

### 09.08.2021

AN ACCREDITED CONTINUING EDUCATION SERIES WITH THE EXPERTS

## Addressing Disparities in Cancer Care and Incorporating Precision Medicine for Minority Populations











### **Disparities in Cancer Care: Lung Cancer**



#### Moderator & Course Director

Edith Mitchell, MD, MACP, FCPP, FRCP Clinical Professor of Medicine and Medical Oncology Department of Medical Oncology Director, Center to Eliminate Cancer Disparities Associate Director, Diversity Affairs Sidney Kimmel Cancer Center at Jefferson 116<sup>th</sup> President National Medical Association



#### Presenters

#### Narjust Duma, MD

Associate Director of the Cancer Equity Program Assistant Professor of Medicine, Harvard Medical School Dana-Farber Cancer Institute Boston, Massachusetts



### Nathaniel Evans III, MD

Professor Director, Division of Thoracic Surgery Jefferson University Hospitals Philadelphia, Pennsylvania









## Disclosure

As a jointly accredited provider, the University of Nebraska Medical Center (UNMC) ensures accuracy, balance, objectivity, independence, and scientific rigor in its educational activities and is committed to protecting learners from promotion, marketing, and commercial bias. All faculty, planners, and others in a position to control continuing education content participating in an accredited continuing education activity are required to disclose all financial relationships with ineligible companies. Ineligible companies are organizations whose primary business is producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients. The accredited provider is responsible for mitigating all relevant financial relationships in accredited continuing education. Disclosure of these commitments and/or relationships is included in these activity materials so that participants may formulate their own judgments in interpreting its content and evaluating its recommendations.

This activity may include presentations in which faculty may discuss off-label and/or investigational use of pharmaceuticals or instruments not yet FDA-approved. Participants should note that the use of products outside currently FDA-approved labeling should be considered experimental and are advised to consult current prescribing information for FDA-approved indications. All materials are included with the permission of the faculty. The opinions expressed are those of the faculty and are not to be construed as those of UNMC or Bio Ascend.







## Faculty Disclosures

### Edith Mitchell, MD, MACP, FCPP, FRCP

Consultant: AstraZeneca, Bristol Myers Squibb, Genentech, Merck & Co., Inc., Pfizer Inc., Taiho Oncology, Inc.

Clinical Research: Amgen, Genentech

### **Planning Committee**

The following planning committee members have nothing to disclose: **UNMC:** Brenda Ram, CMP, CHCP Bio Ascend: Chloe Dunnam; Lucja Grajkowska, PhD; Kraig Steubing

Narjust Duma, MD Advisory Board: AstraZeneca, Janssen, Pfizer Inc

### Nathaniel Evans III, MD

**Consultant:** Intuitive Surgical (Proctor)











## Learning Objectives

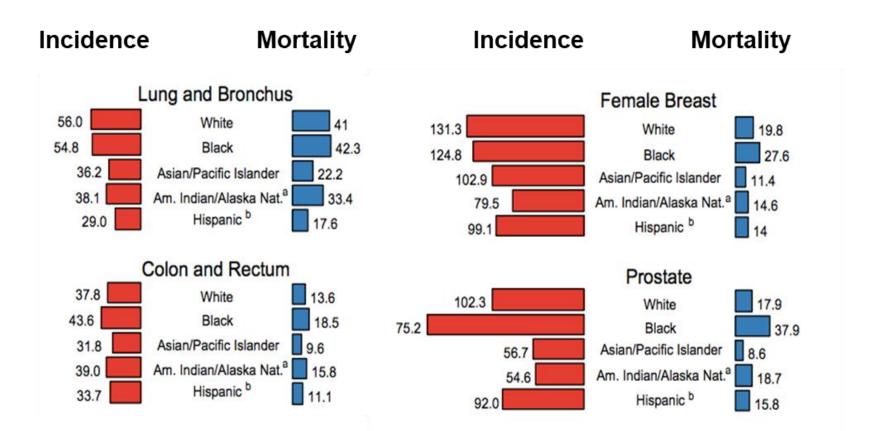
- Review racial difference in the outcomes in patients with cancer, including patients with both hematologic and solid tumors
- Evaluate sociodemographic, physician, and hospital factors that can help identify potentially modifiable patient and health care system factors that may underlie persistent racial disparities in receipt and quality of therapy
- Develop efforts to improve access to care, enhance diversity in the healthcare workforce, • navigate minority cancer patients through the healthcare system, and enhance adherence to cancer-specific best practice










# **Disparities in Lung Cancer**

Narjust Duma, MD Associate Director of Cancer Care Equity Thoracic Oncologist Lowe Center For Thoracic Oncology Dana-Farber Cancer Institute September 2021





## **Cancer Disparities**



SEER Cancer Incidence and US Death Rates, 2013-2017 By Cancer Site and Race/Ethnicity

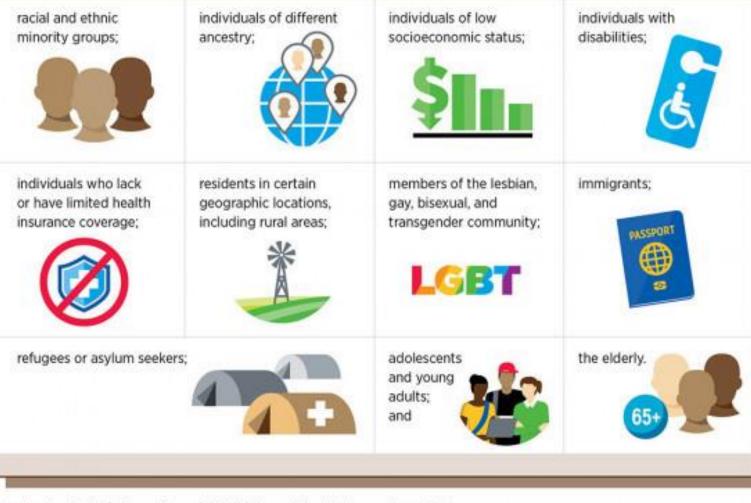
SEER 21 2013–2017, Age-Adjusted Rate per 100,000.

## **Lung Cancer Health Disparities**

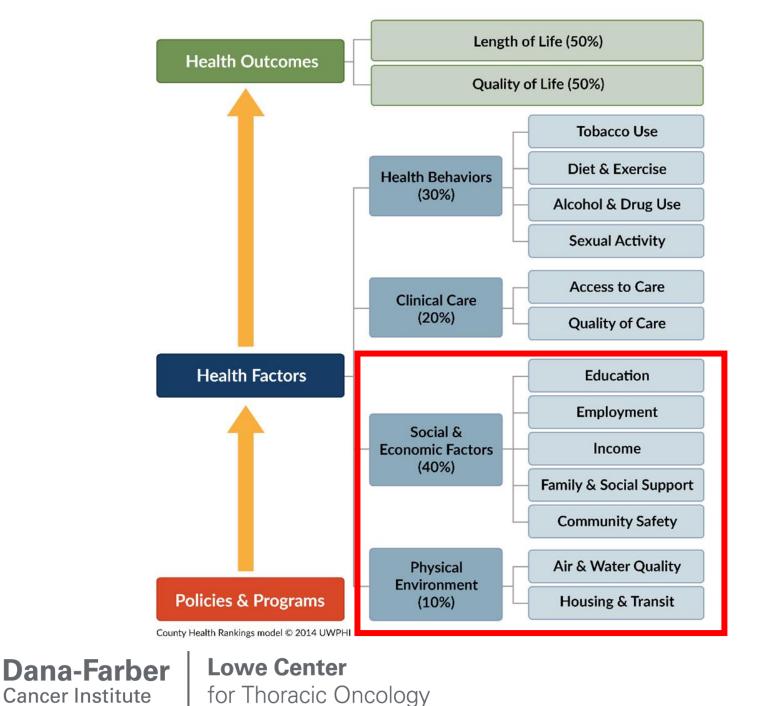
- Adverse differences between certain population groups in cancer measures:
  - Incidence (LGTBQ, others)
  - Stage at diagnosis
  - Mortality
  - Survivorship
  - Screening rates
  - Access to clinical trials
  - End of life



### And many more...




**Lowe Center** for Thoracic Oncology


O'Keefe, et al. "Health disparities and cancer: racial disparities in cancer mortality in the United States, 2000–2010." Frontiers in public health (2015) Green, et al. "Cancer health disparities." Fundamentals of Cancer Prevention. Springer Berlin Heidelberg (2014)

#### Which U.S. Population Groups Experience Cancer Health Disparities?

According to the National Cancer Institute cancer health disparities in the United States are adverse differences in cancer measures such as number of new cases, number of deaths, cancer-related health complications, survivorship and quality of life after cancer treatment, screening rates, and stage at diagnosis that exist among certain population groups including:



Imerican Association for Cancer Research (AACR) Cancer Disparities Progress Report 2020



80% of a Healthy Outcome is NOT determined by Clinical Care – when someone is Sick





# **Practical Barriers to Healthcare**

- Lack finances to purchase needed health services and treatments (e.g., medications, diagnostic tests, health provider fees)
- Transportation difficulties (e.g., no car)
- Difficulties taking leave from work to seek care (e.g., no paid leave available, employer will not allow time off)
- Difficulties arranging childcare





# **NSCLC and Race**

The incidence rates and mortality rates of lung cancer are highest in Black men

Over the past 40 years there has been a decrease in lung cancer incidence and mortality in all races

Black men are still more likely to have lung cancer when smoking habits are adjusted for



# Lung Cancer and Income

 Low income takes on special importance in lung cancer: Double jeopardy phenomenon

Low income increased risk due to tobacco Low income increases risk of dying

- Income is directly related to stage of disease at presentation
- Stage at presentation drives mortality



**Lowe Center** for Thoracic Oncology Albano, Jessica D., et al. "Cancer mortality in the United States by education level and race." Journal of the National Cancer Institute 99.18 (2007): 1384-1394.





ORIGINAL STUDY | VOLUME 21, ISSUE 3, E115-E129, MAY 01, 2020

### Influence of Sociodemographic Factors on Treatment Decisions in Non–Small-Cell Lung Cancer

Narjust Duma 🙁 🖂 • Dame W. Idossa • Urshila Durani • ... Alex A. Adjei • Ronald S. Go •

Sikander Ailawadhi • Show all authors

Published: August 30, 2019 • DOI: https://doi.org/10.1016/j.cllc.2019.08.005 •

Check for updates





## Lung-Cancer Screening

• The most effective way to dramatically improve outcomes in NSCLC is early detection

• Multiple trials have shown a significant improvement in lung- cancer survival with lung screening, despite screening at limited time points throughout the trials





## **Gender/Racial Differences in NLST Outcomes**

- LDCT screening in NLST decreased mortality for all groups but even more so in African Americans
- Black patients were younger, with more co morbidities and less educated, but had a greater benefit
- Looking at screening rates in other diseases, raised the question of utilization of screening in vulnerable populations



Wiener, Renda Soylemez, et al. "An official American Thoracic Society/American College of Chest Physicians policy statement: implementation of low-dose computed tomography lung cancer screening programs in clinical practice." American journal of respiratory and critical care medicine 192.7 (2015): 881-891.



# More benefit from lung cancer screening?

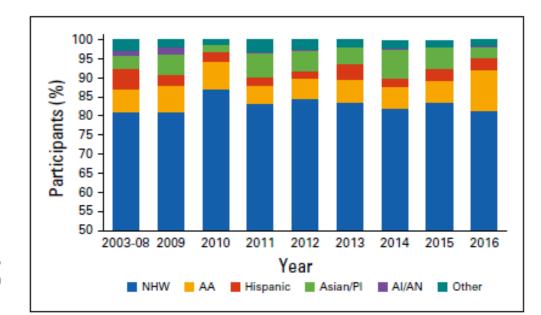
| Female v Male |       | Percent LC Mortality Decrease |     |        |           |  |  |
|---------------|-------|-------------------------------|-----|--------|-----------|--|--|
| Ratio         | (%)   | Trial                         | Men | Women  | 50:50 M/F |  |  |
| NLST          | 41/59 | NLST                          | 8%  | 27%    | 18%       |  |  |
| NELSON        | 16/84 | NELSON                        | 26% | 39-61% | 33 – 44%  |  |  |

### But less likely to be screened oxtimes





## **Lung Cancer Screening Discussions**


|                                     | Ν    | Events | Age-Adj | usted     |          | Multiva | riable-Adju | ste l <sup>1</sup> |
|-------------------------------------|------|--------|---------|-----------|----------|---------|-------------|--------------------|
| Sex <sup>2</sup>                    |      |        | OR      | Upper CI  | Lower CI | OR      | Upper C     | ower CI            |
| Female                              | 2356 | 176    | 0.72    | 0.53      | 0.99     | 0.64    | 0.45        | 0.92               |
| Male                                | 1851 | 199    | 1.00    | reference |          | 1.00    | reference   |                    |
| Race <sup>3</sup>                   |      |        |         |           |          |         |             |                    |
| Hispanic                            | 467  | 53     | 1.32    | 0.88      | 1.98     | 1.81    | 1.09        | 3.01               |
| Non-Hispanic White                  | 2887 | 238    | 1.00    | reference |          | 1.00    | reference   |                    |
| Non-Hispanic Black                  | 600  | 59     | 1.48    | 0.99      | 2.22     | 1.53    | 0.98        | 2.37               |
| Non-Hispanic Asian or Other<br>Race | 253  | 25     | 1.37    | 0.78      | 2.41     | 2.16    | 1.12        | 4.17               |
| Race/Sex <sup>4</sup>               |      |        |         |           |          |         |             |                    |
| Hispanic male                       | 204  | 31     | 1.34    | 0.77      | 2.35     | 1.61    | 0.83        | 3.10               |
| Hispanic female                     | 263  | 22     | 0.85    | 0.45      | 1.63     | 1.13    | 0.55        | 2.34               |
| NH-White male                       | 1328 | 132    | 1.00    | reference |          | 1.00    | reference   |                    |
| NH-White female                     | 1559 | 106    | 0.66    | 0.46      | 0.94     | 0.55    | 0.37        | 0.82               |
| NH-Black male                       | 209  | 27     | 1.34    | 0.65      | 2.76     | 1.18    | 0.52        | 2.65               |
| NH-Black female                     | 391  | 32     | 1.14    | 0.71      | 1.84     | 1.07    | 0.63        | 1.83               |
| NH-Asian/other male                 | 110  | 9      | 0.82    | 0.36      | 1.86     | 1.12    | 0.42        | 2.95               |
| NH-Asian/other female               | 143  | 16     | 1.44    | 0.59      | 3.51     | 2.26    | 0.82        | 6.24               |
| Survey Cycle <sup>5</sup>           |      |        |         |           |          |         |             |                    |
| 4.2 (2013)                          | 1272 | 153    | 1.00    |           |          | 1.00    |             |                    |
| 4.4 (2015)                          | 1486 | 107    | 0.43    | 0.31      | 0.61     | 0.41    | 0.27        | 0.61               |
| 5.1 (2017)                          | 1449 | 115    | 0.64    | 0.45      | 0.89     | 0.64    | 0.44        | 0.93               |

# Inclusion in Lung Cancer Clinical Trials

## **Representation in Clinical Trials - Challenge**

• Decline in the recruitment of minorities, women and the elderly in the past 14 years

|                         | No. of Trial<br>Enrollees |      | 2013 Cancer<br>Prevalence | EF  |  |
|-------------------------|---------------------------|------|---------------------------|-----|--|
| Racial/Ethnic Group     | No.                       | %    | %                         | %   |  |
| All cancers             |                           |      |                           |     |  |
| Non-Hispanic white      | 46,431                    | 83.4 | 79.0                      | 1.2 |  |
| African American        | 3,270                     | 6.0  | 10.0                      | 0.7 |  |
| Hispanic                | 1,484                     | 2.6  | 7.0                       | 0.4 |  |
| Asian/Pacific Islander  | 2,982                     | 5.3  | 3.3                       | 1.9 |  |
| American Indian/Alaskan | 190                       | 0.3  | 0.3                       | 1.3 |  |
| Native                  |                           |      |                           |     |  |
| Other                   | 1,332                     | 2.4  |                           |     |  |



Duma, Narjust, et al. "Representation of Minorities and Women in Oncology Clinical Trials: Review of the Past 14 Years." Journal of oncology practice 14.1 (2017)



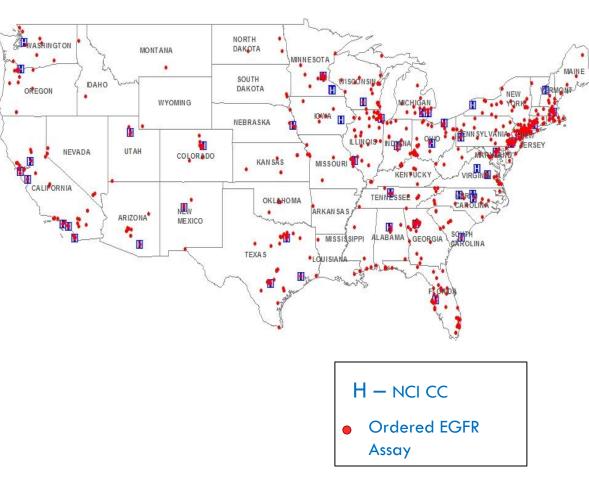
# Limited to Subgroups – Challenge

Most studies focused on a population subgroup, in a specific geographic location, limiting the <u>generalizability</u> of the findings








# Lung Cancer Biomarker Testing





## Institutions Adopting EGFR assay

- Medicare claims data from 2010-2013
- Geographic area was most powerful predictor
- Medicaid status
- Race (Black patients less likely Asian patients more likely)
- Distance from NCI cancer center







Lynch, Julie A., et al. "Utilization of epidermal growth factor receptor (EGFR) testing in the United States: a case study of T3 translational research." Genetics in Medicine 15.8 (2013): 630-638.

## **Molecular Testing Update**

• Kehl et. al. JNCI 2019

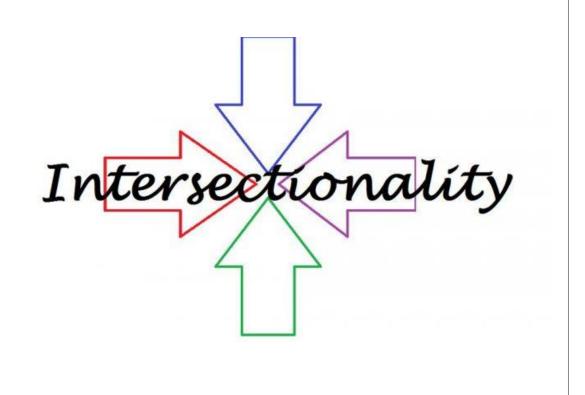
SEER-Medicare 2008-2013 molecular testing adenocarcinoma over 5000 pts.

- AA 14% White 26% Asian 33%
- 20% poorest census tract vs 30 % top income tract
- Testing rates for all improved over time
- Dual eligible Medicaid, race, poverty were significant
- Being seen at an NCI center powerful positive effect





## **Multilevel Approach - Challenge**


- It is not all about stage at diagnosis!
- Biobanks Majority samples are from non-Hispanic White patients
- Palliative care Hospice





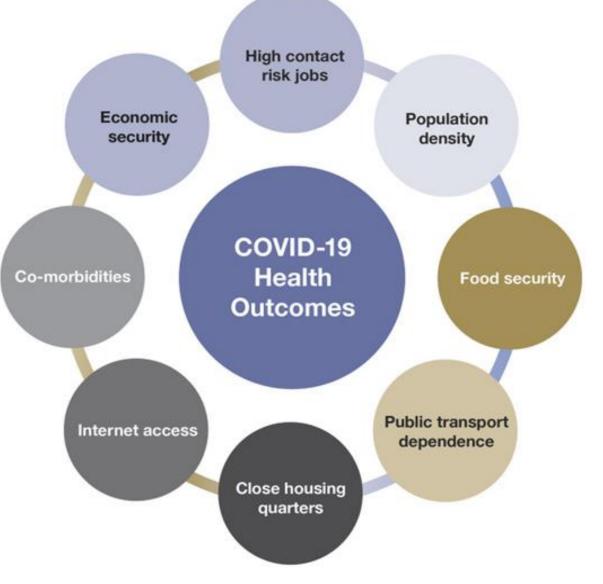
Polite, Blase N., et al. "Charting the future of cancer health disparities research: A position statement from the American Association for Cancer Research, the American Cancer Society, the American Society of Clinical Oncology, and the National Cancer Institute." CA: a cancer journal for clinicians (2017)





### Intersectionality Racism Different races are People of different disproportionately genders experience affected by classism racism differently **Sexism** Classism People of different genders are affected by classism in unique ways

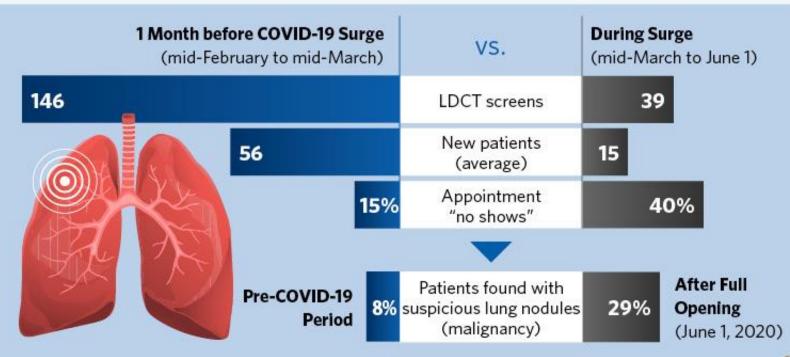
# The COVID-19 pandemic has disrupted the spectrum of cancer care, including delaying diagnoses and treatment and halting clinical trials






# **Widened Disparities Gap**

- Loss of Job/Economic Insecurity
- Population Density
- Public Transport Dependency
- High Contact Risk Jobs
- Comorbidities
- Digital Divide
- Fear
- Loss of Insurance






Farley JH, et al. Gynecol Oncol. 2020 l;158(1):25-31.

### COVID-19: Delays in Lung Cancer Screening Associated with Rise in Malignancy Rates at a Single Institution

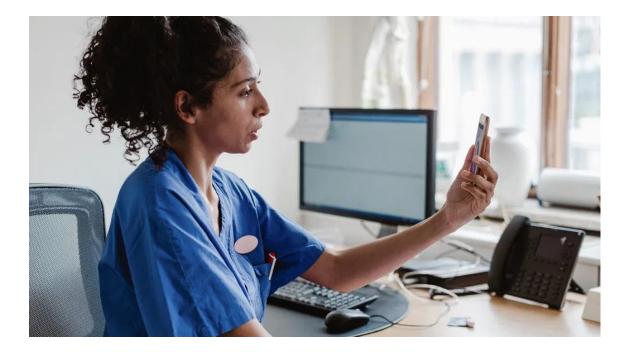
During COVID-19 restrictions, patient visits decreased for low-dose computed tomography (LDCT) lung cancer screening **2020 Timeline** / March 13 > **LDCT suspended** / May 5 > **phased reopening** / June 1 > **full opening** 



### journalacs.org

Van Haren RM, et al. J Am Coll Surg 2020. doi.org/10.1016/j.jamcollsurg.2020.12.002 Study conducted at University of Cincinnati College of Medicine

#### Steps taken to increase patient visits


- More patient education—why screening is safe
- Move screening from hospital to outpatient center
- Social distancing in waiting rooms, screening areas
- Space appointments further apart



Journal of the American College of Surgeons **Physician bias:** 

### "Poor compliance"

### "Lack of understanding" – Language Barrier?







# How to measure systemic racism and discrimination during crisis?





# Use YOUR privilege to create EQUITY

### Sidney Kimmel Cancer Center Jefferson Health<sub>®</sub> | NCI – designated

Until every cancer is cured

# **Disparities in Lung Cancer**

Screening, Diagnosis, Treatment and Outcomes

Nathaniel R. Evans III, MD, FACS, FCCP Professor of Surgery Director, Division of Thoracic and Esophageal Surgery @NateEvansMD

Sept 8, 2021

### **Disclosures**

None

# (well... I am a Thoracic Surgeon and Surgery is the most effective treatment for lung cancer)



Until every cancer is cured

### Lung Cancer

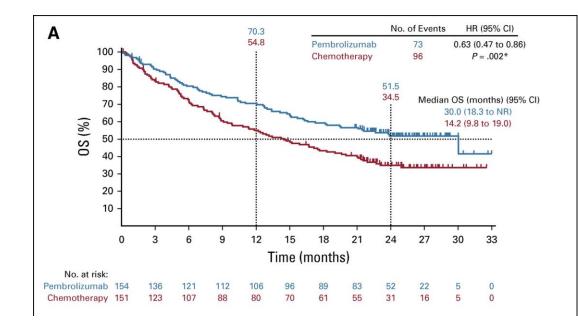
|                                                                                                                                         |                                                                    |                                    | Males | Females |                                                                                                                      |                                                                    |                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|-------|---------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|
| Prostate                                                                                                                                | 191,930                                                            | 21%                                |       |         | Breast                                                                                                               | 276,480                                                            | 30%                                                    |
| Lung & bronchus                                                                                                                         | 116,300                                                            | 13%                                |       |         | Lung & bronchus                                                                                                      | 112,520                                                            | 129                                                    |
| Colon & rectum                                                                                                                          | 78,300                                                             | 9%                                 |       | T       | Colon & rectum                                                                                                       | 69,650                                                             | 89                                                     |
| Urinary bladder                                                                                                                         | 62,100                                                             | 7%                                 |       |         | Uterine corpus                                                                                                       | 65,620                                                             | 79                                                     |
| Melanoma of the skin                                                                                                                    | 60,190                                                             | 7%                                 |       |         | Thyroid                                                                                                              | 40,170                                                             | 49                                                     |
| Kidney & renal pelvis                                                                                                                   | 45,520                                                             | 5%                                 |       |         | Melanoma of the skin                                                                                                 | 40,160                                                             | 49                                                     |
| Non-Hodgkin lymphoma                                                                                                                    | 42,380                                                             | 5%                                 |       |         | Non-Hodgkin lymphoma                                                                                                 | 34,860                                                             | 49                                                     |
| Oral cavity & pharynx                                                                                                                   | 38,380                                                             | 4%                                 |       |         | Kidney & renal pelvis                                                                                                | 28,230                                                             | 39                                                     |
| Leukemia                                                                                                                                | 35,470                                                             | 4%                                 |       |         | Pancreas                                                                                                             | 27,200                                                             | 35                                                     |
| Pancreas                                                                                                                                | 30,400                                                             | 3%                                 |       |         | Leukemia                                                                                                             | 25,060                                                             | 35                                                     |
| All Sites                                                                                                                               |                                                                    |                                    |       | _       |                                                                                                                      |                                                                    |                                                        |
| nated Deaths                                                                                                                            | 893,660                                                            | 100%                               |       |         | All Sites                                                                                                            | 912,930                                                            | 1005                                                   |
|                                                                                                                                         | 893,660                                                            | 100%                               | Males | Females |                                                                                                                      | 912,930                                                            | 1005                                                   |
|                                                                                                                                         | 893,660<br>                                                        | 23%                                | Majes | Females |                                                                                                                      | 912,930<br>63,220                                                  |                                                        |
| nated Deaths                                                                                                                            |                                                                    |                                    | Majes | Females |                                                                                                                      |                                                                    | 225                                                    |
| nated Deaths<br>Lung & bronchus                                                                                                         | 72,500                                                             | 23%                                | Majes | Females | Lung & bronchus                                                                                                      | 63,220                                                             | 225                                                    |
| nated Deaths<br>Lung & bronchus<br>Prostate                                                                                             | 72,500<br>33,330                                                   | 23%<br>10%                         | Majes | Females | Lung & bronchus<br>Breast                                                                                            | 63,220<br>42,170                                                   | 224<br>155<br>94                                       |
| nated Deaths<br>Lung & bronchus<br>Prostate<br>Colon & rectum                                                                           | 72,500<br>33,330<br>28,630                                         | 23%<br>10%<br>9%                   | Males | Females | Lung & bronchus<br>Breast<br>Colon & rectum                                                                          | 63,220<br>42,170<br>24,570                                         | 225<br>155<br>95<br>85                                 |
| Lung & bronchus<br>Prostate<br>Colon & rectum<br>Pancreas                                                                               | 72,500<br>33,330<br>28,630<br>24,640                               | 23%<br>10%<br>9%<br>8%             | Majes | Females | Lung & bronchus<br>Breast<br>Colon & rectum<br>Pancreas                                                              | 63,220<br>42,170<br>24,570<br>22,410                               | 229<br>159<br>99<br>89                                 |
| Lung & bronchus<br>Prostate<br>Colon & rectum<br>Pancreas<br>Liver & Intrahepatic bile duct<br>Leukemia                                 | 72,500<br>33,330<br>28,630<br>24,640<br>20,020                     | 23%<br>10%<br>9%<br>8%<br>6%       | Majes | 5       | Lung & bronchus<br>Breast<br>Colon & rectum<br>Pancreas<br>Ovary                                                     | 63,220<br>42,170<br>24,570<br>22,410<br>13,940                     | 229<br>159<br>99<br>89<br>59                           |
| nated Deaths<br>Lung & bronchus<br>Prostate<br>Colon & rectum<br>Pancreas<br>Liver & intrahepatic bile duct<br>Leukemia<br>Esophagus    | 72,500<br>33,330<br>28,630<br>24,640<br>20,020<br>13,420           | 23%<br>10%<br>9%<br>8%<br>6%<br>4% | Majes | 5       | Lung & bronchus<br>Breast<br>Colon & rectum<br>Pancreas<br>Ovary<br>Uterine corpus                                   | 63,220<br>42,170<br>24,570<br>22,410<br>13,940<br>12,590           | 1009<br>229<br>159<br>99<br>89<br>59<br>49<br>49<br>39 |
| Lung & bronchus<br>Prostate<br>Colon & rectum<br>Pancreas<br>Liver & Intrahepatic bile duct<br>Leukemia<br>Esophagus<br>Urinary biadder | 72,500<br>33,330<br>28,630<br>24,640<br>20,020<br>13,420<br>13,100 | 23%<br>10%<br>9%<br>8%<br>6%<br>4% | Majes | 5       | Lung & bronchus<br>Breast<br>Colon & rectum<br>Pancreas<br>Ovary<br>Uterine corpus<br>Liver & intrahepatic bile duct | 63,220<br>42,170<br>24,570<br>22,410<br>13,940<br>12,590<br>10,140 | 229<br>159<br>99<br>89<br>59<br>49                     |

All Sites

285,360

100%

All Sites


321,160

100%

Sidney Kimmel Cancer Center Jefferson Health. NCI - designated

Until every cancer is cured

### Checkpoint inhibitors/Immunotherapy are great!



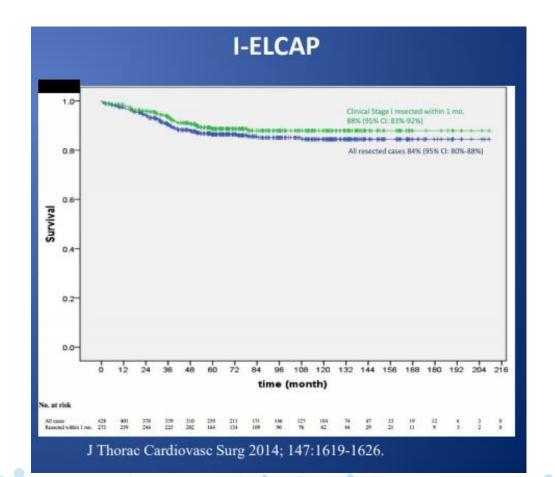


PATIENTS WITH ADVANCED LUNG CANCER THAN ANY OTHER IMMUNOTHERAPY


IT'S TRU. KEYTRUDA.

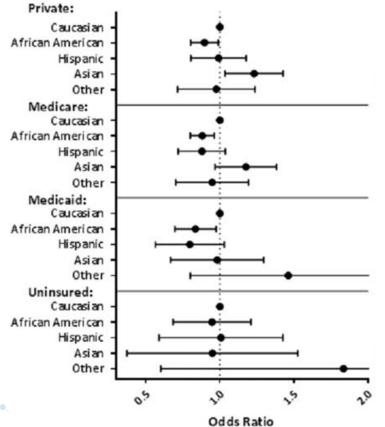
J Clin Oncol 37:537-546.




Until every cancer is cured

### Checkpoint inhibitors/Immunotherapy are great! But...




#### J Clin Oncol 37:537-546.





## Disparities in Immunotherapy Use

- NCBD Study
- ~500,000 patients
- 2004-2015



Sidney Kimmel Cancer Center Jefferson Health J Immunother 2019;42:55-64

### Surgery is a big part of the problem (and the solution)

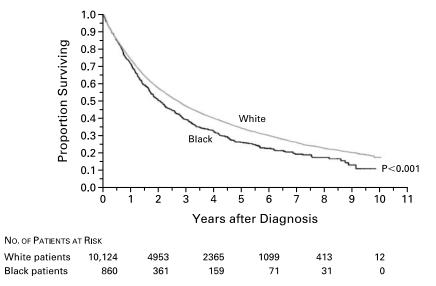
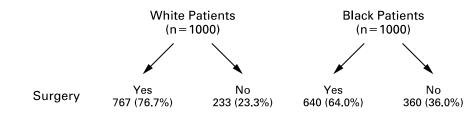
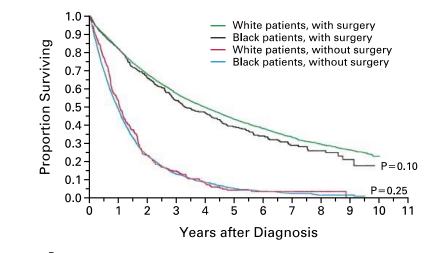





Figure 2. Survival of Medicare Beneficiaries 65 Years of Age or Older Who Were Given a Diagnosis of Stage I or II Non-Small-Cell Lung Cancer between 1985 and 1993, According to Race.



### Sidney Kimmel Cancer Center Jefferson Health

#### **RACIAL DIFFERENCES IN THE TREATMENT OF EARLY-STAGE LUNG CANCER**



| NO. OF PATIENTS AT R | ISK  |      |      |      |     |    |
|----------------------|------|------|------|------|-----|----|
| White, surgery       | 7763 | 4495 | 2255 | 1069 | 407 | 12 |
| Black, surgery       | 550  | 301  | 145  | 69   | 30  | 0  |
| White, no surgery    | 2361 | 458  | 110  | 30   | 6   | 0  |
| Black, no surgery    | 310  | 60   | 14   | 2    | 1   | 0  |

Figure 1. Survival of Medicare Beneficiaries 65 Years of Age or Older Who Were Given a Diagnosis of Stage I or II Non-Small-Cell Lung Cancer between 1985 and 1993, According to Treatment and Race.

N Engl J Med 1999;341:1198-205

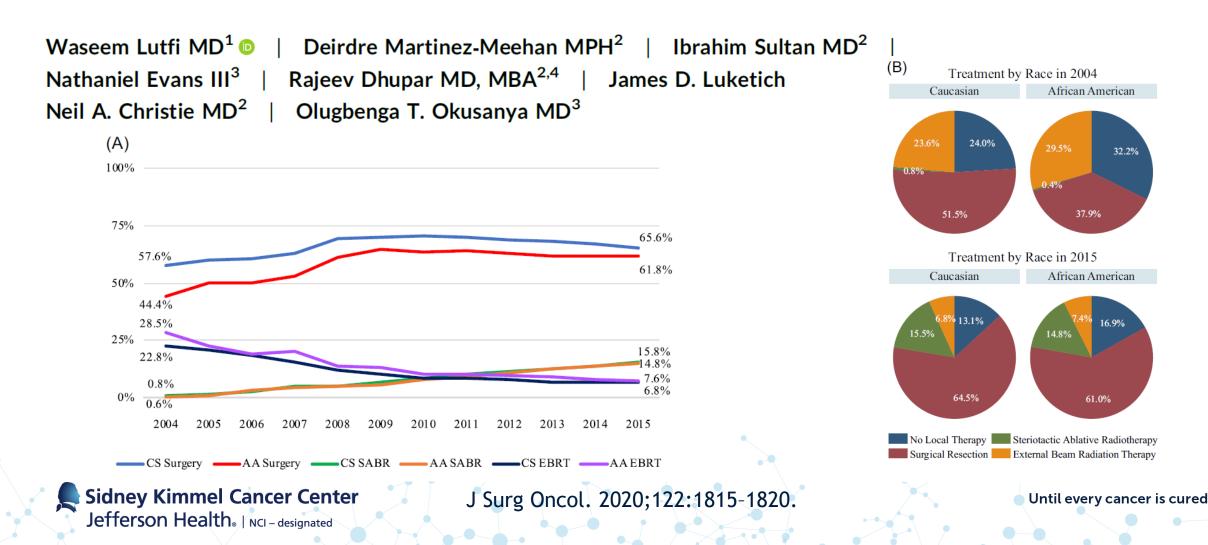
### Guideline concordant care

#### **Disparities in Receiving Guideline-Concordant Treatment for Lung Cancer in the United States**

Erik F. Blom<sup>1,2\*</sup>, Kevin ten Haaf<sup>1</sup>, Douglas A. Arenberg<sup>2</sup>, and Harry J. de Koning<sup>1</sup>

<sup>1</sup>Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and <sup>2</sup>Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan

ORCID ID: 0000-0002-2016-5668 (E.F.B.).


"Many patients with lung cancer in the United States received no treatment or less intensive treatment than recommended. Particularly, elderly patients with lung cancer and non-Hispanic black patients are less likely to receive guideline-concordant treatment."

Ann Am Thorac Soc Vol 17, No 2, pp 186–194, Feb 2020

Sidney Kimmel Cancer Center Jefferson Health。 | NCI – designated



# Racial disparities in local therapy for early stage non-small-cell lung cancer



### The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 4, 2011

VOL. 365 NO. 5

#### Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening

The National Lung Screening Trial Research Team\*



#### N Engl J Med 2011;365:395-409

Sidney Kimmel Cancer Center Jefferson Health

Table 1. Selected Baseline Characteristics of the Study Participants.\* Low-Dose CT Group Radiography Group Characteristic (N = 26,722)(N = 26,732)number (percent) Age at randomization <55 yr† 2 (<0.1) 4 (<0.1) 55-59 yr 11,440 (42.8) 11,420 (42.7) 60-64 yr 8,170 (30.6) 8,198 (30.7) 4,756 (17.8) 4,762 (17.8) 65-69 yr 70-74 yr 2,353 (8.8) 2,345 (8.8) ≥75 yr† 1 (<0.1) 3 (<0.1) Sex Male 15,762 (59.0) 15,770 (59.0) Female 10,952 (41.0) 10,970 (41.0) Race or ethnic group White 24,260 (90.8) 24,289 (90.9) ,195 (1.5 Васк 1,181 (4.4) Asian 559 (2.1) 536 (2.0) American Indian or Alaska 92 (0.3) 98 (0.4) Native Native Hawaiian or other 91 (0.3) 102 (0.4) Pacific Islander More than one race or ethnic 333 (1.2) 346 (1.3) group Data missing 163 (0.6) 209 (0.8) Hispanic ethnic group: Hispanic or Latino 479 (1.8) 456 (1.7) Neither Hispanic nor Latino 26,079 (97.6) 26,039 (97.4) Data missing 164 (0.6) 237 (0.9) Smoking status 12,900 (48.3) Current 12,862 (48.1) 13,860 (51.9) 13,832 (51.7) Former

### Inadequate risk assessment tools

### Research Letter | Oncology Association of Race With Lung Cancer Risk Among Adults Undergoing Lung Cancer Screening

Christine S. Shusted, MPH; Nathaniel R. Evans, MD; Hee-Soon Juon, MSN, PhD; Gregory C. Kane, MD; Julie A. Barta, MD

Studied the validity of well-established cancer risk calculators

<u>Common risk calculators failed to predict lung cancer in African</u> <u>American patients</u>

### *JAMA Network Open*, *4*(4), e214509

Sidney Kimmel Cancer Center Jefferson Health。 | NCI – designated

## Disparities in Lung Cancer Screening

- Black patients have higher risk of cancer per pack year smoked
- Black patients are less likely to be "eligible" for lung cancer screening
- Black patients less likely to be referred for screening or to complete follow-up



### **Increase Lung Cancer Screening in Vulnerable Populations**

### • Support

 Bristol Myers Squibb Foundation support for a 5-year initiative to enhance lung cancer screening through the Jefferson Health System

### • Aims

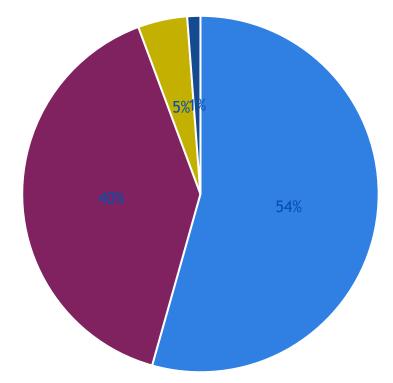
- Engage a health system, health plans, patients, and other stakeholders in a "learning community" dedicated to increasing lung cancer screening in vulnerable populations
- Develop and test an outreach intervention strategy that would identify and address barriers to population use of a centralized screening program

Lung

Carcer

sparities

- Catalyze support for intervention implementation
- Evaluate learning community engagement and implementation processes and outcomes


Sidney Kimmel Cancer Center Jefferson Health Lung Cancer Learning Community LC2 Jane and Respira

Jane and Leonard Korman Respiratory Institute at Jefferson

## TJUH Lung Cancer Screening program

- 2018-2020
- 1365 patients screened
- 33 lung cancers identified
- 21/33 were early stage

#### TJUH Lung Cancer Screening Program



• White • Black • Asian • Other

Sidney Kimmel Cancer Center Jefferson Health, NCI – designated

## What can be done

- <u>Acknowledgment</u>
  - Disparities persist
- Education
  - Patients and Providers
- Specialization/Centralization
  - "Low quality" care disproportionally effects minority patients
- <u>Representation</u>
  - Diverse, culturally competent care teams







Olugbanga Okusanya, MD



Nathaniel Evans, MD



Tyler Grenda, MD



Scott Cowan, MD

#### Sidney Kimmel Cancer Center Jefferson Health. NCI - designated

# Thank You



Sung Whang, DNP

## Sidney Kimmel Cancer Center Jefferson Health | NCI - designated