice	4
Tisagenlecleucel	5
Lisocabtagene maraleucel	6
Idecabtagene vicleucel	7
Ciltacabtagene autoleucel	8
How Are CAR T Cells Manufactured/Engineered?	9
Strategies for Bridging the Gap Between Academic and Community Practices	10
Return to Community Oncologist / Post CAR T Management	10
CAR T-Cell Improvements	11
Building a Better CAR T-Cell Product	12

PRACTICE POINTS

Axicabtagene ciloleucel

FDA approval:

- R/R large B-cell lymphoma after 2 or more lines of systemic therapy, including DLBCL not otherwise specified, primary mediastinal large B-cell lymphoma, high grade B-cell lymphoma, and DLBCL arising from follicular lymphoma.
- R/R follicular lymphoma after 2 or more lines of systemic therapy
- Not indicated for the treatment of patients with primary central nervous system lymphoma

Study	ZUMA1
CAR T dose	2 x 10 ⁶ /kg
Conditioning therapy	Cy/Flu
Lymphoma subtypes	DLBCL / PMBCL / TFL
Treated/Enrolled	101/111 (91%)
Relapsed/Refractory	Refractory
Relapse post-ASCT	21%
Bridging therapy	None
Manufacturing success	99%
ORR / CR (%)	82 / 54

Safety	CRS All Grades	CRS Grade ≥3	NT All Grades	NT Grade ≥3
	93%	13%	64%	28%

Yescarta. Prescribing information. Kite Pharma, Inc.; 2021. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531-2544. doi:10.1056/NEJMOA170744 van der Stegen S, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499-509. doi:10.1038/nrd4597

PRACTICE POINTS

Axi-Cel in Clinical Practice

Response to SOC Axi-Cel Treatment

82% ORR

PR CR SD/PD

- Median time to response was 30 days, and no patients achieved a first response beyond day 90
- Most patients who achieved a CR (n = 121) at day 30 remained in CR at day 90 (78%)
- Among the 93 patients with a PR at day 30, 32% improved to a CR at day 90, and even 1 (7%) of 14 patients with stable disease at day 30 improved to a CR at day 90

Safety	
--------	--

	SOC axi-cel N=255	ZUMA 1 N=108
All grade CRS	251 (91%)	100 (93%)
Grade ≥ 3	19 (7%)	14 (13%)
Median time to onset	3 days	2 days
All grade neurotoxicity	189 (69%)	70 (65%)
Grade ≥ 3	85 (31%)	33 (31%)
Median time to onset	6 days	5 days
Median hospital stay	14	NA
ICU stay	91 (33%)	NA
Tocilizumab use	170 (62%)	45%
Corticosteroid use	149 (54%)	29%

Nastoupil L, Jain MD, Feng L, et al. Axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119-3128. doi: 10.1200/JC0.19.02104

PRACTICE POINTS

Tisagenlecleucel

FDA approval:

- Patients up to 25 years of age with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse
- R/R large B-cell lymphoma after 2 or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, high-grade B-cell lymphoma and DLBCL arising from follicular lymphoma
- Not indicated for treatment of patients with primary central nervous system lymphoma

Study		JU	IET		
CAR T do	se	0.6	6 x 1	10 ⁸	
Condition	ing therapy	Cy/	Flu o	or Bendamustine	
Lymphom	a subtypes	DLI	3CL /	/ TFL	
Treated/Er	nrolled	111	165	(67%)	
Relapsed/	Refractory	Rel	Relapsed or refractory		
Relapse post-ASCT		49%	49%		
Bridging therapy		Allo	Allowed		
Manufactu	uring success	93%	ó		
ORR / CR	(%)	52	40		
N	CRS All Grades	CRS Grade ≥	3	NT All Grades	NT Grade ≥3
444	500/	0001		0.40/	100/

Saf

111 58% 22% 21% 12%

Kymriah. Prescribing information. Novartis Pharmaceuticals Corporation; 2021. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2018;380(1):45-56. doi:10.1056/NEJMoa1804980. van der Stegen S, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499-509. doi:10.1038/nrd4597

Lisocabtagene maraleucel

FDA approval:

- Adult patients with relapsed or refractory large B-cell lymphoma after 2 or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified (including DLBCL arising from indolent lymphoma), high-grade B-cell lymphoma, primary mediastinal large B-cell lymphoma, and follicular lymphoma grade 3B
- Not indicated for the treatment of patients with primary central nervous system lymphoma

Study	TRANSCEND
CAR T dose	0.5-1.5 x 10 ⁶
Conditioning therapy	Cy/Flu
Lymphoma subtypes	DLBCL/PMBCL/TFL/FL Gr 3B
Treated/Enrolled	269/344 (78%)
Relapsed/Refractory	Relapsed or refractory
Relapse post-ASCT	33%
Bridging therapy	Allowed
Manufacturing success	99%
ORR / CR (%)	73 / 53

Ν	CRS All Grades	CRS Grade ≥3	NT All Grades	NT Grade ≥3
268	42%	2%	30%	10%

Breyanzi. Prescribing information. Juno Therapeutics Inc.; 2021. 2. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. *Lancet.* 2020;396(10254):839-852. doi:10.1016/S0140-6736(20)31366-0 3. van der Stegen S, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. *Nat Rev Drug Discov.* 2015;14(7):499-509. doi:10.1038/nrd4597

PRACTICE POINTS

Current and Emerging CAR T-Cell and Other Cellular Therapies for the Treatment of Patients with Hematologic Malignancies

Bio Ascend[™]

Idecabtagene vicleucel

FDA approval:

• Adult patients with relapsed or refractory multiple myeloma after 4 or more prior lines of therapy, including an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody

Study	KarMMA
CAR T dose	150-450 x 10 ⁶
Treated / Enrolled	128
Relapsed / Refractory	Relapsed or refractory
Manufacturing success	99%
ORR / CR (%)	73/33

Ν	CRS All Grades	CRS Grade ≥3	NT All Grades	NT Grade ≥3
128	84%	5%	18%	3%

Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705-716. doi:10.1056/ NEJMOA2024850 2. Abecma. Prescribing information. Celgene Corporation; 2021.

PRACTICE POINTS

Ciltacabtagene autoleucel

NOT FDA APPROVED YET

Study	CARTITUDE
CAR T dose	0.75×10^{6}
Treated / Enrolled	96
Relapsed / Refractory	Relapsed or refractory
ORR / CR (%)	95/67

Ν	CRS All Grades	CRS Grade ≥3	NT All Grades	NT Grade ≥3
97	95%	4%	21%	10%

Usmani S. Ciltacabtagene autoleucel, a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor T-cell (CAR-T) therapy, in relapsed/refractory multiple myeloma (R/R MM): Updated results from CARTITUDE-1. Abstract #8005 [Oral]. Presented at: the 2021 American Society of Clinical Oncology (ASCO) Annual Meeting; June 4-8, 2021; Chicago, IL.

How Are CAR T Cells Manufactured/Engineered?

- On average, the production of CAR T cells takes approximately 10 to 14 days
- The time from endogenous T-cell collection to CAR T-cell infusion varies, but typically ranging from 1 to 4 weeks

Leukemia & Lymphoma Society. Facts about chimeric antigen receptor (CAR) T-cell therapy. Revised September 2020. Accessed November 8, 2021. https://www.lls.org/sites/default/files/2021-05/FSHP1_CART_Factsheet_Sept2020_Rev.pdf

PRACTICE POINTS

Current and Emerging CAR T-Cell and Other Cellular Therapies for the Treatment of Patients with Hematologic Malignancies

This activity is jointly provided by

🎇 Bio Ascend 🖱

Strategies for Bridging the Gap Between Academic and Community Practices

Referral for CAR T

- Patients with relapsed or refractory large B-cell lymphoma who have failed 2 or more prior therapies and/or autologous bone marrow transplant
- Patients with RRMM who have failed 3 or more prior therapies and/or autologous bone marrow transplant
- Patients who progress on first-line therapy in a short period should be referred directly to academic centers for comanagement because high rates of relapse are observed with second-line treatments
- · Multidisciplinary approach is best early on
- Refer patients early and broadly, as the time of referral to CAR T-cell infusion can take 4 to 6 weeks.
- Know which centers in your state offer CAR T-cell therapy
- · Develop relationships with CAR T oncologists early on

Return to Community Oncologist

- Any patient in response/remission who does not experience a serious adverse event after a 4- to 8-week stay returns home
- Patients treated with CAR T-cell therapy are advised to carry a wallet card with them at all times that defines symptoms that could indicate a serious adverse event for which to seek medical attention
- The CAR T-cell treatment center, in coordination with the local oncologist, may have patient follow-ups every 2 weeks until month 3, then decreasing in frequency to 6 months and 12 months after CAR T-cell infusion, then yearly until 5 years after CAR T-cell infusion

Post CAR T Management

- Coordination and communication between the local oncologist and CAR T-cell treatment oncologist are important during the months after patients return home
- These patients can experience prolonged hypogammaglobulinemia and B-cell aplasia. Patients may require supportive care with IVIG
- Prolonged cytopenias
- Observe patients for prolonged cytopenias

Jacobson CA, Farooq U, Ghobadi A. Axicabtagene ciloleucel, an anti-CD19 chimeric antigen receptor T-cell therapy for relapsed or refractory large B-cell lymphoma: practical implications for the community oncologist. 2020;25:e(1)138-e146. doi: 10.1634/theoncologist.2019-0395.

PRACTICE POINTS

CAR T-CELL IMPROVEMENTS

PRACTICE POINTS

Building a Better CAR T-Cell Product

Park JH, Brentjens RJ. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells. Discov Med. 2010;9(47):277-288.

PRACTICE POINTS

Current and Emerging CAR T-Cell and Other Cellular Therapies for the Treatment of Patients with Hematologic Malignancies

This activity is jointly provided by

" 🗱 Bio Ascend"