Latest Approaches to Treating Lymphoma and Myeloma with CAR T-Cell Therapy Strategies for Integrating Into Practice

Friday, September 13, 2019

Time: 6:15 AM – 7:45 AM Grand Ballroom, Level 4, A/B/D/E

This activity is jointly provided by The Postgraduate Institute for Medicine (PIM) and Bio Ascend.

Ongoing Efforts to Improve the Safety of CAR T Cell Therapy: Cytokine Release Syndrome and Neurotoxicity

Bianca D. Santomasso MD, PhD Memorial Sloan Kettering Cancer Center September 13, 2019

Disclosures

Commercial Interest	Nature of Relationship
Juno Therapeutics/Celgene	Consulting, Advisory Board
Kite Pharma/Gilead	Consulting, Advisory Board
Novartis	Consulting

CAR-T Cell Therapy: Current State of the Art

- ≥ 50% of patients with refractory B cell malignancies show durable complete responses to CD19-CAR T cell therapy
- Promising responses in patients with MM treated with BCMA-CAR T
- Associated with unique and prominent toxicities, boxed warnings on FDA approved products:
 - Cytokine Release Syndrome
 - Neurotoxicity or Immune Cell Associated Neurotoxicity Syndrome (ICANS)
 - Patients may require ICU management
 - Fatalities have occurred
 - REMS program mandated by FDA for approved products
 - Multi-departmental infrastructure management is critical

Clinical Case

54 year old man with relapsed refractory DLBCL

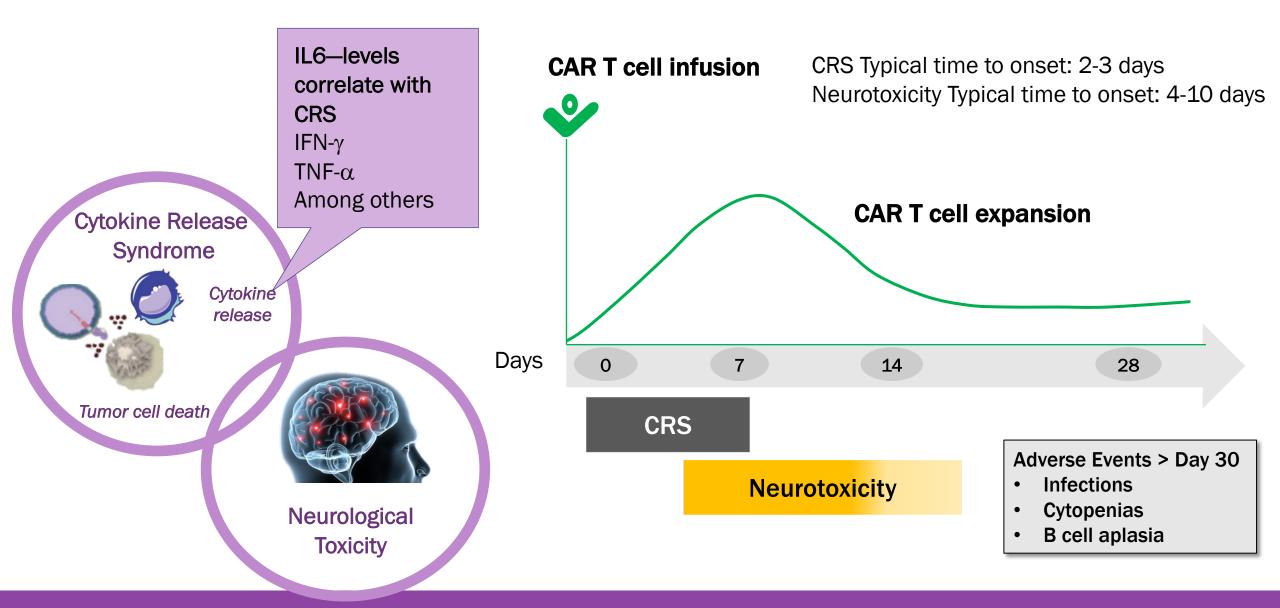
- Diagnosed with DLBCL of left face/humerus
- DA R-EPOCH x 6 cycles completed 6/2013→PET CR
- Disease relapse 12/2015 s/p DHAX x 3 cycles followed by autologous HSCT
- Recurrence of disease largely in bone
- Fly/Cy conditioning initially delayed due to new PNA treated with antibiotics.
- Day 1: Axicabtagene ciloleucel
- Day 3: Fevers start, antibiotics started
- Day 4: Higher fever 39.5 °C and tachycardia to 120s. Received IV fluid bolus for hypotension →increased 02 requirement. Headache. Mild confusion only with fever spikes. Mental status and neurologic exam normal. Grade 2 CRS.
- Tocilizumab administered for Grade 2 CRS \rightarrow Fever, tachycardia, and hypoxia resolved

Clinical Case

• **Day 6**: Perseverative/stuttering speech, bilateral arm tremor, inattention, slight lethargy with eyes spontaneously closing after several seconds if not stimulated. CRP trending down.

HCT negative. No seizures on EEG

Started dexamethasone 10 mg x 1


Transferred to ICU

- Transient word finding difficulty → nonverbal while awake. Not following commands. Depressed level of consciousness arousable only to persistent tactile stimulus.
- Dexamethasone 20 mg x 1, followed by dexamethasone 10 mg q 6h.
- Day 7: More awake, global aphasia and myoclonus. Lumbar puncture: Opening pressure 20 mm Hg, normal cell count, elevated protein
- Hours later mental status markedly improved
- Steroids tapered rapidly over 2 days : 6 mg q 6h, 6 mg q 12h then stopped
- Continued to have mild word finding difficulties and confusion over next 4 days but was ambulatory.
- Returned to neurologic baseline day 12

Clinical Case Points

- Tocilizumab +/- corticosteroids can rapidly resolve most cases of CRS
- Neurotoxicity can occur after CRS is completely resolved
- Tocilizumab does not resolve severe neurotoxicity
- Corticosteroids are used for management of severe neurotoxicity although some cases resolve without them
- Other medical issues that may increase risk and/or interfere with assessment and management of CRS and neurotoxicity

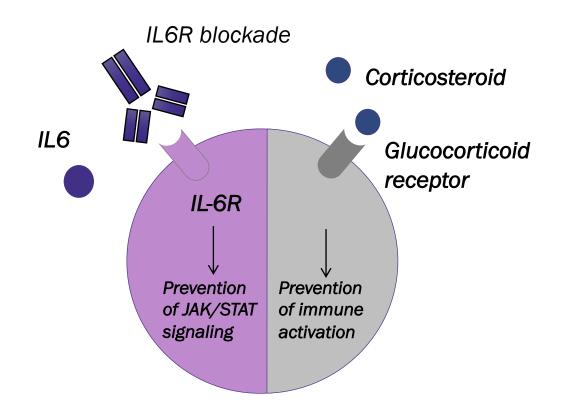
CAR-T Toxicities Timeline

Common Toxicities of CAR T cells

Cytokine Release Syndrome

Fever Hypotension Capillary leak Respiratory insufficiency Coagulopathy/DIC Hyperferritinemia/MAS Multi-organ failure

Symptoms rapidly resolve with IL-6R blockade


Neurotoxicity

Global encephalopathy Aphasia Tremor Obtundation Seizure, seizure-like activity Hallucinations (Rapid Onset Cerebral Edema) "Immune Effector Cell Associated Neurotoxicity Syndrome (ICANS)*"

Severe symptoms do not resolve with IL-6R blockade

Treatment of CRS

- IL6 Inhibition
 - Tocilizumab (IL6R blockade): Approved for management of CAR T induced CRS in the US and EU
- Corticosteroids
 - Suppress inflammatory immune responses
 - Dexamethasone 10 mg q 6h or methylprednisolone 1 mg/kg q 12h followed by rapid taper

Adapted from:

Maude SL et al. Cancer J 2014 (2): 119-122; Bonifat CL et al. Oncolytics 2016

CRS and ICANS in CD19 CAR T cell Trials

CAR Product		N	Gr ≥3 CRS	Gr ≥3 ICANS	Fatal cerebral edema or Gr5 ICANS?
19-28z (MSKCC Phase 1) ¹	Adult B-ALL	53	26%	42%	No
19-41BBz (CTL019-Upenn/CHOP) Peds B-ALL) ²	Peds B-ALL	75	48%	15%	Yes*
19-41BBz (JCAR017-FHRC) ³		133	12%	21%	Yes
B-ALL	B-ALL	47		30%	-
NHL	NHL	62		13%	-
CLL	CLL	24		25%	-
19-28z ZUMA-1 Kite Adult NHL ⁴	Adult NHL	111	13%	28%	No
SMS cohort 3	Adult NHL	38	3%	41%	Yes
19-28z JCAR15 ROCKET Juno ⁶	Adult B-ALL	38	21%	52%	Yes
19-41BB JULIET Novartis ⁷	Adult NHL	111	22%	12%	No
19-41BB JCAR17 TRANSCEND Juno ⁸	Adult NHL	114	1%	13%	No

Commercial CAR Product	CRS All Gr	Gr≥3 CRS	NTX All Gr	Gr ≥3 NTX
Axicabtagene ciloleucel (Adults)	93%	23%	87%	31%
Tisagenlecleucel (Pediatrics/Young Adults)	77%	22%	58%	18%

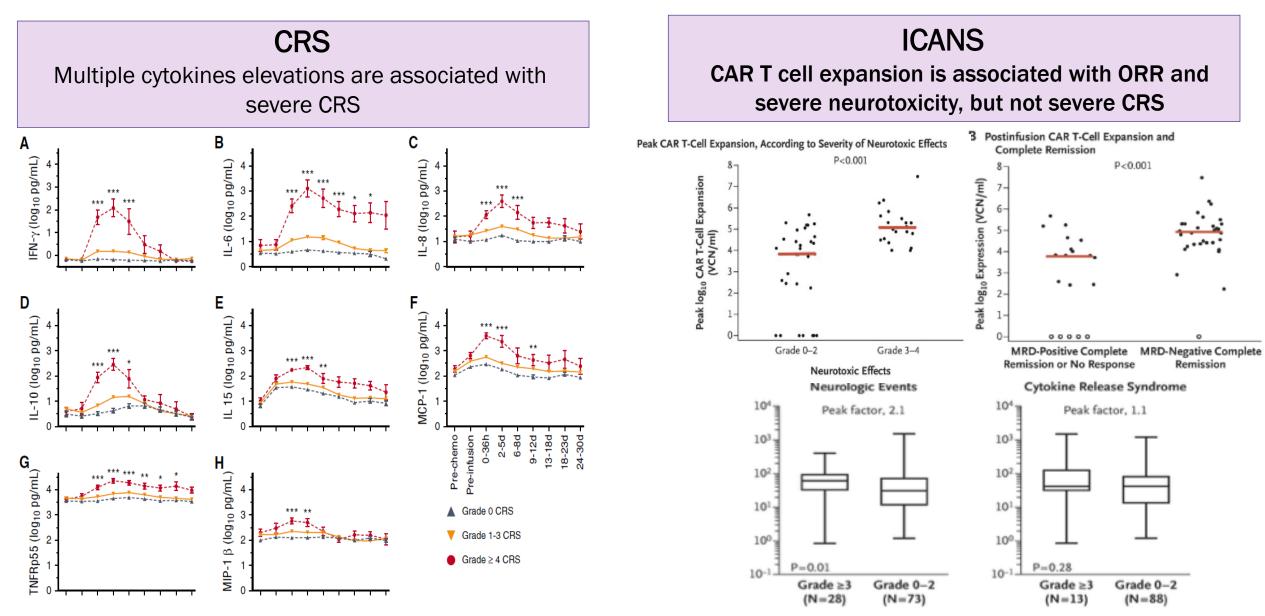
¹Park J, at al. N Engl J Med. 2018;378:449-459; ²Maude SL, et al. N Engl J Med. 2018;378:439-448; ³Turtle C et al. ASCO Annual Meeting 2017; ⁴Neelapu et al. N Engl J Med 2017 **377**(26): 2531-2544; Locke et al. ASCO 2018; ⁶D'Angelo et al. SITC Annual Meeting 2017; ⁷Shuster et al. N Engl J Med 2019;380:45-56; ⁸Abramson, et al. ASCO 2018 (abstr 7505) * Intracerebral hemorrhage

Anti-BCMA CAR T-Cell Trials

Company/Group	Special Sauce	Ν	Safety	Response	PFS
bb2121		33	76% CRS (6% G3); 42% neurotoxicity (1pt (3%) G4)	85% ORR	11.8 mo
LEGEND2		57	90% CRS (7% ≥ G3); neurotoxicity 1pt G1	88% ORR	15 mo
Bluebird BB21217	PIK inhibitor co-culture	12	67% CRS (8% G3), 25% neurotox (8% G4)	83% ORR, 25% CR, 4/4 responders MRD neg	NA
JCARH125	Preselecting CD4/ CD8 ratio	44	9% CRS wirh 1 G4, 7% neurotox	82% ORR, 27% CR	NA
Fred Hutch FCARH143	1:1 ratio of CD4+:CD8+ cells	11, incl 8/11 HR, 5/11 with prior allo	10/12 CRS, 0 G3	100% ORR, 4/11 CR	NA
MCARH171		11	55% CRS, no G3, 9% 23 neurotox	64% ORR	NA
LCAR-B38M	Bi-epitope targeting of BCMA, also CD38 targeting	57	90 % CRS (7% G4), 1% neurotox	88% ORR, 74% CR, 68% MRD neg	15 mo (24 for MRD-)
Jiangsu Institute of Hematology, Shanghai Unicar	Tandem CD19 and BCMA CAR infusion	10	100% CRS (0 G3), 0 neurotox	100% ORR, 70% CR, 60% MRD-	NA
Poseida P-BCMA-101	Centyrin (less immunogenic), higher TSCM proportion	23 (15)	10% CRS (0 G3), 5% neurotox (G3)	63% ORR, (100% at highest dose)	NA
Wenzhou Medical University, Wenzhou, China/ CARsgen CT053		14	38% CRS, (7% G3)	100% ORR, 36% CR	NA
HRAIN Biotechnology, ie c Shanghai, China		20	45% CRS, (5% G3), 0 neurotox (?1 G1 seizure)	85% ORR, 45%	15 mo

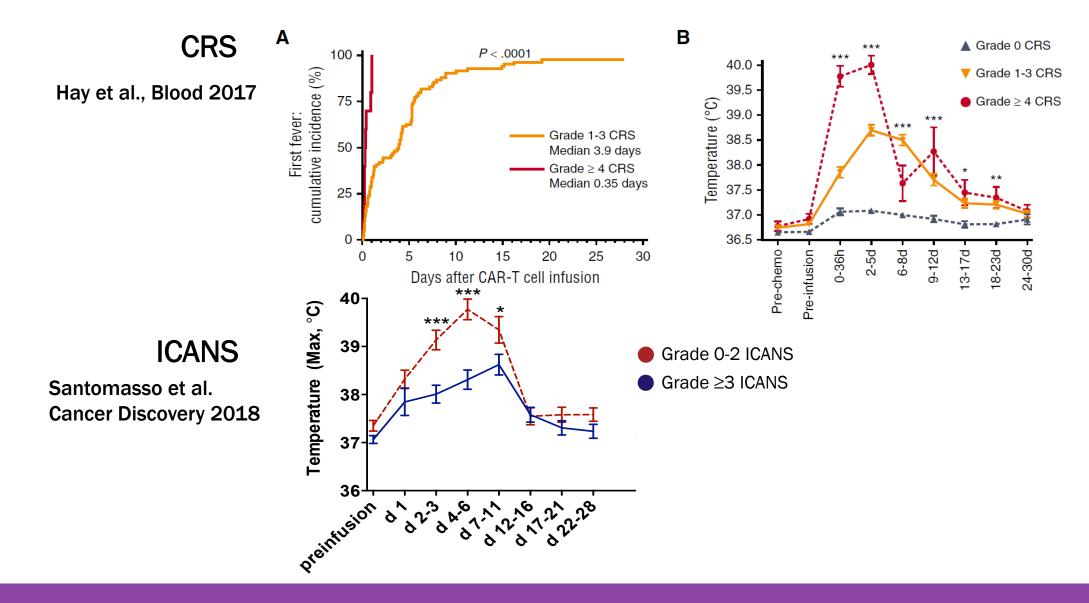
Factors Associated With Toxicity After CAR T-Cell Therapy

Host/Tumor Factors

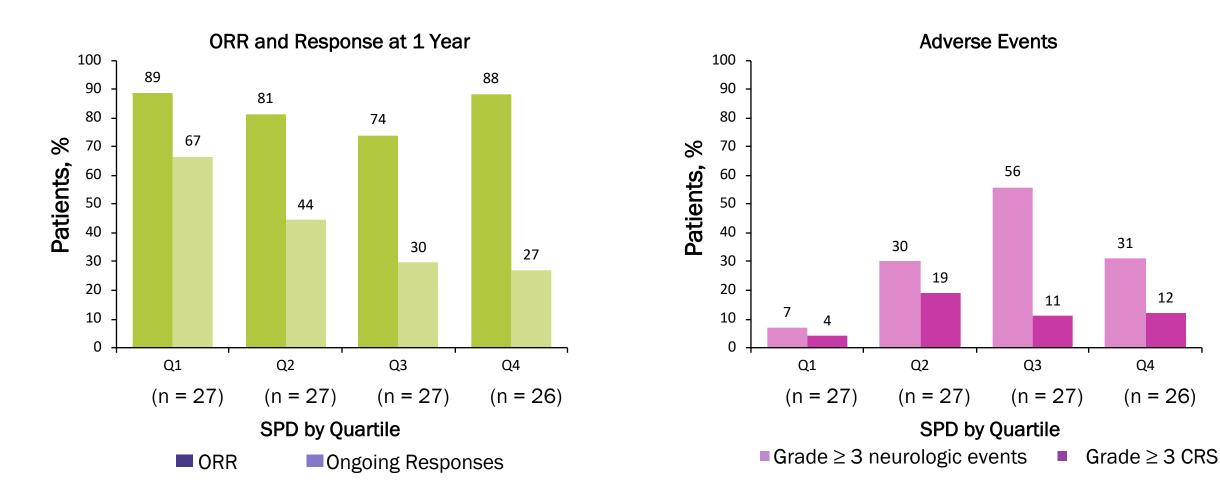

- Type of malignancy (ALL > DLBCL>MM)
- Tumor burden
- Baseline inflammatory state
- Thrombocytopenia before
 lymphodepletion (ALL)

Therapy-Related Factors

- Lymphodepleting/conditioning therapy
- CAR T-cell dose
- Peak blood CAR T-cell levels
- CAR T-cell design (CD28 > 4-1BB)
- Early and peak levels of certain cytokines
- Endothelial activation
- Prior severe CRS → increased risk of severe ICANs

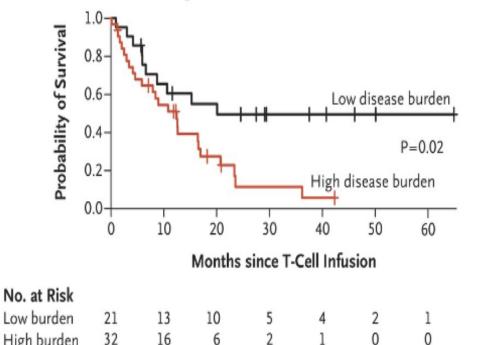

Maude SL, et al. N Engl J Med. 2014; Davila ML, et al. Sci Transl Med. 2014; Lee DW, et al. Lancet. 2015; Teachey DT, et al. Cancer Discov. 2016; Turtle CJ, et al. J Clin Invest. 2016; Turtle CJ, et al. Sci Transl Med. 2016; Gust J, et al. Cancer Discov. 2017; Hay KA, et al. Blood. 2017; Neelapu SS, et al. N Engl J Med. 2017; Maude SL, et al. N Eng J Med. 2018; Park JH, et al. N Engl J Med. 2018; Santomasso BD, et al. Cancer Discov. 2017.

Kinetics and biomarkers of severe toxicity: Cytokine Levels and CAR expansion



Hay KA, et al. Blood. 2017, 130:2295; Park JH, et al. N Engl J Med. 2018; 378: 449; Neelapu SS, et al. NEJM 2017; 377:2531

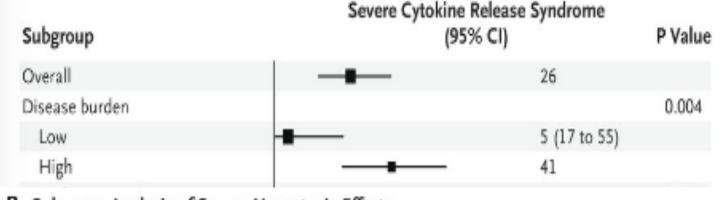
Earlier fever onset with higher temperature and longer duration is associated with severe CRS and ICANS


ZUMA-1 Predictors: Baseline Tumor Burden Efficacy and Safety

CRS, cytokine release syndrome; Q, quartile; SPD, sum of product diameters. Locke FL, et al. *J Clin Oncol*. 2018;36(suppl, abstr):3039.

MSK Phase 1 19-28z CAR for R/R B-ALL Efficacy and Safety

B Overall Survival, According to Disease Burden *


6

16

32

High burden

A Subgroup Analysis of Severe Cytokine Release Syndrome

Subgroup Analysis of Severe Neurotoxic Effects В

*Disease burden determined bone marrow biopsy prior to lymphodepletion and CAR; Low disease \leq 5% bone marrow blasts Park JH, et al. N Engl J Med. 2018 378(5): 449-459

0

Need for Harmonization of CRS & Neurotoxicity Grading

- Variation in grading and assessment of CAR T toxicities across clinical trials and different institutions: Leads to difficulties in safety comparisons of different products
 - Hinders the ability to develop optimal strategies for management
 - Examples of different grading systems used: CTCAE, Lee criteria, UPenn criteria, MSKCC grading, CARTOX
- Goals:
 - New definitions that are objective, easy to use, reproducible, and accurate for immune effector cell (IEC) therapy
 - Easy to use by all healthcare providers involved in patient care
 - Allow rapid and dynamic assessment
 - Building block for developing management strategies
 - To be used for CAR T cells and all other IEC across clinical trials and after approval in the clinical setting

Biology of Blood and Marrow Transplantation

journal homepage: www.bbmt.org

Guideline

ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells

Daniel W. Lee^{1,#}, Bianca D. Santomasso^{2,#}, Frederick L. Locke³, Armin Ghobadi⁴, Cameron J. Turtle⁵, Jennifer N. Brudno⁶, Marcela V. Maus⁷, Jae H. Park⁸, Elena Mead⁹, Steven Pavletic⁶, William Y. Go¹⁰, Lamis Eldjerou¹¹, Rebecca A. Gardner¹², Noelle Frey¹³, Kevin J. Curran¹⁴, Karl Peggs¹⁵, Marcelo Pasquini¹⁶, John F. DiPersio⁴, Marcel R.M. van den Brink⁸, Krishna V. Komanduri¹⁷, Stephan A. Grupp^{18,*}, Sattva S. Neelapu^{19,**}

> ASTCT Workshop June 20-21, 2018 Washington, DC

ASTCT: American Society for Transplantation and Cellular Therapy

ASTCT Consensus Grading for Cytokine Release Syndrome Associated With Immune Effector Cells

CRS Parameter	Grade 1	Grade 2	Grade 3	Grade 4	
Fever*	Temperature ≥38°C	Temperature ≥38°C	Temperature ≥38°C	Temperature ≥38°C	
			With		
Hypotension	None	Not requiring vasopressors	Requiring a vasopressor with or without vasopressin	Requiring multiple vasopressors (excluding vasopressin)	
			And/or [†]		
Нурохіа	None	Requiring low-flow nasal cannula [‡] or blow-by	Requiring high-flow nasal can- nula [‡] , facemask, nonrebreather mask, or Venturi mask	Requiring positive pressure (eg, CPAP, BiPAP, intubation and mechanical ventilation)	

Organ toxicities associated with CRS may be graded according to CTCAE v5.0 but they do not influence CRS grading.

* Fever is defined as temperature \geq 38°C not attributable to any other cause. In patients who have CRS then receive antipyretic or anticytokine therapy such as tocilizumab or steroids, fever is no longer required to grade subsequent CRS severity. In this case, CRS grading is driven by hypotension and/or hypoxia.

[†] CRS grade is determined by the more severe event: hypotension or hypoxia not attributable to any other cause. For example, a patient with temperature of 39.5° C, hypotension requiring 1 vasopressor, and hypoxia requiring low-flow nasal cannula is classified as grade 3 CRS.

^{\ddagger} Low-flow nasal cannula is defined as oxygen delivered at \leq 6 L/minute. Low flow also includes blow-by oxygen delivery, sometimes used in pediatrics. High-flow nasal cannula is defined as oxygen delivered at >6 L/minute.

ASTCT: American Society for Transplantation and Cellular Therapy

Neurologic and psychiatric adverse reactions reported with FDA-approved CAR T products

Tisagenlecleucel

Headache: incl. migraine

Encephalopathy: incl. cognitive disorder, confusional state, depressed level of consciousness, disturbance in attention, lethargy, mental status changes, somnolence, and automatism

Delirium: incl. agitation, hallucination, hallucination visual, irritability, restlessness

Anxiety

Sleep disorder: incl. insomnia, and nightmare

Axicabtagene ciloleucel

Encephalopathy: incl. cognitive disorder, confusional state, depressed level of consciousness, disturbance in attention, hypersomnia, leukoencephalopathy, memory impairment, mental status changes, paranoia, somnolence, stupor

Headache

Tremor

Dizziness: incl. dizziness, presyncope, syncope

Aphasia: incl. aphasia, dysphasia

Delirium: incl. agitation, delirium, delusion, disorientation, hallucination, hyperactivity, irritability, restlessness

Motor dysfunction: incl. muscle spasms, Muscular weakness

Ataxia

Seizure

Dyscalculia

Myoclonus

CTCAE v4.03 Grading of Neurotoxicity terms Many terms and grading subjective and relying on ADL

Symptom/Sign	Grade 1	Grade 2	Grade 3	Grade 4
Level of consciousness	Mild drowsiness / sleepiness	Moderate somnolence, limiting instrumental ADL	Obtundation or stupor	Life-threatening needing urgent intervention/ mechanical ventilation
Orientation / Confusion	Mild disorientation / confusion	Moderate disorientation, limiting instrumental ADL	Severe disorientation, limiting self- care ADL	Life-threatening needing urgent intervention/ mechanical ventilation
Encephalopathy	Mild limiting of ADL	Limiting instrumental ADL	Limiting self-care ADL	Life-threatening needing urgent intervention/ mechanical ventilation
Speech	Dysphasia not impairing ability to communicate	Dysphasia with moderate impairment in ability to communicate spontaneously	Severe receptive or expressive dysphasia, impairing ability to read, write or communicate	-
Seizure	Brief partial seizure; no loss of consciousness	Brief generalized seizure	Multiple seizures despite medical intervention	Life-threatening; prolonged repetitive seizures
Tremors	Mild symptoms	Moderate symptoms; limiting instrumental ADL	Severe symptoms; limiting self-care ADL	-
Motor weakness	Symptomatic; perceived by patient but not evident on physical exam	Symptomatic; evident on physical exam; limiting instrumental ADL	Limiting self-care ADL, disabling	-
Bowel or bladder incontinence	-	-	Intervention indicated; limiting self care ADL	-
Cerebral edema	-	-	-	Life-threatening; urgent intervention indicated

ASTCT Consensus Encephalopathy Assessment Tool

Immune-Effector Cell-Associated Encephalopathy (ICE) Tool

- Orientation: Orientation to year, month, city, hospital: 4 points
- Naming: Name 3 objects (e.g., point to clock, pen, button): 3 points
- Following commands: (e.g., Show me 2 fingers or Close your eyes and stick out your tongue): 1 point
- Writing: Ability to write a standard sentence (e.g., Our national bird is the bald eagle): 1 point
- Attention: Count backwards from 100 by ten: 1 point

First symptoms: verbal perseveration, expressive aphasia, especially difficulty naming, stuttering speech, headache

Expressive aphasia is the most characteristic feature of sNTX 21/22 patients First severe symptom in 19/22 patients

Santomasso et al. *Cancer Discovery* 2018

Score 10: No impairment

Encephalopathy assessment for children <12 is performed using CAPD Pediatric delirium scale

ASTCT Consensus Grading for Neurologic Toxicity Associated With Immune Effector Cells

Neurotoxicity Domain	Grade 1	Grade 2	Grade 3	Grade 4
ICE score*	7-9	3-6	0-2	0 (patient is unarousable and unable to perform ICE)
Depressed level of consciousness [†]	Awakens spontaneously	Awakens to voice	Awakens only to tactile stimulus	Patient is unarousable or requires vigorous or repetitive tactile stimuli to arouse. Stupor or coma
Seizure	N/A	N/A	Any clinical seizure focal or gen- eralized that resolves rapidly or nonconvulsive seizures on EEG that resolve with intervention	Life-threatening prolonged seizure (>5 min); or Repetitive clinical or electrical seizures without return to baseline in between
Motor findings [‡]	N/A	N/A	N/A	Deep focal motor weakness such as hemiparesis or paraparesis
Elevated ICP/ cerebral edema	N/A	N/A	Focal/local edema on neuroimaging [§]	Diffuse cerebral edema on neuroimaging; decere- brate or decorticate posturing; or cranial nerve VI palsy; or papilledema; or Cushing's triad

ICANS grade is determined by the most severe event (ICE score, level of consciousness, seizure, motor findings, raised ICP/cerebral edema) not attributable to any other cause; for example, a patient with an ICE score of 3 who has a generalized seizure is classified as grade 3 ICANS. N/A indicates not applicable.

* A patient with an ICE score of 0 may be classified as grade 3 ICANS if awake with global aphasia, but a patient with an ICE score of 0 may be classified as grade 4 ICANS if unarousable.

[†] Depressed level of consciousness should be attributable to no other cause (eg, no sedating medication).

[‡] Tremors and myoclonus associated with immune effector cell therapies may be graded according to CTCAE v5.0, but they do not influence ICANS grading.

[§] Intracranial hemorrhage with or without associated edema is not considered a neurotoxicity feature and is excluded from ICANS grading. It may be graded according to CTCAE v5.0.

Early toxicity grading systems vs. ASTCT grading

CTCAE Grading	CARTOX ¹	ASTCT Grading ²
Multiple AE terms used	CARTOX 10 (ASTCT ICE score builds on this)	Five neurotoxicity domains – ICE score, level of consciousness, seizures, motor weakness, signs of raised ICP/cerebral edema
Grade based on subjective terms or assessment of ADLs (instrumental or self-care)		ADLs not taken into account
Grading subjective (mild, moderate, severe)	Relies on LP opening pressure and papilledema for grading. May be unreliable	Grading objective based on ICE score and other objective criteria
Seizures can be grade 1-4		Seizures are either grades 3 or 4
Electrical seizures are not considered		Electrical seizures are considered
Motor weakness can be grades 1-3		Motor weakness is grade 4

¹Neelapu SS et al. Nat Rev Clin Oncol 2018 **15**(1): 47-62; Lee DW and Santomasso BD et al. Biol Blood Marrow Transplant 2018

Management of CRS—NCCN Guidelines NCCN: National Comprehensive Cancer Network

CRS Grade	Anti-IL-6 Therapy	Corticosteroids ^{h,i}	Additional Supportive Care
Grade 1 Fever (≥ 38°C)	For prolonged CRS (>3 days) in patients with significant symptoms and/ or comorbidities, consider tocilizumab as per Grade 2	N/A	 Empiric broad-spectrum antibiotics, consider granulocyte colony-stimulating factor (G-CSF) if neutropenic Maintenance IV fluids for hydration Symptomatic management of organ toxicities
Grade 2 Fever with hypotension not requiring vasopressors and/or hypoxia ^f requiring low-flow nasal cannula ^g or blow-by	Tocilizumab 8 mg/kg IV over 1 hour (not to exceed 800 mg/dose) ^h . Repeat in 8 hours if no improvement; no more than 3 doses in 24 hours, with a maximum of 4 doses total	For persistent refractory hypotension after 1–2 doses of anti-IL-6 therapy: Dexamethasone 10 mg IV every 6 hours (or equivalent) ^j	 IV fluid bolus as needed For persistent refractory hypotension after two fluid boluses and anti-IL-6 therapy: Start vasopressors, consider transfer to intensive care unit (ICU), consider echocardiogram, and initiate other methods of hemodynamic monitoring Manage per Grade 3 if no improvement within 24 hours after starting anti-IL-6 therapy Symptomatic management of organ toxicities
Grade 3 Fever with hypotension requiring a vasopressor with or without vasopressin and/or hypoxia requiring high-flow cannula ⁹ , face mask, nonrebreather mask, or Venturi mask.	Anti-IL-6 therapy as per Grade 2 ^h if maximum dose not reached within 24-hour period	Dexamethasone 10 mg IV every 6 hours (or equivalent) ^j . If refractory, manage as grade 4	 Transfer to ICU, obtain echocardiogram, and perform hemodynamic monitoring Supplemental oxygen IV fluid bolus and vasopressors as needed. Symptomatic management of organ toxicities
Grade 4 Fever with hypotension requiring multiple vasopressors (excluding vasopressin) and/or hypoxia requiring positive pressure (eg, CPAP, BiPAP, intubation and mechanical ventilation).	Anti-IL-6 therapy as per Grade 2 ^h if maximum dose not reached within 24-hour period	Dexamethasone 10 mg IV every 6 hours (or equivalent) ^j . If refractory, consider methylprednisolone 1000 mg/day IV ^k	 ICU care and hemodynamic monitoring Mechanical ventilation as needed IV fluid bolus and vasopressors as needed Symptomatic management of organ toxicities

Management of ICANS—NCCN Guidelines

- Baseline exam, CAR "team" follows, neurologic assessment to include ICE and motor exam q shift
- MRI brain (or brain CT if MRI not feasible) for ≥ grade 2 ICANS
- Neurologic consultation at first sign of ICANS
- EEG for ≥ grade 2 ICANS to evaluate for seizures
- Consider LP for \geq grade 2 ICANS
- Aspiration precautions, IV medications
- Caution when prescribing medications that can cause central nervous system (CNS) depression (aside from those needed for seizure prophylaxis/treatment)

Treatment by Grade	No Concurrent CRS	I
Grade 1	Supportive care	
Grade 2	 Supportive care Dexamethasone 10 mg IV x 1. Can repeat every 6 hours or methylprednisolone 1 mg/kg IV every 12 h if symptoms worsen. 	
Grade 3	 ICU care is recommended. Dexamethasone 10 mg IV every 6 h or methylprednisolone, 1 mg/kg IV every 12 hⁱ Consider repeat neuroimaging (CT or MRI) every 2–3 days if patient has persistent grade ≥3 neurotoxicity. 	\triangleright
Grade 4	 ICU care, consider mechanical ventilation for airway protection. High-dose corticosteroids^{i,k} Consider repeat neuroimaging (CT or MRI) every 2–3 days if patient has persistent grade ≥3 neurotoxicity. Treat convulsive status epilepticus per institutional guidelines. 	

Management of CRS and ICANS

- Baseline exam, CAR "team" follows, encephalopathy (ICE) screening q shift
- General Principal: Tocilizumab for CRS, corticosteroids for ICANS
- Cytokine Intervention trials: IL1RA (Anakinra), direct IL6 blockade (Siltuximab), GM-CSF neutralization
- Prophylactic anti-seizure medication for CAR T known to be associated with associated with ICANS
- Try to avoid medications with toxic central effects in the setting of blood-CSF barrier dysfunction

Conclusions

- CAR T therapy is associated with unique acute toxicities that require vigilant monitoring, aggressive supportive care, and specialized management.
- Know your product and patient.
- New consensus guidelines for grading will facilitate the safe administration of CAR T cells by providing a framework for developing best management strategies including prophylactic/early intervention.
- CRS and ICANS can be ameliorated by prompt and correct use of anti-IL6 and steroid therapy and supportive care
- Further refinements on management should be guided by insights into the pathophysiology of these toxicities.