

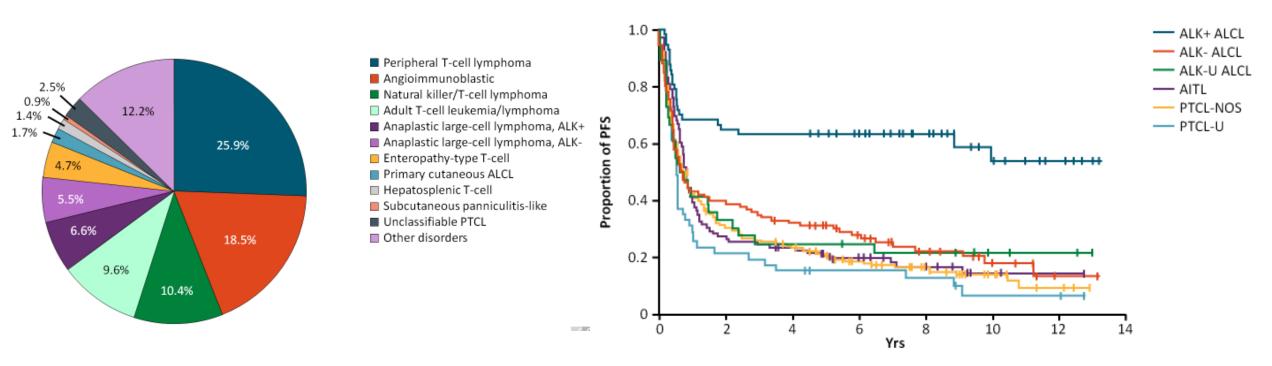
Newly Diagnosed PTCL

Barbara Pro, MD

Professor of Medicine Division of Hematology/Oncology Northwestern University Feinberg School of Medicine Robert H. Lurie Comprehensive Cancer Center of Northwestern University

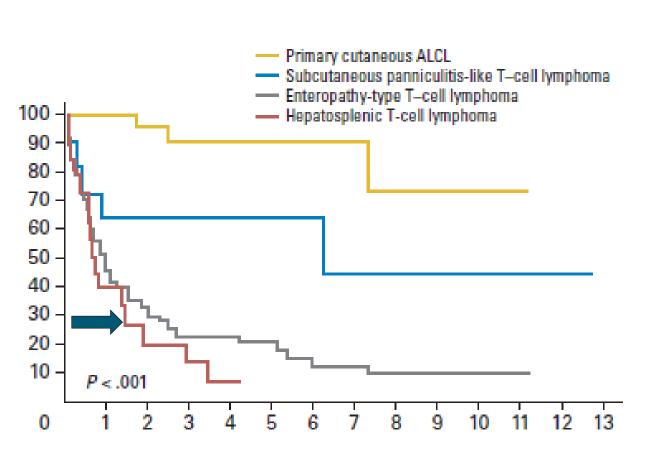
Disclosures

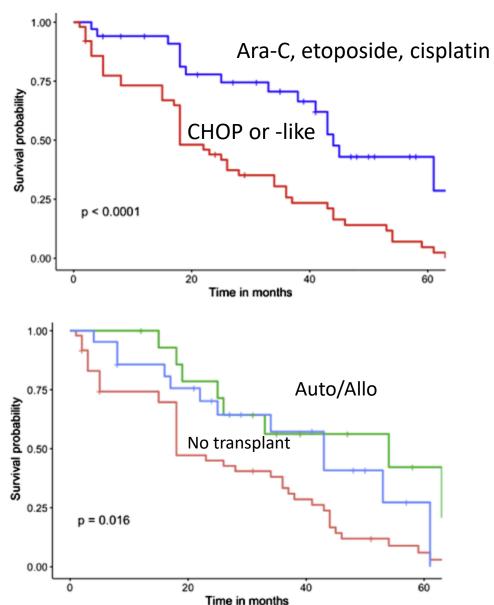
Honoraria, Research Grants: Seattle Genetics


Honoraria, Research Grants: Takeda

Research Grant: Verastem

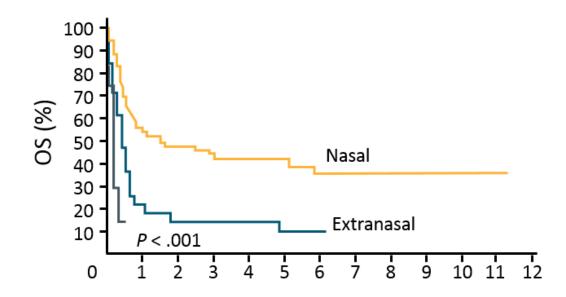
PTCL: Diversity and Outcome


Distribution of PTCL Subtypes, per International T-cell Project^[1]

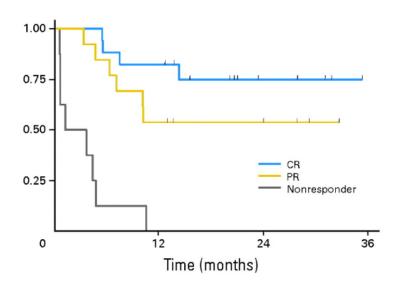

PFS by Subtype in Swedish Registry (N = 755)^[2]

The nodal subtypes account for 66% of North American cases

Hepatosplenic T-Cell Lymphoma

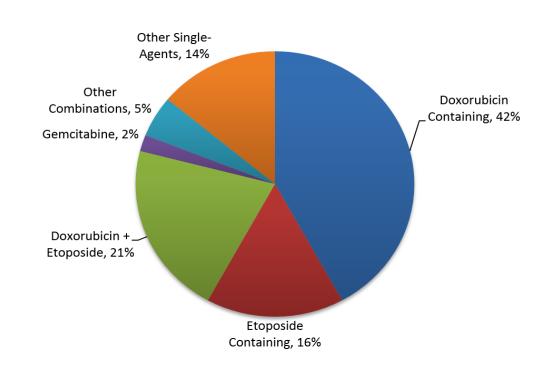


Vose. J Clin Oncol. 2008;26:4124 Klebaner. Clin Lymphoma Myeloma Leuk. 2019

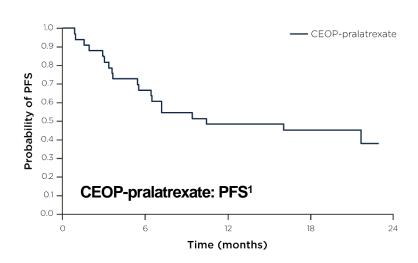

NK/T-Cells, Nasal Type

Suggested treatment regimens

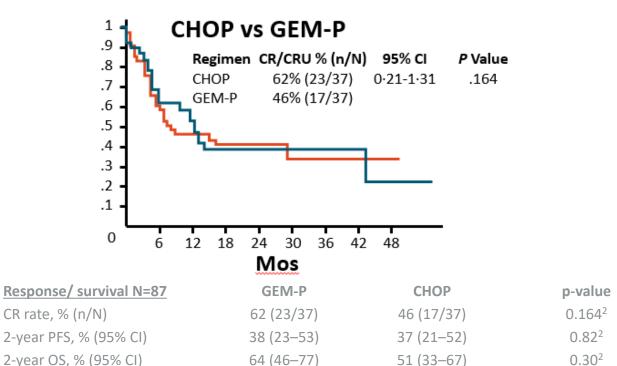
- Sequential combined modality
 - Dexamethasone, methotrexate, ifosfamide, Lasparaginase, etoposide (SMILE, mSMILE)
 - L-asparaginase, methotrexate, dexamethasone (AspaMetDex)
 - Gemcitabine-based combination
 - Consolidation with XRT
- Concurrent chemoradiotherapy (CCRT)
 - 50 Gy RT + 3 courses dexamethasone, etoposide, ifosfamide, carboplatin (DeVIC)
 - 40 to 52.8 Gy RT + cisplatin followed by 3 cycles etoposide, ifosfamide, cisplatin, dexamethasone (VIPD)



OS with SMILE

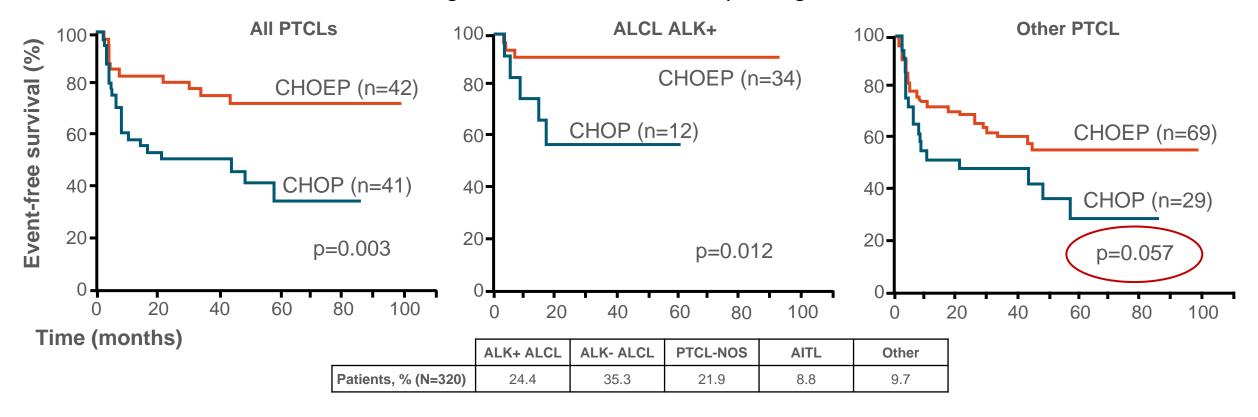

Common Nodal Subtypes Complete Registry

Histopathology	N 234
PTCL-NOS	140 (51.3)
AITL	71 (26.0)
ALCL	62 (22.7)
ALK-	49 (79.0)
ALK + (IPI 2-5)	13 (21.0)



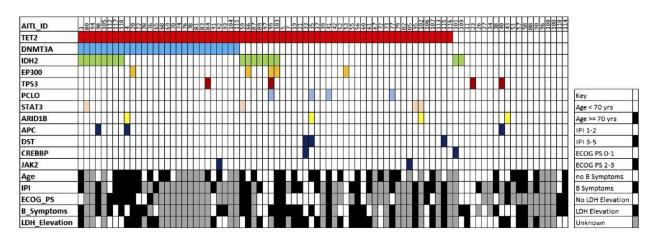
Attempts to improve upon CHOP

- Addition of novel agent(s) to existing SoC induction therapy
 - CHO(E)P + drug(s) X
 - Novel drug combinations and auto/allogeneic transplant in first remission



Response/ survival N=33	CEOP- pralatrexate
CR rate, % (n/N)	52 (17/33)
2-year PFS, % (95% CI)	39 (21–57)
2-year OS, % (95% CI)	60 (39–76)

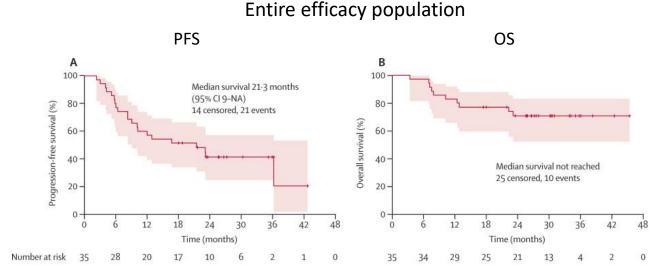
Addition of etoposide to CHOP improves event-free survival outcomes in young patients (<60 years) with PTCL


- Results from seven trials of the German high-grade NHL study group: T-cell lymphoma subset analysis
- A positive effect of etoposide on event-free survival was confirmed in a subset analysis of ALK-positive ALCL
- This trend continued when the remaining PTCL subentities were analysed together

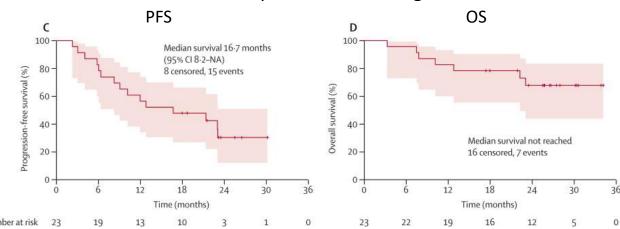
Mutations of DNA Methylation Genes in PTCL: New Targets for Therapy

- Recurrent mutations of genes involved in DNA methylation regulation have been described in PTCL
- Higher incidence in angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified (PTCL-NOS), with features of T-follicular helper cells (TFHlike)
- HDAC inhibitors like romidepsin and belinostat act on this pathway

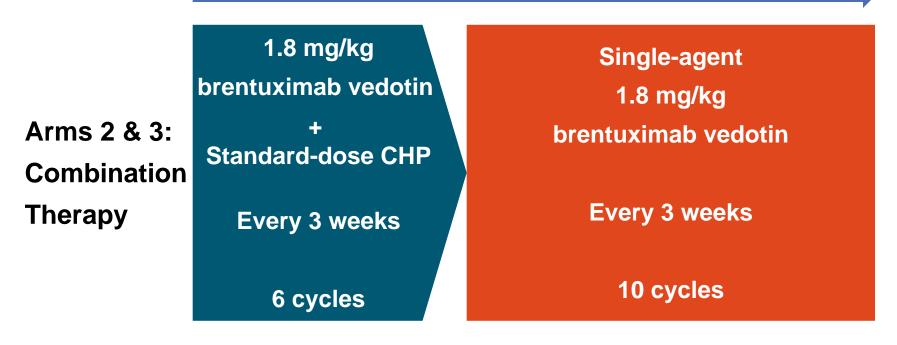
Distribution of mutations in 85 AITL cases



Ro-CHOP: Clinical Response and Survival Outcomes


	Total	
	(N=35)	
Objective Response, n (%)	24 (68)	
Complete Remission	18 (51)	
Partial Remission	6 (17)	

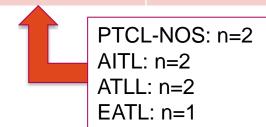
DLT reached at the dose of Romidepsin of 12 mg/m² on days 1 and 8


Phase III trial of Ro-CHOP vs CHOP nears completion of accrual

Population of patients treated at the recommended romidepsin dose of 12 mg/m²

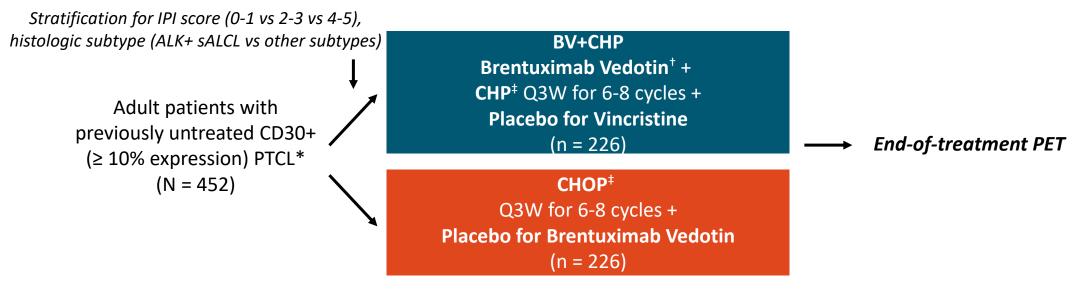
Phase I Frontline Combination Study of Brentuximab Vedotin + CHP

- Phase 1, open-label, multicenter study
- Arm 2 designed to determine recommended dose of brentuximab vedotin in combination with CHP (CHOP without vincristine) to be further evaluated in Arm 3
 - The maximum-tolerated dose was not exceeded at 1.8 mg/kg q3wk


^{*}Arm 1 investigated sequential brentuximab vedotin and CHOP

First-line brentuximab vedotin + CHP in patients with CD30+ PTCL: best response by diagnosis

Efficacy: combination treatment ¹ , n (%)	sALCL (n=19)	Other diagnoses (n=7)	Total (N=26)
Objective response rate	19 (100)	7 (100)	26 (100)
CR	16 (84)	7 (100)	23 (88)
PR	3 (16)	_	3 (12)
Median PFS	_	_	
Median OS	_	_	Not reached


5-year follow up²

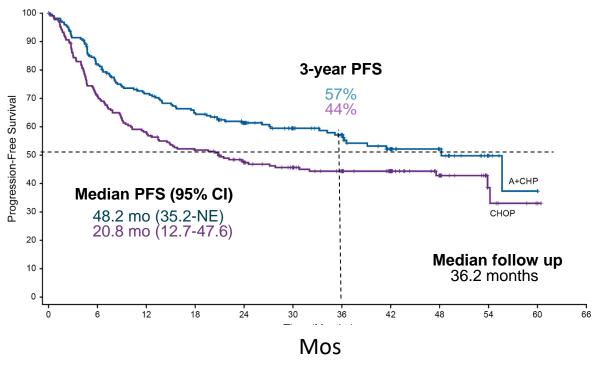
- Median follow up: 59.6 months (range, 4.6–66.0 months) from first dose
- Median OS and PFS were not reached
 - Estimated 5-year PFS and OS rates were 52% and 80%, respectively
- In total, 95% of patients (n=18) with treatment-emergent peripheral neuropathy reported resolution or improvement of symptoms
- At the end of the study, 50% of patients (n=13) remained in remission; PFS ranged from 37.8+ to 66.0+ months

ECHELON-2: Brentuximab Vedotin + CHP vs CHOP in Previously Untreated CD30+ PTCL

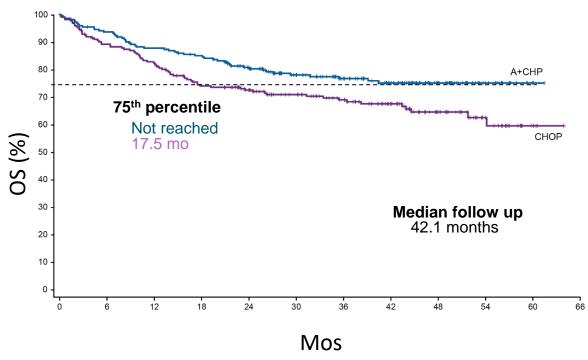
Multicenter, randomized, double-blind, double dummy, active-controlled phase III trial

*PTCL includes sALCL (including ALK+ sALCL with IPI ≥ 2 and ALK- sALCL), PTCL-NOS, AITL, ATLL, EATL, HSTCL. Study targeted 75% (± 5%) ALCL in line with European regulatory commitment. †Brentuximab vedotin: 1.8 mg/kg. ‡Cyclophosphamide 750 mg/m², doxorubicin 50 mg/m², vincristine 1.4 mg/m² (CHOP only), prednisone 100 mg on Days 1-5. G-CSF primary prophylaxis, consolidative RT, SCT per investigator discretion.

- Primary endpoint: PFS per BICR (SCT or RT consolidation not considered events)
- Secondary endpoints: OS, PFS per BICR in sALCL patients, CR, ORR, safety

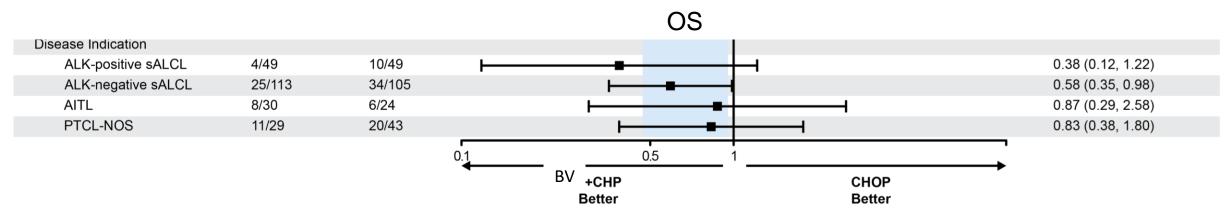

Horwitz. Lancet. 2019;393:229.

Baseline characteristics in ECHELON-2


Characteristic	A+CHP (N=226)	CHOP (N=226)
Male, n (%)	133 (59)	151 (67)
Age, years, median (range)	58 (18–85)	58 (18–83)
IPI score, n (%)		
0–1	53 (23)	48 (21)
2–3	140 (62)	144 (64)
4–5	33 (15)	34 (15)
Stage III/IV, n (%)	184 (81)	180 (80)

Characteristic	A+CHP (N=226)	CHOP (N=226)
Disease diagnosis, n	(%)	
sALCL	162 (72)	154 (68)
ALK+	49 (22)	49 (22)
ALK-	113 (50)	105 (46)
PTCL-NOS	29 (13)	43 (19)
AITL	30 (13)	24 (11)
ATLL	4 (2)	3 (1)
EATL	1 (0)	2 (1)

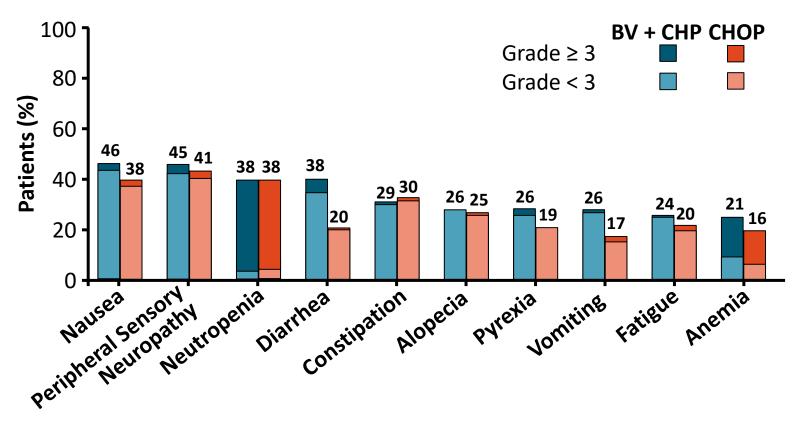
ECHELON-2: PFS and OS with BV + CHOP vs CHOP Alone in ALCL


Treatment	Events, n (%)	HR (95% CI)	P Value
BV+CHP	95 (42)	0.71	.011
CHOP	124 (55)	(0.54-0.93)	.011

Treatment	Deaths, n (%)	HR (95% CI)	P Value
BV+CHP	51 (23)	0.66	.0244
СНОР	73 (32)	(0.46-0.95)	.0244

ECHELON-2: PFS and OS by PTCL Subtypes

- Frontline treatment with BV+CHP superior to CHOP for patients with CD30-positive PTCL
- PFS and OS benefits greatest in patients with sALCL

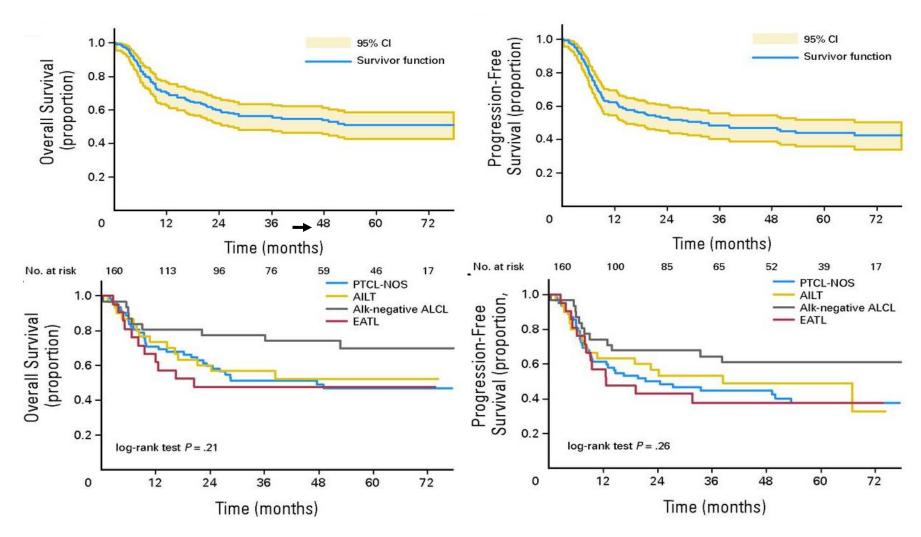

Horwitz. Lancet. 2019;393:229.

ECHELON-2: AEs

AE, n (%)	BV+CHP (n = 223)	CHOP (n = 226)
Any AE	221 (99)	221 (98)
Grade ≥ 3 AEs	147 (66)	146 (65)
Serious AEs	87 (39)	87 (38)
Death due to AEs	7 (3)	9 (4)

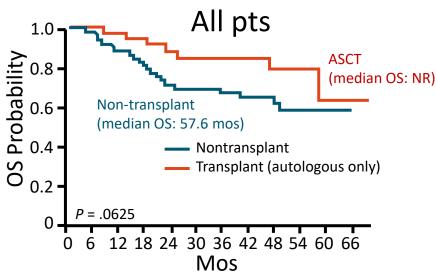
Subjects, n (%)	BV+CHP (n=223)	CHOP (n=226)
Treatment-emergent PN	117 (52)	124 (55)
Resolution of all PN events	58 (50)	79 (64)
Ongoing PN at last follow up	61 (52)	45 (36)
Grade 1	44 (72)	32 (71)
Grade 2	15 (25)	12 (27)
Grade 3	2 (1)	1 (1)

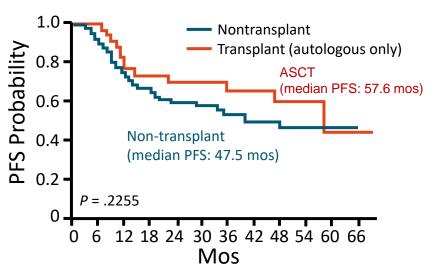
AEs Occurring in ≥ 20% of Patients

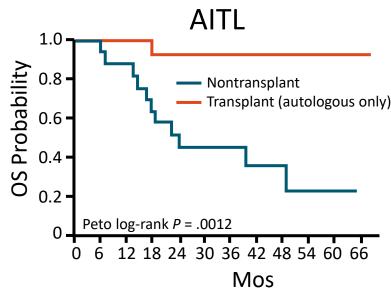


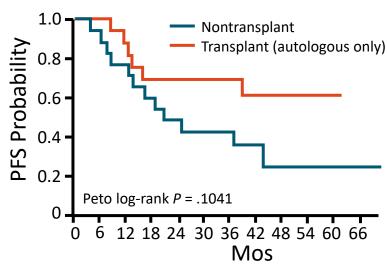
Horwitz. Lancet. 2019;393:229. Horwitz. ASH 2018. Abstract 997.

ECHELON-2: Summary and Conclusions

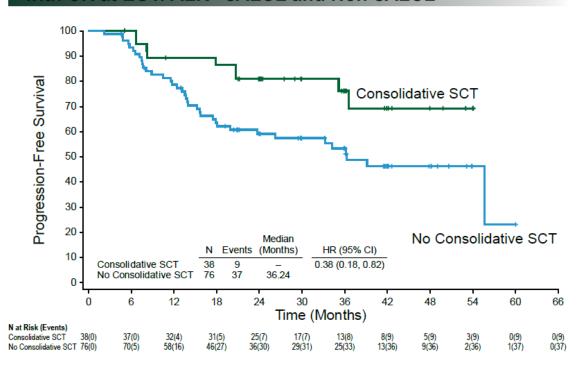

- ECHELON-2 first prospective trial in PTCL to show OS and PFS benefit over CHOP
 - 29% reduction in the risk of a progression event
 - 3-yr PFS: BV+CHP 57% vs CHOP 44%
 - 34% reduction in the risk of death
- BV+CHP has a comparable safety profile to CHOP
- Brentuximab vedotin FDA approved in combination with CHP for adults with previously untreated sALCL or other CD30-expressing PTCL


NORDIC: OS and PFS with CHO(E)P Followed by HDT and ASCT in Untreated PTCL




The Role of Transplant For Consolidation Complete Study

☐ Multivariate analysis, ASCT associated with improved survival



The Role of Transplant For Consolidation ECHELON-2

- Numerical PFS estimates favor the use of consolidative SCT in pts in CR after A +CHP
- Consolidative SCT infrequent in Asian countries

PFS by Consolidative SCT After A+CHP in Patients with CR at EOT: ALK- sALCL and Non-sALCL

Changing Treatment Paradigm of PTCL Where We Are

sALCL

- BV-CHP has a PFS and OS benefit over CHOP
 - Addition of etoposide (?)

PTCL-NOS

If CD30 pos. BV-CHP but not clear if there is benefit in FH subtype

AITL

- Benefit of BV+CHP not clear and numbers small
- Awaiting data from ongoing studies with epigenetic modifiers
- Standard of care still ASCT in CR1 with the exception of ALK+ ALCL low IPI
- Aggressive extranodal subtypes should be treated with alternative strategies

